
simplifies nonlinear least squares calculations because it does
not require iteration on parameters that appear linearly in
the model.

Nonlinear Least Squares
In Part III of this series,1 we used nonlinear least squares to
fit the exponential model

, (1)

where t0 = 1856.0, to the annual global total fossil fuel pro-
duction record that Gregg Marland and his colleagues com-
piled.2 Since then, they have added another year of data to
the data set, and the production figures for the years 1982
to 1998 have been slightly revised. You can get the updated
record at http://cdiac.ornl.gov/trends/emis/em_cont.htm. 

Fitting Equation 1 to the new data gives the parameter es-
timates

, (2)

. (3)

The fit, which Figure 1 plots, accounts for 97.5 percent of
the total variance in the data, but the residuals, plotted in
Figure 2, exhibit a quasicyclic variation whose amplitude ap-
pears to be growing along with the exponential baseline. 

The residuals’ Fourier power spectrum is similar to the
one in Figure 4 of Part II3 for the residuals from the reduced

quadratic fit to the global temperature record. Here, the
dominant peak is at ≈65.6 years; there, it was at ≈61.4 years.
The simplest assumption about the amplitude’s growth rate
is that it is increasing at the same exponential rate as the
baseline. This suggests a model of the form

(4)

with unknown parameters c1, α1, A, α2, and φ, which would
require nonlinear least squares for their estimation. The
work done so far provides initial estimates c1

(0) = 160, α1
(0) =

0.027, and α2
(0) = 65, but getting good initial estimates A(0)

and φ(0) would require some effort.
In Part III, we recommended rewriting models involving

sinusoids like the one in Equation 4 by defining new para-
meters

,
, (5)
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Figure 1. The nonlinear fit of the simple exponential model in
Equation 1 to the global total fossil fuel emissions for the years
1856 through 1999.
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so that we can write the model

(6)

with the parameters A and φ being replaced by c2 and c3. We
can get estimates of A and φ from estimates of c2, c3, and α2 by 

, , (7)

and we can compute uncertainties in those estimates via
Equations 40 and 41 in Part III.1

Of course, finding initial estimates c2
(0) and c3

(0) is no eas-
ier than finding A(0) and φ(0), but Equation 6 expresses the
model in a form that depends linearly on three of the un-
known parameters and nonlinearly on only two of them.
This makes it possible to get the fit via a variable projection
algorithm,4 which iterates only on the nonlinear parameters
and computes the linear parameters by linear least squares—
with no need for initial estimates.

The Variable Projection Method
The variable projection method assumes that we can write
the fitting function as 

, (8)

where 

(9)

is an n-vector of linear parameters,

(10)

is a p-vector of nonlinear parameters, and the Φj(t,α) are
functions that depend only on the nonlinear parameters.
The notation is not meant to imply that all the Φj’s depend
on all the α’s. Any given Φj can depend on all, some, or none
of the α’s, but none of them depend on any of the cj’s. 

Given m observations (ti, yi), we define 

, (11)

and, for any given α, 

(12)

then we can write the sum of squared residuals that must be
minimized as

(13)

(14)

. (15)

This objective function must be minimized with respect to
the elements of both c and α, but it is advantageous to write
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Figure 2. The residuals for exponential fits to the fossil fuel
emissions record. The solid curve gives the residuals for the fit
shown in Figure 1; the dashed line gives the residuals for the
fit of Equation 6 shown in Figure 3.
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the minimization problem as

, (16)

and note that for any fixed α, the inner minimization is a lin-
ear least square problem just like the one in Part I.5 There-
fore, for any given α, the inner minimum occurs at

, (17)

where the n × m matrix

(18)

is called the generalized inverse or pseudoinverse of the m × n
matrix Φ(α). This means that we can write the minimization
problem in Equation 16 as

, (19)

which depends only on the parameters α. 
Because the objective function is very nonlinear, we need

an iteration to isolate the minimizer , but once we find it,
we can calculate the estimate from

, (20)

with no iteration being required.
Gene Golub and Victor Pereya4 first gave an iterative al-

gorithm for solving the minimization problem in Equation
19; they also provided a Fortran computer code called
VARPRO, which combined it with a linear least squares al-
gorithm to solve for . To fully appreciate the magnitude of
their accomplishment, recall that minimization algorithms re-
quire, at each step, the derivatives of the objective function
with respect to the unknown parameters. How would you like
to try to differentiate the objective function in Equation 19
with respect to the vector α?  The advantage of a variable sep-
arable algorithm is so apparent to real-world modelers that it
is amazing that VARPRO isn’t used more widely. You can get
VARPRO online at www.netlib.org/opt/varpro. A good re-
view detailing its development and applications over the last
30 years will soon appear in the journal Inverse Problems.6

Back to the Fossil Fuel Emissions
Equation 6 is already written in the VARPRO form (Equa-
tion 8) with p = 2, n = 3, and

(21)

(22)

. (23)

VARPRO requires the partial derivatives of these three func-
tions with respect to α1 and α2 in order to compute the par-
tial derivatives of Equation 19’s objective function. Using
initial estimates α1

(0) = 0.027 and α2
(0) = 65 leads, after 16 it-

erations, to the estimates

(24)

The amplitude and phase estimates corresponding to and
are

(25)

The relatively small uncertainty in seems to indicate
that the added oscillation is statistically significant, but us-
ing the F-test described in Part II is required to ensure that
the addition of the three new parameters did produce a sta-
tistically significant reduction in the residual variance.3 The
null hypothesis is

H0 : c2
* = 0, c3

* = 0, α2
* = 0, (26)

so k = 3 and n = 5, and the number of measurements was m
= 144. The sum of squared residuals for the simple expo-
nential fit was SSRH = 1.4546 × 107 and for the exponential-
sinusoidal model, SSRF = 1.575 × 106. Therefore, we have
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, (27)

so the null hypothesis is resoundingly rejected.
The new fit, which Figure 3 plots, accounts for 99.7 per-

cent of the total variance in the data. The residuals, plotted
as a dashed line in Figure 2, show a marked improvement
over those for the simple exponential fit, but they do not
look like white noise. The largest single systematic change
is in the years 1979 through 1983, which was the period of
the Iranian revolution and the Iran–Iraq war. This drop in
emissions shows up clearly in the plots of the emissions data,
but the corresponding relative drop was only about 5.6 per-
cent, which is much smaller than the 16.6 percent drop in
the years 1943 through 1945 and the 26.0 percent drop in
the years 1929 through 1932. You could easily accommodate
these one-time blips by assuming linear drops during the
relevant time periods, but three additional linear parameters
would be required in the model.

Global Temperatures Again
In Part III, we fit a model1 of the form

(28)

using six nonlinear parameters α1, …, α6, to the Climatic
Research Unit’s annual global average temperature anom-
aly record (www.cru.uea.ac.uk/cru/cru.htm). That fit would
have been easier using VARPRO because we could also
write the model as

, (29)

which has only two nonlinear parameters α1 and α2. These two
parameters correspond exactly to the α1 and α2 in Equation 6
for the fossil fuel emissions, meaning α1 is an exponential rate
constant and α2 is the period of a sinusoid. If we define

,
, (30)

then we can also write Equation 29 as

, (31)

which corresponds to the form in Equation 4 of the fossil
fuel emissions model. 

Table 1 compares the estimates of α1, α2, and φ for the two
models. The values in the second column are from Equa-
tions 24 and 25 and the discussion following them, and the
values in the third column are from the fifth column of Table
2 in Part III,1 although the names of the parameters differ.
Comparing the estimates for the parameters yields the fol-
lowing interesting observations:

• Halving the for the fossil fuel emissions model gives a
value that lies well inside the ±1σ interval for the corre-
sponding global temperature estimate.

• The two estimates are the same.
• The difference between the two estimates is approxi-

mately one half of the common estimate of .α̂2
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Figure 3. Nonlinear fit of the exponential–sinusoidal model in
Equation 6 to the global total fossil fuel emissions for the years
1856 through 1999.

Table 1. Parameter estimates and statistics for fossil fuel
emissions and global average temperature anomalies.

Parameter Fossil fuel Global 
emissions temperatures

0.02814 ± .00034 0.0160 ± .0028

64.9 ± 1.5 64.9 ± 2.1

26.6 ± 2.7 –5.1 ± 2.4

SSR 1.575 × 106 1.476
100 R2 99.73 percent 80.98 percent

 φ̂  [yr]
 α̂2  [yr]
 ˆ ]α1  [yr-1



6 COMPUTING IN SCIENCE & ENGINEERING

Although the first point could be just a coincidence, it is
highly unlikely that the second two are the result of chance.
For more than two cycles, the same oscillation occurs in
both records with a phase shift between them of almost ex-
actly one half of a cycle. I worked with Bernadette Kirk7 in
1982 on this inverse correlation of the variations in the two
records; we suggested that it might represent a feedback
mechanism by which rising temperatures suppress increases
in the production of fossil fuels. We also suggested a dy-
namical model

, P(t0) = P0 (32)

relating the production P(t) and temperature T(t), with the pa-
rameters α, β, and P0 to be determined by fitting. Frank Crosby

and I extended this analysis in 1994;8 we allowed for a lag in the
response to temperature changes and added one-time innova-
tions to model World War II and the Great Depression.

Regardless of whether temperature changes exert a Ga-
iaen feedback on fossil fuel production, the parameter esti-
mates in Table1 suggest a simplified model

(33)

for the temperature anomaly record. The exponential rate
constant is one half of the estimate for the fossil fuel produc-
tion record, and I adjusted the phase shift to differ by exactly
one half cycle from the phase shift estimate for that record. 

Fitting this model to the data is an easy linear least squares
problem. The result is plotted as a solid curve in Figure 4,
and the residuals are plotted as discrete points in Figure 5.
For comparison, we also fitted models with linear and re-
duced quadratic baselines, 

. (34)

Table 2 gives the parameter estimates and some statistics for
all three fits. The linear baseline fit is displayed as a dashed
line in Figure 4, but to avoid confusion, the reduced qua-
dratic baseline fit is not plotted because it tracks the expo-
nential baseline fit so closely. The residuals for the linear
baseline are plotted as a dashed curve in Figure 5. Compar-
ing them with the residuals for the exponential baseline fit
clearly reveals that the data require a curved baseline. Be-
cause the linear baseline model accounts for only 73.92 per-
cent of the record’s variance (whereas the reduced quadratic
and exponential baseline models account for 80.71 percent
and 80.81 percent, respectively), we can safely conclude not
only that the Earth’s troposphere is warming but also that
this warming is accelerating. Because of the close agreement
between the fits for the reduced quadratic and exponential
baseline models, determining whether that acceleration is
constant or something worse is not possible.

In Part II, we discovered that adding a linear term to the
reduced quadratic baseline model did not produce a statis-
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Figure 4. Linear fits of the exponential plus sinusoid model in
Equation 33 and the straight line plus sinusoid model in
Equation 34 to the global annual temperature anomalies for
the years 1856 through 2001.
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tically significant reduction in the sum of squared residuals.3

This would seem to imply that the data require a monotone-
increasing baseline, but that analysis did not take the 64.9-
year sinusoidal variation into account. We now repeat that
test by fitting the model

(35)

to the data. That fit’s parameter estimates and statistics ap-
pear in the last column of Table 2. The high relative uncer-
tainty in the estimate indicates that it is not statistically
significant, and a formal F-test confirms this. For the null
hypothesis, we take

H0 : c4
* = 0, (36)

so

(37)

and the null hypothesis is accepted.
The residuals plotted in Figure 5 for the exponential base-

line model are certainly more random than those for the
straight-line baseline model, but they still exhibit systematic
periodic variations that are not easily discernible by in-
specting the plot. We will address those variations in a later
installment, but even with the present incomplete model in
Equation 33, the residual standard error is

, (38)

and the net increase predicted by the model for the interval
1856 through 2001 is 0.8740οC.

I f we provisionally accept that fit as the signal and the
residuals as the noise, then the global warming in the last

146 years is more than 8.5 times greater than the noise level.
But the analysis is not complete until we find a model that
reduces the residuals to white noise. Future installments will
discuss diagnostic tests to determine when that result has
been achieved.
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Table 2. Parameter estimates and statistics for fits of Equations 33, 34, and 35 to the global average temperature anomalies.

Parameter Straight line Reduced quadratic Exponential Full quadratic
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100 R2 73.92 percent 80.71 percent 80.81 percent 80.88 percent
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