
Perturbation Bounds for Linear Regression ProblemsBert W. RustComputing and Applied Mathematics DivisionBuilding 101, Room A-238National Institute of Standards and TechnologyGaithersburg, MD 20899bwr@cam.nist.govAbstractThis paper examines errors in the estimated solution vec-tor x̂ to the linear regression problemŷ = Kx� + �̂ ; E(�̂) = o ; E ��̂�̂T� = S2 ;when the dominant uncertainties are the measuring er-rors �̂. Backward error analysis gives the hopelessly pes-simistic boundk x̂ � x� k2k x� k2 � cond(S�1K) k S�1�̂ k2k S�1Kx� k2 ;by assuming the worst possible combination of randomerrors, an extremely unlikely occurence for nontrivialproblems. A statistical treatment yields a more realisticbound on the expected uncertainty in a single elementx̂i which does not depend on cond(S�1K). Classicalregression theory provides easily computable con�denceintervals for the individual x̂i separately.Notation and Test ProblemStatisticians write the m � n linear regression model asY = X� + � ; E(�) = o ; E �� �T � = �2 ; (1)where Y is a measured m-vector containing measuringerrors �, X is a known m � n matrix with m � n =rank(X), and � is the vector to be estimated. Numericalanalysts write the linear least squares problem as�2LS = minx2Rn kb�Axk22 ; (2)where b is the measured m-vector, A is the m�n matrix,x is the vector to be estimated, kb�Axk22 is the squaredtwo-norm of the residual vector, and �2LS is the mini-mum sum of squared residuals. They usually assume(but seldom state) the linear regression modelb = Ax� + �b ; E(�b) = 0 ; E ��b �bT � = �2Im ; (3)

where Im is themth order identity matrix, and the scalar� is unknown.Since choosing either of the above notations woulddeeply o�end one of the two schools, considerŷ = Kx� + �̂ ; E(�̂) = o ; E ��̂ �̂T� = S2 ; (4)where ŷ is the measured m-vector, and K is the knownm � n matrix with rank(K) = n. This notation is ap-propriate when linear regression is applied to systems ofintegral equations of the formŷi = Z ba Ki(�)x(�) d� + �̂i ; i = 1; 2; : : : ;m ; (5)where the ŷi are measured values, the Ki(�) are knownfunctions, and x(�) is the function to be estimated. Suchequations are widely used to model the e�ects of a mea-suring instrument on the thing being measured. Oneway to approximate x(�) is to replace the integrals withquadrature sums, i.e.,Z ba Ki(�)x(�)d� � nXj=1!jKi(�j)x(�j) ; (6)where the !j are prescribed quadrature coe�cients andthe x(�j) form a discrete approximation to x(�). It is im-portant to choose n large enough so that the quadratureerrors are small relative to the �̂i. If the sums are substi-tuted for the integrals in (5) and the products !jKi(�j)collected into a matrix K, the result is the model (4).A test problem capturing many of the salient featuresof real instrument correction problems is obtained bydiscretizing the Phillips [5] equationy(t) = Z 3�3K(t; �)x(�) d� ; �6 � t � 6 ; (7)withK(t; �) = 8><>: 1 + cos h�(��t)3 i ; j � � t j� 3j t j� 60 ; otherwise ; (8)



andy(t) = 8><>: (6� j t j) �1 + 12 cos ��t3 ��+ 92� sin��jtj3 � ; j t j� 60 ; otherwise : (9)The kernel K(t; �) is non-negative, with maximum value2, attained on the line t = �. The solution isx(�) = ( 1 + cos���3 � ; j � j� 30 ; otherwise (10)The functions y(t) and x(�) are plotted in Figure 1.
Figure 1:Discretizing replaces continuous variables t and � withmeshes ti; i = 1; : : : ;m and �j; j = 1; : : : ; n. Choosingm = 150 equi-spaced ti on �5:925 � t � 5:925 and usingan n = 121 point trapezoidal rule on �3:0 � � � 3:0 gavey� � Kx� ; (11)where x� is a 121-vector of x(�j) computed by (10), andy� was computed by (11) rather than (9) to assure thatthe �̂i were the only errors in the model. The �̂i wereobtained by random sampling from N (o;S2) withS = diag(s1; s2; : : : ; sm) ; si = (10�6)y�i ; (12)which means that the errors in the ŷi were in the 6thdigit. The discretized model can thus be writteny� � Kx� ; ŷ = Kx� + �̂ ; �̂ � N ( o ; S2 ) ; (13)and the least squares estimatex̂ = �KTS�2K��1KTS�2ŷ ; (14)computed by LINPACK subroutines DQRDC andDQRSL [2], is shown in Figure 2. The dashed curve

Figure 2:is x(t) and the jagged curve is the estimate. The largeoscillations are induced by errors in the 6th digit of theŷi! Such ill-conditioning is typical of regression modelsarising from discretized �rst kind integral equations.Classical Perturbation TheoryTo simplify the discussion in this section, letb̂ � S�1ŷ ; A � S�1K ; �b � S�1�̂ ; (15)and rewrite (13) asb� = Ax� ; b̂ = Ax� + �b ; �b � N ( o ; Im ) : (16)The problem of interest is to �nd bounds for the errorsin the least squares solution x̂ = (ATA)�1AT b̂.The traditional approach ignores x� and the statisticalassumptions about �b, seeking instead to bound the dif-ference between estimates corresponding to two di�erentb̂ vectors. One of these, b, corresponds to the problemkAx� bk2 = min = �LS ; (17)and the other, b+�b, corresponds to a perturbed prob-lem k(A+�A)x̂ � (b+�b)k2 = min ; (18)where �b and �A represent the uncertainties in b andA. The regression model assumes that A is known ex-actly, or at least to much higher precision than b, butnumerical analysts argue that truncation errors arisingwhen A is read into a �nite-accuracy computer shouldbe taken into account. A long and intricate argument[3] leads to the following error bound:kx̂� xk2kxk2 � "(2�(A)kbk2 + �LS [�(A)]2pkbk22 � �2LS ) +O("2) ;(19)



where " = max�k�Ak2kAk2 ; k�bk2kbk2 � ; (20)and �(A) = cond(A) = �max(A)�min(A) = �1�n (21)is the condition number which is just the ratio of thelargest to the smallest singular value of A.While numerical analysts are fascinated by the trunca-tion �A, people who actually make measurements usu-ally insist on a computer arithmetic with enough preci-sion to render such perturbations negligible in compar-ision to the measurement errors. When the ComputerAcquisition Committee at the National Bureau of Stan-dards was writing speci�cations for a new computer in1984, some members insisted on a machine with 64-bitsingle precision because 32-bit machines give only 6 to 7digits of precision, and they routinely measured thingsbetter than that. Accordingly, let �A = 0. This leadsto the more easily obtained [6] boundkx̂� xk2kxk2 � cond(A)k�bk2kbk2 ; (22)which also depends strongly on cond(A).Assessing the Classical BoundThe bound (22) is computable, but it does not relate acomputed estimate to x�. To obtain such a result, letb = b� = Ax� ; �b = �b � N (o; Im) ; (23)and replace problems (17) and (18) withkAx� � b�k2 = min = 0 ; kAx̂� (b� + �b)k2 = min :(24)The bound (22) then becomeskx̂� x�k2kx�k2 � cond(A) k�bk2kAx�k2 ; (25)which is not practicable because it depends on x�. Butx� is known for the test problem, and this provides ameans for evaluating the perturbation bound. To restorethe original notation, substitute (15) into (25) to obtainkx̂� x�k2kx�k2 � cond(S�1K) kS�1�̂k2kS�1Kx�k2 ; (26)where cond(S�1K) = �max(S�1K)�min(S�1K) = �1�n : (27)

Multiplying (26) by kx�k2 and squaring both sides giveskx̂� x�k22 � �cond(S�1K)�2 kx�k22kS�1Kx�k22 kS�1�̂k22 : (28)Since both sides are non-negative functions of the ran-dom vector �̂, it follows thatE �kx̂� x�k22� � �cond(S�1K)�2 kx�k22kS�1Kx�k22 E �kS�1�̂k22� :(29)It follows from (13) that S�1�̂ � N ( o ; Im ) which im-plies kS�1�̂k22 � �2(m), so E �kS�1�̂k22� = m. ThereforeE �kx̂� x�k22� � m �cond(S�1K)�2 kx�k22kS�1Kx�k22 ; (30)which relates x̂ to x�, but with the elements of jx̂� x�jmuddled together. To clarify, de�ne j�xjrms byj�xj2rms � E 0@ 1n nXj=1 jx̂j � x�j j21A = 1nE �kx̂� x�k22� ;(31)so by (30),j�xjrms � �rmn � cond(S�1K) kx�k2kS�1Kx�k2 : (32)The quantity j�xjrms is the expected root meansquared absolute error for the components of x̂. The testproblem has kx�k2 = 13:82, �1(S�1K) = 3:3950� 109,and �121(S�1K) = 1:1610. Thus cond(S�1K) = 2:924�109, and by (12),S�1Kx� = S�1y� = �106; 106; : : : ; 106�T ; (33)so kS�1Kx�k2 = 1:225� 107. Substituting these valuesinto (32) gives j�xjrms � 3:67�103, a wildly pessimisticbound. Figure 3 gives a componentwise plot of the actualerrors x̂�x� with the true values of �j�xjrms = �0:302plotted as dashed lines.The classical bound is hopelessly pessimistic becauseit does not take the random nature of the errors intoaccount. Starting with a measured b and correspond-ing solution x, it considers all measured vectors b+ �bwith k�bk2 � k�bk2. These vectors de�ne correspond-ing solutions x̂ = x + �x, and to make the bound holdwith certainty for all b + �b, it assumes the worst pos-sible combination of the 121 perturbations �b. Whenthe errors are drawn randomly, the probability of such acombination is negligibly small.



Figure 3:Statistical Perturbation BoundsAmore reasonable bound can be obtained by consideringthe statistical properties of the errors. By (13),(x̂ � x�) � N ho; �KTS�2K��1i ; (34)so (x̂ � x�)TKTS�2K(x̂ � x�) � �2(n) ; (35)whence E �(x̂� x�)TKTS�2K(x̂ � x�)	 = n : (36)Now consider the singular value decompositionS�1K = U� �0 �VT ; � = diag(�1; �2; : : : ; �n) ;UTU = Im ; VTV = In ; �1 � �2 � � � � � �n :(37)Substituting into (36) and simplifying givesE8<: nXj=1�2j �VT (x̂ � x�)�2j9=; = n ; (38)and, since �n is the minimum singular value,�2nE8<: nXj=1 �VT (x̂� x�)�2j9=; � n : (39)Dividing through by �2n givesE8<: nXj=1 �VT (x̂ � x�)�2j9=; = E �kVT (x̂ � x�)k22	 � n�2n :(40)

The two-norm is invariant with orthogonal rotations, soE �kx̂� x�k22	 � n�2n ; (41)whence, by (31), j�xjrms � 1�n : (42)This bound is computable without knowing x�, and itdoes not depend on cond(S�1K). For the test problem,j�xjrms � 0:861, which exceeds the true value by a fac-tor of only 2:85.Con�dence IntervalsBoth the classical and statistical perturbation analysesare rendered moot by con�dence interval calculations. Ifx̂ is the least squares solution for the model (13), thenx̂ � N hx�; �KTS�2K��1i ; (43)so the variances of the invidual x̂j are given byV(x̂j) = eTj �KTS�2K��1 eTj ; j = 1; 2; : : :; n ; (44)where ej is the unit vector with 1 as the jth element.For any probability � ( 0 < � < 1 ), if � is chosen tosatisfy 1p2� Z +��� exp���22 � d� = � ; (45)thenPr��x̂j � �qV(x̂j)� � x�j � �x̂j + �qV(x̂j)�� = � :(46)The �-value for � = :95 is � = 1:96. Figure 4 shows the95% con�dence bounds for the test problem. The dashedline is the true solution and the jagged lines connect theupper and lower bounds for the individual x̂i.If S2 = s2Im, with s unknown, then the estimateŝ2 = (m � n)�1�2LS can be used to construct con�-dence intervals, though the relation between � and �will be di�erent from (45). If the �̂-distribution is un-known, con�dence intervals can be constructed from theChebeyshev inequality. Though wider than those fornormally distributed errors, these intervals are often or-ders of magnitude smaller than the �j�xjrms boundsfrom classical perturbation theory.The keynote speaker [7] pointed out that the variancematrix for x̂j was known to Gauss, and that modernleast squares algorithms could easily compute it by in-verting an upper triangular matrix formed in solving



Figure 4:for x̂. Unfortunately, the least squares subroutines inthe widely used LINPACK [2] and LAPACK [1] collec-tions do not return con�dence intervals, or even the vari-ance matrix. The LINPACK manual describes how tocompute variances from a reduced matrix returned bysubroutine SQRDC, but the LAPACK manual is silenton the subject, and neither mentions con�dence inter-vals, concentrating instead on the classical perturbationbounds. Secondary sources, which use these collections,have continued this preoccupation with what are essen-tially useless bounds. They also continue to propagatemisinformation about the condition number. For exam-ple, the textbook of Kahaner, et. al [4] states that:One useful interpretation of the condition num-ber is that its logarithmapproximates the num-ber of digits which will be lost while solvingAx = b. Thus if cond(A) = 105 and if machineepsilon is 10�8, then the best we can expectis that the solution will be accurate to aboutthree digits.The estimate in Figure 2 was calculated in doubleprecision with �mach = 2:22 � 10�16, and sincecond(S�1K) = 2:92�109, the above reasoning would in-dicate that the computed x̂ is accurate to 6 digits. Butconsider the same calculation in single precision with�mach = 1:19 � 10�7 and cond(S�1K) = 2:93 � 109.According to the conventional wisdom, a computed es-timate should not contain any digits of accuracy. Theactual single precision estimate is shown in Figure 5.The slight di�erences from the double precision estimateare di�cult to see by comparing the two plots. The rmsaverage di�erence between the two estimates is 0.0033which is almost 100 time smaller than the j�xjrms for ei-ther estimate, so in practice, either estimate would serve
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