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Confidence Intervals for Discrete 
Approximations to Ill-Posed Problems 

Bert W. RUST* and Dianne P. O'LEARYt 

We consider the linear model Y = X,3 + e that is obtained by discretizing a 
system of first-kind integral equations describing a set of physical measurements. The n 
vector /3 represents the desired quantities, the m x n matrix X represents the instrument 

response functions, and the m vector Y contains the measurements actually obtained. 
These measurements are corrupted by random measuring errors e drawn from a distri- 
bution with zero mean vector and known variance matrix. Solution of first-kind integral 
equations is an ill-posed problem, so the least squares solution for the above model is a 

highly unstable function of the measurements, and the classical confidence intervals for 
the solution are too wide to be useful. The solution can often be stabilized by imposing 
physically motivated nonnegativity constraints. In a previous article (O'Leary and Rust 

1986) we developed a method for computing sets of nonnegatively constrained simul- 
taneous confidence intervals. In this article we briefly review the simultaneous intervals 
and then show how to compute nonnegativity constrained one-at-a-time confidence inter- 
vals. The technique gives valid confidence intervals even for problems with m < n. We 
demonstrate the methods using both an overdetermined and an underdetermined problem 
obtained by discretizing an equation of Phillips (Phillips 1962). 

Key Words: Confidence intervals; First-kind integral equations; Ill-posed problems; 
Linear regression; Nonnegatively constrained regression. 

1. INTRODUCTION 

A central problem in statistics is the estimation of the quantities 

k- = wTk, k = 1,2,...,p, (1.1) 

where the Wk are given n vectors, and /3 satisfies the linear model 

Y=X3 + 6, ?(E) = 0, ? (ET) = 2, (1.2) 

with Y a measured m vector, X a known m x n matrix, / an unknown n vector, 
and E2 a known positive definite variance matrix. We focus in this article on finding 
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confidence intervals for the (? when it is known that ,3 is nonnegative. Such nonnegativity 
constrained problems are widespread, arising whenever the parameters represent physical 
quantities such as counts, densities, or pressures. They often arise from discretizing a 

system of first-kind integral equations 

rb 

Yi= x^(),3()d + eZ, i = 1,..., m, (1.3) 
Ja 

where P(~) is an unknown, nonnegative function, the Xi(() are known response func- 
tions for a measuring instrument, the Yi are the discrete measurements, and the Ei are 
random measuring errors. Such integral equations are fundamental for the reconstruc- 
tion of signals from noisy data, with applications in medical imaging, remote sensing of 

global climate data, seismic exploration, and many other areas. 
Without severe a priori restrictions on /3(), the m discrete relationships (1.3) cannot 

determine the value of P(~) at every point on the interval [a, b]. Therefore, we seek instead 
to estimate a finite set of average values of 3(~), averaged on various subintervals of 

[a, b]. More precisely, we choose p representative points C1 < ~2 < * * < p in [a, b] and 
for each 4k choose a corresponding window function Wk(?) designed so that 

rb 

Ok*(4) = Wk ()0(,) d (1.4) 
Ja 

is an average value of the unknown function in a subinterval around 4k. Discretizing 
these averaging integrals by the same method used to discretize (1.3) gives a set of p 
linear functions (1.1) that approximate the desired averages. Note that the individual 

components of 3 can be specified by choosing p = n and Wk = ek, k = 1,2,..., n, 
where ek is the kth column of the identity matrix. 

Having accomplished the discretization, the task becomes one of estimating each of 
the p linear functions (1.1) subject to the statistical constraints (1.2). These estimates can 
be either point estimates or confidence interval estimates. Following Graybill (1976) we 
consider two kinds of confidence intervals: 

1. One-at-a-time confidence intervals: Each 4i is treated individually, and for a 

prespecified probability a (0 < a < 1), the 100a% confidence intervals are 
determined separately. Each individual interval contains the corresponding true 
value with probability a-that is, 

Pr{?lo < wk' < 4k }=C, k =1,2,.. .p. (1.5) 

2. Simultaneous confidence intervals: All of the ?4 are treated together, and the 
intervals are constructed so that, with probability a, they all contain the corre- 

sponding true values-that is, 

Pr {lo < wT3 < ?u, k = 1,2,... ,p } >a. (1.6) 

Clearly this is a more exacting requirement than that for one-at-a-time intervals, 
and thus for a given a each of the simultaneous intervals is wider than its one- 
at-a-time counterpart. 
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The inversion of first-kind integral equations is an ill-posed problem, so the matrix 
X is usually ill-conditioned or even rank deficient. As a result the confidence intervals 
are typically extremely wide or even unbounded. To get physically plausible solutions, 
it is necessary to impose a priori constraints (e.g., nonnegativity) on the solution. Good 

algorithms for computing nonnegatively constrained point estimates have been widely 
available for some time (Lawson and Hanson 1974). In previous work (O'Leary and Rust 

1986) we developed an algorithm for computing nonnegatively constrained, simultane- 
ous confidence intervals when E is normally distributed. In this article we extend these 

techniques to include nonnegatively constrained one-at-a-time intervals. 
In Section 2 we present two example problems used to illustrate our results. In 

Section 3 we briefly review classical point-estimation theory with an emphasis on the 
effects of ill conditioning and rank deficiency. In Section 4 we review classical, one- 
at-a-time confidence intervals, and in Section 5 we consider the geometrical basis for 
interval estimation, characterizing the bounds as solutions to certain constrained opti- 
mization problems that will later be augmented to include the nonnegativity constraints. 
In Section 6 we review the estimation of classical, simultaneous confidence intervals 
whose geometrical basis is identical to that for the one-at-a-time intervals. The pur- 
pose of the discussion in these initial sections is to note the deficiencies of the classical 
bounds and point estimates when used for discretizations of ill-posed problems. In Sec- 
tion 7 we formally append the constraints /3 > 0 to the classical linear regression model 
and demonstrate their effectiveness in stabilizing the point estimates. We also show that 
these constraints almost always produce bounded confidence intervals, even for under- 
determined problems, and show how to extend the theory for simultaneous intervals to 
accommodate them. The extension of the classical theory for one-at-a-time intervals is 

considerably more difficult, but in Section 8 we prove a conjecture, first made almost 30 
years ago by Walter R. Burrus (1965), that allows the calculation of such intervals using 
the same algorithm we originally developed for simultaneous intervals. 

Because we assume that the only significant errors are the random perturbations E 
in the data, we implicitly assume that the model described by (1.1) and (1.2) is correct. 
In particular, this implies that errors due to discretization of the integrals are negligible. 
Thus we produce confidence intervals corresponding to the class of functions for which 
the quadrature is sufficiently accurate (or the instrument resolution sufficiently fine). 

2. TEST PROBLEMS 

To generate problems with known solutions, we use the integral equation studied by 
Phillips (1962), 

3 

Y(t) = J X(t, )3() d, -6 < t < 6 , (2.1) 
3 

where 

X(t,)= l+cos[ (3-t)], I -t <3,1tl<6 
- 0, therise,(2.2 

(2.2) = , otherwise, 
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and 

Y(t) = (6-|t )[l+ cos (t)] + sin( ) It I<6 

= 0, otherwise. (2.3) 

The kernel X(t, C) is nonnegative, a property common in many real-world applications. 
The function Y(t) is also nonnegative, symmetric about t = 0, and bell shaped, with 
maximum value Y(0) = 9 and minimum value Y(-6) = 0 = Y(+6). The exact solution 
is 

?() ` = l+cos(i), I 1<3 
= 0, otherwise. (2.4) 

This nonnegative function also defines a symmetric bell-shaped curve with a maximum 

P3(0) = 2 and minima P(-3) = 0 = 3(+3). 
To get a system of integral equations, we chose m equally spaced mesh points ti 

ranging from t = -5.925 to tm = +5.925 and defined Xi(() - X(ti, ~). This gave 

3 

Yi - Y(ti) = Xi(()/(0) d, i= 1,2,...,m. (2.5) 
-3 

We used the trapezoidal rule with mesh spacing AL = .05 to reduce this system of 

integral equations to a linear algebraic system Y - X/,. Note that the t mesh was 
chosen so that every row of the matrix X subtends at least one quadrature panel. To 
obtain test problems in which the quadrature errors were completely negligible relative 
to the statistical errors, we did not use the Y vector computed from (2.3), but rather used 
Y* defined by 

Y* - X/, (2.6) 

with the pj = P(~j) calculated from (2.4). The calculation of Y* used double-precision 
arithmetic, with the final results rounded to single precision on a machine with Emach 

7 x 10-15. The vector 3 can be regarded as the exact quantity to be estimated, and the 
vector Y* can be regarded as the measurements that would be obtained if there were no 

measuring error. 
To get the m random "measuring" errors ei, we let oi = (10-6)Y*, i = 1,2,..., m, 

and picked sample vectors E from a multivariate normal distribution N(0, E2), with 

independently distributed elements-that is, E2 = diag (a2, . . ., cr2). Adding the 
random errors chosen in this manner to the system (2.6) gave 

Y = X3 + E, E N (0, E2), (2.7) 

where Y is the vector of "measured" values. Because the calculation of the Yi assures 
that (2.6) is satisfied to 14 digits, the standard deviations of E are all from 6 to 8 orders 
of magnitude greater than the corresponding truncation errors that arose in forming Y*. 
Thus the random errors were essentially the only errors in the problem. 
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2.1 PROBLEM I: AN OVERDETERMINED PROBLEM 

For the first test problem we chose m = 150 and n = 121, producing a matrix X of 
rank n. For statistical studies, we generated several such problems by randomly choosing 
different error vectors e, but picked a typical one for use in this article. The least squares 
solution 

3 = (XTE 2X)-1XTE-2y (2.8) 

for this one is shown in the top of Figure 1, together with the exact solution /3(). 
The maximum and minimum singular values of the scaled matrix E-1X are ac1 
3.3950 x 109 and '121 1.1610 so the condition number is cond(E-lX) - 2.924 x 109. 
Because Emach " 7 x 10-15, we could reasonably expect to compute /3 accurate to 6 

digits. This means that all of the variation of the/3((j) about the true solution P3() can 
be attributed to the measurement errors ei. This variation is surprisingly small in view of 
the large condition number of the matrix, but is still distressingly large when viewed as 
relative error in the solution. Many of the 3i are negative even though the exact solution 

/3() is everywhere nonnegative. 

3.0 

2.0 

-1.0 
-3 -2 -1 0 1 2 3 

10.0 

5.0 - 

o.o 

-5.0 

-10.0 
-3 -2 -1 0 1 2 3 

Figure 1. Classical Solutions to the Test Problems. The dashed lines are the exact solutions i3(,). Top: Least 
squares solution to Problem I. Bottom: Moore-Penrose generalized inverse solution to Problem II. 
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2.2 PROBLEM II: AN UNDERDETERMINED PROBLEM 

Although the matrix in Problem I has a large condition number, the least squares 
problem is better than most that arise from first-kind integral equations. Many problems 
have rank deficient or even underdetermined matrices. If the kernel functions Xi () are 
accessible, then it is always possible to choose n < m, but this may produce discretization 
errors larger than the measuring errors. Even if discretization error is acceptably small, 
choosing n < m may still generate a rank-deficient problem. Many real-world problems 
are quite naturally underdetermined, with m and n being fixed by hardware considerations 
or other physical constraints. Often the analyst is given not the kernel functions, but 
rather the matrix X with m < n. To simulate such problems, we discretized the Phillips 
equation with m = 108 and n = 121. The matrix X has rank 108, and the maximum and 
minimum nonzero singular values of Y-1X are a,l 3.3728 x 109 and o108 - .14635. 
The bottom frame of Figure 1 gives a plot of the generalized inverse solution 

= (S-1x)t -lY, (2.9) 

which oscillates about the true solution with even wider variations than those obtained 
for Problem I. This higher noise level is due mostly to the loss of information in using 
fewer observations. Of course the estimate is not unbiased, but the oscillations tend to be 
centered on the true curve, so the bias is evidently small relative to the random scatter. 

2.3 WINDOW FUNCTIONS AND WINDOW VECTORS 

The solutions presented in the preceding section correspond to the window functions 

Wk(0) = 6(-k), k= 1,2,...,n, (2.10) 

where 6( - ~k) is the Dirac delta function centered on the quadrature mesh point ~k. 
The corresponding window responses are 

rb 

; = J( - ( k)/3() d = /3k, (2.11) 
Ja 

and the corresponding window vectors are just the columns of the nth-order identity 
matrix. The estimates obtained from these windows were highly oscillatory because of 
the ill-conditioning of the regression model. These oscillations can be damped to some 
extent by seeking estimates for a set of average values of the function /3(). 

The simplest set of averages is defined by 

1 /?k+l 

k = ^- J 3() d k = 1,2,...,n-1, (2.12) (2.12) 

where AL = 4k+1 - k is the quadrature mesh spacing. Each of these nonoverlapping 
averages is combined with its corresponding 5 interval to give a histogram approximation 
to /3(). Using the trapezoidal rule to discretize the integrals, (2.12) gives n- 1 window 
vectors wi, each with the ith and (i + 1)st elements equal to 1/2 and all other elements 
0. We call this process two-point averaging. 
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Averaging can be extended to include more than one quadrature panel in each av- 
erage, ending ultimately with n-point averaging that would seek to estimate only the 
average value of /3() on the whole interval [a, b]. In general, v-point averaging uses 
window functions 

Wk() - (- )A (1)( )+1k = 1,2,...,p 

0, otherwise, k = 1,2,...,p, (2.13) 

where p is the largest integer less than or equal to (n - 1)/(v - 1). The typical window 
vector has the form 

1 1 1 1 1 
Wk (01-0 I I W01 ... 10 1 (2.14) 

wk-=( 0..O , 2(v- 1)' v-1 v- ' ' v - 1' 2(v- 1) (2.14) 

with exactly v nonzero elements beginning with element number (k - 1)(v - 1) + 1. 
The corresponding histogram approximation will cover the whole interval [a, b] only if 
(n - 1) is an exact multiple of (v - 1). Otherwise, there will be one or more (but fewer 
than v) quadrature panels that will not be included in the set of averages. 

3. CLASSICAL POINT ESTIMATION 
To estimate the linear function 

q* = wT3 (3.1) 

subject to the statistical constraints 

Y = X/3 + e6, (e) 0, (eT) = 2, (3.2) 

we seek a linear estimator 

> = uTy (3.3) 

with mean and variance 

E?() = uTXf3, var(4) = uTE2u. (3.4) 

The estimator is unbiased iff 

uTX = T, (35) 

which means the vector w is a linear combination of the rows of X. 

3.1 FULL RANK PROBLEMS: THE BEST LINEAR UNBIASED ESTIMATOR 

If rank(X) = n < m, there will be many unbiased estimators 

TY [wTXt + zT (Im - XXt)] Y, (3.6) 
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where Xt is the generalized inverse of X and z is any m vector. The best linear unbiased 
estimator is given by the vector u that solves the constrained optimization problem 

var(uTY) = min {uTE2u uTX = wT} . (3.7) 

It is easy to see that the solution is 

u = ~-2X(XTE-2X)-lw, var(T) = TE2, = wT(XTE-2X)-lw. (3.8) 

The best linear unbiased estimator can also be written 

= wT, 3 = (XTZ-2X)-1XTE-2y (3.9) 

where / is the solution vector for the weighted least squares problem 

2 = min {(Y - X)T-2(Y - X/3)}. (3.10) 

As an example, consider Problem I (p. 71). If the set of window vectors is taken 
to be the columns of In, then the ?k are just the elements of the least squares solution 
/3 as in the top frame of Figure 1 (p. 71). The estimates corresponding to the two-point 
averaging window vectors are shown in the top frame of Figure 2. The noise level has 
been reduced by averaging, but this improvement is achieved only at the expense of a 
reduction in resolution for the independent variable ~. Note also that the averaging does 
not prevent the occurrence of some negative estimates. 

3.2 UNDERDETERMINED PROBLEMS 

If X has less than full column rank, then the set of all least squares solutions can 
be written 

3(z) = (-lx)t E-ly + [In - ( --))t] () , (3.11) 

where z is an arbitrary n vector. An unbiased estimator for wTp exists only if wT is 
an exact linear combination of the rows of X, in which case the best linear unbiased 
estimate is given by 

u = -1 
[(E X)]T w, var(?) = T u = wT (XTE2X)t (3.12) 

so 

= WT (--lX)t -Y = wTT, (3.13) 

where 3 is the minimal length solution (2.9). Being limited to window vectors expressible 
as linear combinations of the rows of X places severe restrictions on the information 
that can be elicited about the unknown function /3(). This restriction is imposed in the 
method of Backus and Gilbert that constructs just such a set of window vectors, called 

averaging kernels (Tarantola 1987). Ideally, each averaging kernel should resemble a 
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-3 -2 -1 0 1 2 3 

Figure 2. Point Estimates Using Two-pointAveraging. The dashed lines are the exact solutions /3(,). The solid 
lines are histogram of the estimates (k plotted over the corresponding intervals [k, kk+l]. Top: Best linear 
unbiased estimates for Problem I. Bottom: Moore-Penrose generalized inverse estimates for Problem II. 

narrow Gaussian centered on the point ~k. In practice the rows of X rarely admit good 
resemblances to Gaussians, so the Wk are usually nonsymmetric weighting functions that 

change from one ,k to the next. The resulting set of point estimates (4k, qk) comprise 
a smoothed discrete approximation to the unknown function /3(). This smoothing is 
difficult to characterize and nonuniform over the range of ~. 

If w is not expressible as a linear combination of rows of X, then the average 
wT,/ is said to be inestimable. This does not mean that no unbiased estimate exists, 
but rather that there exists no unbiased estimator of the form uTy. In theory, there 
exist unbiased estimates of the form wTI3(z), where o3(z) is some solution (3.11) of the 
underdetermined least squares problem. In reality, it is necessary to accept the fact that 

computable estimates will be biased and then try to assure that the errors due to bias are 
small in comparison to the random variations introduced by the e. 

In Section 2 we presented the generalized inverse solution for Problem II. It is 

apparent from the bottom frame of Figure 1 (p. 71) that any bias in this approximation 
is smaller than the scatter due to the random errors. In the bottom frame of Figure 2 we 
give the histogram approximation corresponding to the two-point averaging windows. 
Even though the averaging considerably reduces the scatter due to the random errors, it 
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is still not possible to detect the bias. It would seem that the bias is not so large that it 
rules out the possibility of obtaining useful information about the function P(~). 

4. CLASSICAL ONE-AT-A-TIME CONFIDENCE INTERVALS 

For any unbiased estimate, one-at-a-time confidence intervals for 0* can be con- 
structed from the transformed random variable 

k-k*_ u TTY - WT/3 
T) - - 

(4.1) 
/var(q) UT2u (4.1) 

which has mean -(r0) = 0 and variance var(r/) = 1. For a given probability a, a 100a% 
confidence interval for q* can be constructed by determining a number K such that 
Pr {-E < r_ < +n} = a. Substituting (4.1) and rearranging gives 

Pr { (UTY - VuT2u) < wT3 < (uTy + -VUT2U)} = a, (4.2) 

so the interval 

[01qlo q] [(uTy- V\/uT2u), (uTy + V/uT 2u)] (4.3) 

is a 100a% confidence interval for q*. 
Given the value K, the foregoing results are valid for any unbiased estimator uTy. 

The best linear unbiased estimator gives the bounds 

1o = iTy - KVT2 = wT3_ - 
T(XTz-2X)-lw 

P = UTy + kiTE2U= WTB + i/wT(XTE-2X)-lw, (4.4) 

where j3 is the least squares solution vector. The width of the confidence interval is 
directly proportional to the value of K. Optimally narrow confidence intervals can be 
computed only if the probability density function for r1 is known, and this requires a 
knowledge of the joint probability density function for e. 

4.1 CONFIDENCE INTERVALS FOR NORMALLY DISTRIBUTED ERRORS 

In many applications, e is known (or assumed) to have a multivariate normal dis- 
tribution, c ~ N (0, E2), so r] follows the standard normal distribution 7r ~ n(0, 1). 
This means that for any a (0 < a < 1), it is possible to find a corresponding value n 

(0 < n < oo) satisfying 

/ exp ) dl = a. (4.5) 

As an example, consider Problem I (p. 71) and the best linear unbiased estimators for 
the two-point averaging window vectors. Using n = 1.960 for 95% intervals, Equation 
(4.4) defines the confidence bounds plotted as solid lines in the top frame of Figure 3. 
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-3 -2 -1 0 1 2 3 

0 

Figure 3. Classical 95% Confidence Intervals for Problem I. The dashed lines are the exact solution /3(). The 
solid lines are histograms of lower and upper bounds for two-point averaging windows. Top: One-at-a-time 

confidence intervals. Bottom: Simultaneous confidence intervals. 

4.2 CONFIDENCE INTERVALS FROM CHEBYSHEV'S INEQUALITY 

If the joint probability density function for e is not known, then valid, suboptimal 
confidence intervals can be constructed by using Chebyshev's inequality (Hogg and Craig 
1965, chap. 1), which guarantees that, for any K > 0, 

Pr {l - ?(r/)I> var(7r)}< -. (4.6) 

It follows then that, for any unbiased estimator uTY, 

Pr {| Y - wT2 |1< UT2U > 1- . (4.7) 

Therefore, for any c (0 < a < 1), if K = 1//1 - a, then 

Pr { (tY - Eu ) < < + u u) }> (4.8) 

so the interval (4.3) is a 100a% confidence interval for 4*. 
Confidence intervals calculated from Chebyshev's inequality are very conservative 

because they must be wide enough to accommodate any possible probability density for 



B. W. RUST AND D. P. O'LEARY 

Table 1. K Values for Chebyshev Inequality and Standard Normal Distribution 

a n Chebyshev N normal ratio 

.6667 1.732 .967 1.79 

.95 4.472 1.960 2.28 

.99 10.000 2.575 3.88 

.999 31.622 3.295 9.60 

r7. Table 1 compares the sizes of Chebyshev intervals and normal distribution intervals 
for some commonly used confidence levels. The ratio is the factor by which the interval 
width must be expanded if the form of the error distribution is not known. 

5. THE GEOMETRY OF CONFIDENCE 
INTERVAL ESTIMATION 

5.1 FULL RANK PROBLEMS 

No matter what the relation between a and c, the corresponding confidence interval 
bounds for the best linear unbiased estimator can be calculated from (4.4). It is not 
difficult to show that the endpoints of this interval are also defined by the two constrained 
estimation problems 

0o = mn {wTf3 (Y - X)TE-2(Y- X/) = 2 + K2} 

upP = max {wTP3 (Y- XP)TE-2(Y- X/) = 2 + 2}, (5.1) 

where r2 is the minimum sum of squares (3.10). These problems can be solved by 
Lagrange multipliers to give solution vectors 

10 =^ K 
- (XTE X>1w (5.2) 

wT(XT -2X) 
' 

and 

/up /+K + (XTE-2X w, (5.3) 

WT (XT-2 X) w 

and values for q ' and / up that are the same as the values given by (4.4). 
The common constraint region for problems (5.1) can be written 

S(K) = {3 (Y- X,3)TE-2(Y-XX) = r2- 2} 

= { ( 2_ )T XT-2X (-8)= 2, (5.4) 

which defines the surface of an ellipsoid centered on the least squares solution / (Rust 
and Burrus 1972, chap. 2). The size of this ellipsoid varies with K. For any value of the 
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parameter 0, the set of points 3 satisfying wTPf = f forms a hyperplane orthogonal to 
the vector w. Therefore, the bounds o10 and ? up are the values of 4 on the two tangential 
support planes of the ellipsoid S(n) that are orthogonal to w. 

The location of the center of the ellipsoid S(K) depends on Y, and its size is scaled 

by the value of K, but its orientation and shape are completely determined by the matrix 
XTE-2X. Let the singular value decomposition of S-1X be 

E-l = U ( )VT, (5.5) 

with 

UTU = Im = UUT, VTV = In = VVT, A = diag(Ai, A2,... AAn), (5.6) 

with A1 > A2 > * .. > An. It follows then that 

XTE-2X = VA2VT (5.7) 

It is easy to see that the mutually orthogonal vectors vl, v2,..., Vn define the directions 
of the major axes of S(n), and the lengths of those axes are given by 

2K 
ei =- i-1,2,...,n. (5.8) 

From (4.4), (5.7), and the definition of A, it follows that for any window vector w, the 

corresponding a-level confidence interval has width 

2 2 n 2 n 2 

g 
up_o:= 2K 

Z( T w)2 = 2 
(wTv)2 (5.9) 

j=1 - j=l 

Because vj is a unit vector (i.e., vjvj = 1), the scalar wTvj is just the projection of w 
on the jth major axis of the ellipsoid, and ?j is the length of that major axis. 

Linear regression models obtained from first-kind integral equations are almost al- 

ways poorly conditioned. The major axes of S(n) corresponding to the smaller singular 
values are, therefore, usually greatly elongated. From (5.9) it follows that if w has a 
nonzero projection on any of the singular vectors corresponding to the smaller singular 
values, then the confidence interval for wT,3 will be very wide. Almost every window 
vector designed to elicit information about the function 03() will have nonzero compo- 
nents in the directions of these elongated axes. In the extreme case, one or more of the 
singular values are 0 and the corresponding axes of S(K) are infinite in length, yielding 
infinite intervals. When such a problem is read into a computer, the machine truncation 
errors almost always produce a full rank matrix on the machine, but there is no danger of 
obtaining deceptively good confidence intervals as a result. If EM is the machine epsilon, 
then typically for a 0* of order unity the classical estimates (4.4) give intervals like 
[-- (eM1),I +0 (EM1)] which, though shorter than [-oc , +o], are nevertheless useless. 
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5.2 UNDERDETERMINED PROBLEMS 

For problems with m < n, the matrix is exactly rank deficient with Am+i = Am+2 = 
. * = An = 0. The ellipsoid S(n) has at least n- m infinitely long major axes, and its 

center is not a single point 3 but rather a coset of the subspace spanned by the singular 
vectors Vm+l, Vm+2, .. ,-n-more precisely, the set of points defined by (3.11). In that 

expression, the set of points 

.N(-1X) = [In- (SE-X)t (E-X)] z z arbitrary} (5.10) 

is the subspace, and 

= (E-1X) -'Y (5.11) 

is the displacement of the coset from the origin. If w is orthogonal to the subspace 
Af(E-1X), then it is an exact linear combination of the rows of X, so the best lin- 
ear unbiased estimators for wTTP and its variance are given by (3.12) and (3.13). The 
confidence interval bounds are 

lo - W"T -/w (TXTr2X)t w 

UP -_ 
wT. + I 

T (XTZ2SX)w, (5.12) 

where 3 is the minimal length solution (5.11). 
If w has a nonzero projection on any of the infinite axes of S(n), then wTf3 is said 

to be inestimable because there exists no unbiased estimator of the form 0 = uTY. The 
center coset does contain at least one point 

/3(Z) = (E-lx)t '-l+ [in - (E- x)t (S'x)] , (5.13) 

for which wT/3(z) gives an unbiased estimate. Taking z = f would give such an 

estimate, but of course 3 is unknown. Even if it were possible to find some z that gives 
an unbiased estimate, the confidence interval for wT/3 would still be unbounded. 

6. CLASSICAL SIMULTANEOUS CONFIDENCE INTERVALS 

The method that we shall use for estimating a set of a-level simultaneous confidence 
intervals for a whole set of window vectors is based on the a-level confidence ellipsoid 
for the unknown vector /3. This ellipsoid is centered at the least squares solution /3, with 
size determined by a parameter y2 chosen so that 

Pr{ (/3 - )T XT 2X (/ _ 3) } . (6.1) 

The required set of simultaneous confidence intervals is constructed from the support 
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planes for this ellipsoid. In particular, the set of intervals defined by 

= min{w (p3_3 )TXT-2X(-3 )=y2} k=1,2,...,p 

TX = max{wT' | (p3 )TxTE-2X(--= }, k= 2... 

(6.2) 

satisfy 

Pr {o< < < up, k 1, 2,... ,p} > a, (6.3) 

and this result holds for any number of averaging vectors. These simultaneous confidence 
intervals are defined by the support planes of an ellipsoid in the same way as are the 
one-at-a-time intervals given by (5.1). The only difference is in the size of the defining 
ellipsoid. It is easy to see that if rank(X) = n < m, then the solutions to the constrained 

optimization problems (6.2) are 

4lo T _Y nwT (XT"-2X) k k , 1,2,...,p 

kup = w 3t+? w (X X) W, k- = 1,2,.. p, (6.4) 

where 3 is the least squares solution vector (3.9). 
An alternative to basing simultaneous confidence intervals on the underlying con- 

fidence ellipsoid is to use Bonferroni-type inequalities to combine a collection of one- 
at-a-time intervals into a set of simultaneous ones (Tong 1980). See, for example, the 
work of Hunter (1976) that is discussed by Stoline (1983), the work of Worsley (1982), 
and the methods devised by Slepian and Sidak and discussed by Tong (1980, chap. 2). 
These methods construct a simultaneous set with a given probability by requiring an 

appropriately higher probability for each of the one-at-a-time intervals gathered into the 
set. We will not develop inequality-constrained Bonferroni methods in this article, but 
note that the results we shall obtain in Section 8 will be useful in any development of 

nonnegatively constrained Bonferroni intervals. 

6.1 SIMULTANEOUS INTERVALS FOR NORMALLY DISTRIBUTED ERRORS 

If E is normally distributed and X has full column rank, then 

( -/3)T xTS2X (3-/) x2(n), 

so 

2 

Pr {(-/) TXTX-2X (P-3) < 2} X2(n; q)dq = a, (6.5) 

where X2(n ;q) is the probability density function for the X2(n) distribution. It is in- 

teresting to compare the widths of the simultaneous intervals (6.4) with those of the 
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Table 2. The Ratio yn/lK for Normally Distributed Errors 

a n =20 n =30 n = 50 n = 70 n = 100 n = 150 n = 200 

.6667 4.9 5.9 7.6 8.9 10.6 13.0 14.9 

.95 2.9 3.4 4.2 4.9 5.7 6.8 7.8 

.99 2.4 2.8 3.4 3.9 4.5 5.4 6.1 

.999 2.0 2.3 2.8 3.2 3.7 4.4 4.9 

one-at-a-time intervals (4.4). The ratio of the interval widths is tabulated in Table 2 for 
several values of a and n. 

As an example, we again consider Problem I with two-point averaging windows 
and seek 95% simultaneous intervals: -y2 = 12.14. Using this value in (6.4) gives the 
intervals shown in the bottom frame of Figure 3 (p. 77). Comparing this plot with the 
one in the top frame gives a rough idea of the price that must be paid for the additional 

certainty of simultaneous intervals. 

6.2 SIMULTANEOUS INTERVALS FROM CHEBYSHEV'S INEQUALITY 

If the form of the joint probability density function for e is unknown, then valid, 
though conservative, confidence ellipsoids can be constructed from Chebyshev's inequal- 
ity. For a given a, it is necessary to determine a corresponding -y such that 

Pr {/3 S((y)} =Pr {(/-/3)T XT-2X ( 
- 

3) < )2 } > a. (6.6) 

A multivariate Chebyshev inequality given by Olkin and Pratt (1958) ensures that for 

any a, (0 < a < 1), this will be satisfied if -n = n//l - a. In general, however, 
the demand for the certainty of simultaneous intervals coupled with a lack of knowledge 
about the distribution of the errors usually produces intervals so wide that they are almost 
useless. 

7. NONNEGATIVELY CONSTRAINED ESTIMATION 

The least squares problem arising from the discretization of a system of first-kind 

integral equations is usually poorly conditioned with respect to small variations in the 
measured vector Y. Quite often, the exact matrix X is rank deficient which means, in 
the classical theory, that the linear functions * = wk T3 may not even be estimable. 

Fortunately, in cases where the solution /3() of the integral equations is physically con- 
strained to be nonnegative, the imposition of those constraints on the solution vector 3 
almost always stabilizes the estimation problems and gives biased, but bounded, physi- 
cally plausible solutions, no matter what the value of rank(X). Therefore we append the 
constraint 3 > 0 to the linear estimation model (1.2)-that is, 

Y=X/3+E, ?(c)=0, (EET)= 2, Pr{/3 >0}=1.0. 
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7.1 CONSTRAINED POINT ESTIMATION 

When the nonnegativity constraint is appended, the point-estimation problem be- 
comes 

Pmin = min {(X,3 - Y)TE-2(X3 - Y)} 
3>o0 

= 2 + min {(3 - )TXT-2X(/3 - )}, (7.2) 
_3>0o 

- 

with r2 defined by (3.10). If / denotes the solution vector-that is, if 

Pmi ( = nX - y)T-2(X3 - Y), (7.3) 

then estimates of the ensemble of averages can be computed by 

k = 3, k = 1,2,...,p. (7.4) 

Equation (7.2) defines a nonnegatively constrained least squares problem for which 
there is no explicit closed form solution, but good algorithms for the numerical solution 

3.0 

2.0- 

1.0 - 

0.0 A 
-3 -2 -1 0 1 2 3 

4.0 

20 j.lll 

-3 -2 -1 0 1 2 3 

Figure 4. Nonnegatively Constrained Solutions to the Test Problems. The dashed lines are the exact solutions 
3(E), and the jagged solid lines are plots of 3k. Top: Problem I. Bottom: Problem II. 
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have been available since the mid-1970s (Lawson and Hanson 1974). Figure 4 gives 
plots of these solutions for Problems I and II. Comparison of these plots with those in 

Figure 1 (p. 71) shows that the nonnegativity constraints gave good, but not spectacular, 
improvement. For most real-world ill-posed problems, the improvement is much more 
dramatic. 

7.2 CONSTRAINED INTERVAL ESTIMATION 

The classical method for estimating confidence intervals can also be extended to 
take the nonnegativity constraints into account. For both one-at-a-time and simultaneous 
intervals, the classical, unconstrained interval estimation problems can be written in the 
form 

1lo = min {wT T (Y - Xf)TE-2(Y 
- 

Xp/) = 2 
} 

(up = max { wTT3I (Y - Xp)TE-2( - X3) = w2}, (7.5) 

where w2 is a constant chosen to give the desired confidence level a. We will show in 
the following that valid nonnegatively constrained confidence intervals can be obtained 

by solving problems of the form 

lo = mn {wTO3 (Y - XP)TE-2(Y - X) = /2 , > 0} 

up = max {wT I (Y- X3)TE-2(Y- X3) =p2 / > 0}, (7.6) 

where ,u = w for simultaneous confidence intervals, but p differs from w for one-at-a-time 
intervals. 

The common constraint region in (7.6) is the intersection of the n-dimensional A 

ellipsoid with the positive orthant. For any reasonable discretization of the integral equa- 
tions, the value of n will be large enough to assure that the positive orthant constitutes a 

very small fraction of n space. The resulting intersection is generally much smaller in all 
directions than is the /u ellipsoid itself. Even for rank-deficient matrices X this intersec- 
tion is almost always bounded. If X is rank deficient, then one or more of the smallest 

eigenvalues of XTE-2X will be 0, and the ellipsoid will be unbounded in the directions 
of the corresponding eigenvectors. The intersection of the ellipsoid with the positive or- 
thant will, however, be unbounded only if at least one of these degenerate eigenvectors 
lies in the positive orthant. Because /3 space has 2" orthants and XTE-2X has fewer 
than n degenerate eigenvalues, it will be a very rare occurrence for one of the corre- 

sponding eigenvectors to extend into the positive orthant. In many physical applications 
the matrix X is nonnegative, and in such cases /3 > 0, /3 0 => XTZ-2X/3 $ 0 . 3; 
thus, for these applications, no degenerate eigenvector could lie in the positive orthant. 

It is not possible to write closed-form solutions for the problems (7.6), but numer- 
ical calculation of the solutions is possible. The first person to employ nonnegativity 
constraints to reduce the size of estimated confidence intervals was Walter R. Burrus 
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(1965) who used the technique in neutron and gamma-ray spectrum unfolding problems. 
Burrus did not give an algorithm for solving (7.6), but he and his colleagues (Burrus, 
Rust, and Cope 1980; Cope and Rust 1979; Pierce and Rust 1985; Rust and Burrus 1971, 
1972) developed several algorithms for computing suboptimal interval approximations 
to [q lo , up]. In spite of the suboptimality, the intervals thus obtained were uniformly 
much better than the classical intervals. O'Leary and Rust (1986) developed an algorithm 
called BRACKET-LS for computing the optimal intervals. This algorithm was used to 

compute the confidence intervals given in the remainder of this article. 

7.3 SIMULTANEOUS CONFIDENCE INTERVALS 

The extension of the classical theory to accommodate nonnegativity constraints in the 
estimation of one-at-a-time intervals is complicated, so we defer it to the next section. The 
extension to estimating simultaneous intervals is straightforward because the intersection 
of a confidence ellipsoid with the positive orthant is itself a confidence region with the 
same confidence level as the ellipsoid. Let -y be chosen so that 

S(7) = {I [(Y-XO)TE-2(Y- XP) < 2+ 2} 

= , 13 C2 
_ 

0 j~y)(7.7) 
= 

{[ l (~ 
- )T XTS-2X ( 

_ 
_ /) < 72} (7.7) 

is a 100a% confidence ellipsoid for 3, and define events A and B by 

A = {(Y - X,)TE-2(Y - X/) < 2 + 72}, B = { > 0}, (7.8) 

with probabilities P(A) = a and P(B) = 1.0. It follows from P(AnB) = P(A) +P(B)- 
P(A U B) that 

Pr{(Y - X/)T-2(Y - X3) < 2 + 2, 3 } = a. (7.9) 

Therefore, if 

p = m {wk 3 I (Y - X/)T-2( - X/) < r2 + 72 /3 > 0} 

k ma= max{ w | I (Y -X )T-2( - X3) < 2 + 2, P > 0}, (7.10) 

then for any number p of window vectors wk, 

Pr{ ?lo < wT/3 < kp, k = 1,2,... ,p} = a. (7.11) 

In Subsection 6.1 we saw that for full-rank problems with normally distributed 
errors, a 100a% confidence ellipsoid is obtained by choosing 72 to be the a point of the 

X2(n) distribution. With the addition of nonnegativity constraints, it becomes possible 
to estimate confidence intervals for underdetermined problems, but the choice of 72 is 
different. Rust and Burrus (1972, chap. 6) proved that if Y is normally distributed and 

= ( lX) E-vl = (XTS-2X)t XTS-2 (7.12) (E ~~~~~~~~~~~~~(7.12) 



B. W. RUST AND D. P. O'LEARY 

3.0 

-3 -2 -1 0 1 2 3 

Figure 5. Nonnegatively Constrained, Simultaneous 95% Confidence Intervals From the Normal Distribution. 
The dashed lines are the exact solutions /3(). Top: Problem I. The solid lines are histograms of lower and 
upper bounds for two-point averaging windows. Bottom: Problem II. The solid lines are histograms of lower 
and upper bounds for 3-point averaging windows. 

is the corresponding generalized inverse solution vector, then (3 - 3)TXTE-2X(3 - 

,3) ~ X2(v), where v = rank(X). Therefore, if y is taken to be the a point of the x2(v) 
distribution, then (7.10) defines the confidence intervals that can be computed with the 
BRACKET-LS algorithm (O'Leary and Rust 1986). Determining the exact rank v is 
often a difficult and uncertain procedure, but it is better to overestimate the rank than to 
underestimate it. In the former case, the confidence intervals will be suboptimal (larger 
than necessary to assure the confidence level), but in the latter case they will be dishonest 

(too small to assure the claimed confidence level). A conservative procedure is to choose 
v = min{m, n}. 

Figure 5 gives plots of the simultaneous confidence intervals given by BRACKET-LS 
for Problem I using two-point averaging, and for Problem II using three-point averaging, 
with the measuring errors assumed to be normally distributed. The bounds for Problem 
I can be compared with those in the bottom frame of Figure 3 (p. 77) to assess the 

improvement obtained by using the nonnegativity constraints. The improvement is even 
more dramatic for Problem II because all intervals are unbounded for the unconstrained 

problem. 
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8. CONSTRAINED ONE-AT-A-TIME CONFIDENCE INTERVALS 

8.1 THE BURRUS CONJECTURE 

Nonnegatively constrained one-at-a-time confidence intervals cannot be defined in 
the same manner as constrained simultaneous intervals. More precisely, if K is defined 

by (4.5), then valid 100a% one-at-a-time intervals cannot be calculated from (7.6) with 

p2 = r2 + ~2. In fact, it almost always happens that 

r2 + 2 < Pmin = min {(Y- X3)TE-2(Y - Xf)}; (8.1) 

that is, the ellipsoid (5.4) had no points in common with the positive orthant. This 

difficulty arises because the regression models almost never have m > n. Accordingly, 
the classical least squares procedure produces a solution vector 3 that models a large 
portion of the measurement errors e and hence gives an unrealistically low value for r2. 
This fact was pointed out by Burrus (1965) who also noted that the ellipsoid defined by 

(Y- X3))TE-2(Y - X3) < Pmin + 2 (8.2) 

always has a nonempty intersection with the positive orthant. He conjectured (Rust and 
Burrus 1972) that valid confidence intervals could be obtained by using that intersection 
as the constraint region; that is, by solving the problems 

lo = min{wT/ (Y -X )TE-2(Y-X/) Pmin + 2, > 0} 

$up = max{wT | (Y-X/3)TE-2(- X ) =Pmin+2 />0}. (8.3) 

We shall show in the following that this conjecture is indeed correct. 

8.2 THE DUALITY THEOREM 

To prove the Burrus Conjecture, it will be necessary to restate (8.3) in equivalent 
forms defined by the Duality Theorem for Nonlinear Programming (Wolfe 1961). 

Wolfe's Duality Theorem: Suppose z is an N vector of unknown variables, f (z) is a 
scalar function, and g(z) is an M vector function of z, and that f(z) and g(z) are all 
convex and differentiable on an open set Z. If 

qp = min {f(z) I g(z) > 0} (8.4) 
ZEZ 

and the constraints g(z) > 0 satisfy a constraint qualification, then 9p = ,D. where OD 
is determined by the dual problem 

O0 {z, 2,r / Wg D = max {f(z)- VT | Vf(z) = ( ) v V > (8.5) 

Equation (8.4) is called the primal problem. The constraint qualification can be any one 
of several regularity conditions on either the convexity or differentiability properties of 
the functions gi(z) (Mangasarian 1969, chaps. 5 and 7). 
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It is instructive to apply this theorem to the classical, full-rank interval estimation 

problems (5.1). To simplify the notation, let ,L = +\/r2 + ,2 and consider first the lower 
bound problem that can also be written with inequality constraints, 

lo = min {wTP _ (Y - X3)TE-2(Y 
- X/3) < 2} (8.6) 

because the indicated minimum is attained on the boundary of the ellipsoid. Many equiv- 
alent forms of the dual problem can be derived, but it is easiest to get the form we need 

by using the artifice of writing the problem in terms of the original variables 3 and the 
scaled residual vector r = E-l(Y - X/3), which can also be specified by two vector 

inequalities, 

r-S-'(Y-X /3) > 0 and - r + E-1(Y - X)) > 0. (8.7) 

Reformulating (8.6) in terms of the (N = m + n) variables z (T, r), gives 

/ -E-(Y-X )+r \ / \ 

g(z)= +S-l(Y- X/3)-r > 0 (8.8) 

for the constraints and 

f(z) (WT, OT) Z (8.9) 

for the objective function. The problem then becomes 

,o = cp = min { f(z) I g(z) > O}, (8.10) 
ZEZ 

where Z = RN. The functions f(z) and g(z) are convex and differentiable everywhere, 
and the constraints g(z) > 0 satisfy Slater's constraint qualification (Mangasarian 1969, 
sec. 5.4.3), so the Duality Theorem is applicable. Therefore 

0 = OD =max {f(z) - gTv I Vf(z) = ( ) v, v > 0}, (8.11) 
{Z, VI v, v>OZ , 

where v is a (M = 2m + 1) vector of dual variables that can also be written 

vT = (v , vT,v3)T, (8.12) 

with subvectors vl and v2 of length m. 
The derivatives required for the dual constraints are 

Vf(z) = o ( ( ) 'r (8.13) 
(0 J OZ I Im -1m ~^pr , 

so the constraints themselves can be written 

xTE-l(vI-v2) = W, (Vl-V2)-V3 
r 

= O, V1 > 0, V2 > 0, V3 > 0. (8.14) 
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Note that the dual vectors vl and v2 appear only as components of the difference v -v2. 
Even though vl and v2 are constrained to be nonnegative, their difference is totally 
unconstrained. Defining new, unconstrained dual variables vo vl - v2 allows the 
constraints to be written 

XT E-lv0- = , vo = 3 - V3 > 0 (8.15) 

and then eliminating the variables vo gives 

XTE-l1 
V3 -= , V3> 0. (8.16) 

Using the definition of v0 and Equations (8.15) and (8.16), the objective function 
for the dual problem can be written 

f(z)-gT(z)v = wT 3+ [YTE-1- _ TXT-1 - 
rT] (v - V2) 

+V3 V(/rTr- ) (8.17) 

= wT3 + [yTE-1 _- TXT E1 - rT] vo 

+v3 ( rTr-) (8.18) 

= 
TZ 'X 3 FT iT T iT] V3r 

=<r'Ts X5+f 
[yT^S-1_ TXTTL _rT j 

+v3 
/ - ) (8.19) 

/yTy -r - 

= v3 -T . (8.20) 

To simplify, we introduce a change of variables 

v3E-lr 
U 3 , (8.21) 

and note that by (8.16) u is constrained only by XTu = w. Multiplying (8.21) by E 
and "squaring" yields uTE2u = v2, so the dual objective function becomes 

f(z) - gT(z)v = YTu - A/uT2u, (8.22) 

which yields, after substituting p = v/r2 + ?2, the final form of the dual problem-that 
is, 

1o = max {uTY- (r2 + 2) 2 V/uT2u I uTX = w }. (8.23) 

In a similar manner, it can be shown that the dual problem for the upper bound problem 
in (5.1) can be written 

?UP = min {TY + (r2 + ,2) V/uTEu X = w } (8.24) 
u~~~,~c? ?=-) 
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It is easy to independently verify that these two dual problems are equivalent to the 

primals (5.1) because they too can be solved by Lagrange multipliers. The solution 
vectors are 

U,1o ?= -y+ 2 X3) 

U U - - Z- _2(y -X3), (8.25) 
K 

where u is given by (3.8) and /3 by (3.9). The corresponding optimal values are 

> lo = (U lo)T y _ 
(r2 + t;2) 2/((Ulo)T S2 1o 

= UTy n 
_ 

2T o TTS2y, 

u?p = (' up)T y + (r2 + 2) \( up)T 
2 up = TTy + T /TS2 (8.26) 

which are the same as the values given by (4.4). 
The primal problems (5.1) correspond to a Gaussian formulation of linear interval 

estimation and the dual problems (8.23) and (8.24) correspond to the Markov formulation. 
In the objective functions of the latter, the inner product uTY is a linear estimator 
of the unknown q* and the quantity uTE-2u is the variance of that estimator. The 
constraint functions common to both problems require the estimators to be unbiased. 
When nonnegativity constraints are imposed on the problems, the forms of the objective 
functions are unaffected, but the constraint functions change in an interesting way. 

8.3 LOWER-BIASED AND UPPER-BIASED ESTIMATORS 

Now consider the nonnegatively constrained interval estimation problems (8.3). The 
lower bound primal problem is 

ilo = min {wT | ( 
- 

X3)TE-2(Y - X-) < /2, P3 > , (8.27) 

where ,i = VPmin + ;2. The transformation of this problem to its dual form is similar 
to that given in the preceding section for the unconstrained problem (8.6). The only 
difference is the additional set of n constraints, /3 > 0, that augment the primal constraint 
relations (8.8). The dual vector (8.12) is also augmented by n additional variables v4 to 

give vT = (vT, vT, V3, vT) , and the constraint expressions (8.14) are changed to 

XTE-l(Vl - V2) + V4 = W, (Vl 
- 

V2) 
- 

V3 = = 0, 

vi > 0, V2 > 0, V3 > 0, V4 > 0. (8.28) 

The objective function remains the same as it was for the classical problem, and the 
definition of vo and the determination of V3 are the same also. The net result is that 

1 
, 4max {yTE 

v o XT-vo + V4 = w, V4 >0. (8.29) 
{Vo,V4} I 
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The objective function does not depend on V4, so the constraints can be written XTE-l1V 
< w. Defining u as in (8.21) and restoring the value of , gives 

-lo Ty 2) 2I I UTX < WT(8.30) = max {uTY - (Pmin + K 2) VuT u I UTX < . (8.30) 

Similarly, the dual statement of the upper bound problem can be shown to be 

-UP = min u Y + (Pmin + c 2) V/uT2u I uTX > wT. (8.31) 

The objective functions for the current dual problems differ from those of the clas- 
sical duals (8.23) and (8.24) only in the substitution of pmin for r2. The constraints, 
however, are quite different. In the classical case, the estimators uTY are required to 
be unbiased in both cases. For the nonnegatively constrained problems, the estimator for 
the lower bound is required to be lower biased, and the estimator for the upper bound is 

required to be upper biased. This equivalence of bias constraints in the Markov formu- 
lation to nonnegativity constraints in the Gauss formulation is a surprising result whose 

significance we are at present unable to assess. It seems very logical to use lower-biased 
estimators when seeking a lower bound and upper-biased estimators when seeking an 

upper bound, but such constraints appear at first glance to be less restrictive than the 
classical unbiasedness constraints. In practical problems, nonnegatively constrained con- 
fidence intervals are smaller than the corresponding classical intervals, even though the 
substitution of Pmin for r2 in the objective functions should tend to increase the size of 
the former. It would seem then that the upper and lower bias constraints are considerably 
stronger than the unbiasedness constraint. 

8.4 PROOF OF THE BURRUS CONJECTURE 

Having established the equivalence of the dual problems (8.30) and (8.31) to the 

primals (8.3), it is not difficult to prove the Burrus Conjecture, which we now state as a 
theorem. 

Theorem. Let Y be a given m vector, X a given m x n matrix, and ,3 an unknown 
n vector satisfying 

Y=X/3+e, E,-N (0, 2), Pr{/3>0}=1. (8.32) 

Let Pmin be defined by 

Pmin = mm {(Y - X,)TE-2(Y - XP) > 0} . (8.33) 

Let a be a given probability (0 < a < 1), and suppose that the value , is chosen so that 

J-k- | (_7exp( 2 dr7 = a. (8.34) 

If w is a given n vector, and 

o? = min {wT/3 (Y -X)TE-2(Y-X/) < min + , > 0} /3 
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Cu p = max {wT,I(Y-X,)TE-2(Y-X ) < Pmin + 2 > 0}, (8.35) 

then 

Pr {10 < w T < up} > a. (8.36) 

Proof: For any m vector u, the reduced random variable 

uT - uTX,3 
(8.37) 

V'/UT"2U 

is distributed as n(O, 1). It follows that 

Pr { (uTy - /uTE2u) < uTXp < (TY + /uTE2u) a. (8.38) 

Define constants 01 and 02 by 

Pr { (uTy - iV/uT2u) < u TXP} 

1n r~00 7 r\ 
= 7 / exp -- d = a + 02 

Pr {uTX < (UTY + ,/UT2u) } 

= - LJ exp (-r12 dr7 = 01 + a, (8.39) 

and note that 

01 + a + 02 = 1. (8.40) 

We saw in the preceding section that q lo and ? up can also be defined as 

t1o = max {uTy- (Pmin + n 2) V/uTE2u uTX < wT} 

up = min {uTy + (Pmin + ,2)2 V/uTS2 TX > wT. (8.41) 

Consider first the upper bound problem and let uup be its solution vector-that is, 

up = UTY + (Pmin + K2) 
2 

UT 2uup (8.42) 

with 

uTX > wT. (8.43) 

From the second relation in (8.39), because n < V/Pmin + K2, it follows that 

Pr {uX/3 < upY + (Pmin + K2) Jup2up } > 01 + a, (8.44) 
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or, by (8.42), that 

Pr {uTX/ < up} > 1 + a. (8.45) 

Because / > 0, it follows from (8.43) that wTP < uTXf3. Combining this inequality 
with (8.45) gives 

Pr {wTo < up} > 01 +a. (8.46) 

In a similar manner, it is easy to show that 

Pr { ?o < wT/} > a + 02. (8.47) 

Now, 

p {?>lo<WTo<PP = Pr f{?o < wTo _ T < C} up 
Pr{1?inu} [{o1_ 5wT/f}O{wTi_< ~P}] 

= Pr{ lo < wT/} + Pr {wT/ < 3 uP} 

-Pr [{ < wT} U {wT3 < p}], (8.48) 

so by (8.46) and (8.47), 

Pr {(o < wT/3 < u} up> 01 + 2a + 02 

-Pr [{ < wT/3} U {wT 3< up}] (8.49) 

From definition (8.35), we have 0 l < up, so 

Pr [{?o < wTl } U {wT p< ?up}] = 1. (8.50) 

Substituting this result into (8.49) and using (8.40) gives 

Pr {lo < wT < u} > 1 + 2c + 02 -1 = a, (8.51) 

which completes the proof of the theorem. O 
Note that the theorem makes no restrictions on m, n, or rank(X). For an under- 

determined system in which X has some negative elements, it is possible, but not very 
probable, that one of the two problems (8.35) may be unbounded. In that case, the 
theorem is still true, but the confidence interval is semi-infinite. 

In proving the theorem we assumed that the errors e were normally distributed. This 
is generally not a serious limitation in practice, but it is worth noting that the theorem 
can be proved for a wider class of possible error distributions. The essential restriction 

required by the proof is that the reduced random variable r1 have the same probability 
distribution for all m vectors u. 

Corollary 1. Let Y be a given m vector, X a given m x n matrix, and /3 an 
unknown n vector satisfying 

Y=X3 + , F(e)=O, ? (eET) E2, Pr{/ > 0} =1. (8.52) 
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-3 -2 -1 0 1 2 3 

Figure 6. Nonnegatively Constrained, One-at-a-Time 95% Confidence Intervals From the Normal Distribution. 
The dashed lines are the exact solutions /3(). Top: Problem I. The solid lines are histograms of lower and 

upper bounds for two-point averaging windows. Bottom: Problem II. The solid lines are histograms of lower 
and upper bounds for two-point averaging windows. 

Let Pmin be defined by (8.33) and assume that the errors e are distributed in such a manner 
that the reduced random variable 

uTTY 
uTX 

(8.53) 
VUTE2U 

has the same probability density function f(r1) for all m vectors u. Let a be a given 
probability (0 < a < 1), and suppose that the value s is chosen so that 

Pr {-n < r < } = J f (r) dr = a. (8.54) 
--K 

If w is a given n vector, and if lo and ( uP are defined by (8.35), then 

Pr {lo < wTf3 < up} > a. (8.55) 

Proof: The proof differs from the proof of the theorem only in the definitions of 

94 
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01 and 02-that is, (8.39) is replaced by 

Pr { (UTY 
- 

KV/UTE2) < UTX3} = f())di= a +02 

Pr {uTXt < (u y + I T 2u)} = / f(r) d = 01 + a. (8.56) 

The values 01 and 02 satisfy 01 + a + 02 = 1, and the remainder of the proof follows 

exactly as before. O 

8.5 EXAMPLES 

Figure 6 gives plots of the nonnegatively constrained 95% confidence intervals for 
both Problems I and II, using two-point averaging. The Problem I bounds can be com- 

pared with those in the top frame of Figure 3 (p. 77) to assess the improvement to 
be attributed to the nonnegativity constraints. Problem I is not a bad problem, so the 

improvement is less striking than that normally attained for real-world problems. The 
bounds for Problem II do represent a striking improvement because, in the absence of 
the nonnegativity constraints, all the confidence intervals are unbounded. The bounds for 
Problem II could be significantly improved by using three-point averaging. 

[Received January 1992. Revised July 1993.] 
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