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BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS
WITH INACCURATE DATA*

J. E. COPE" AND B. W. RUST"

Abstract. Oettli, Prager, and Wilkinson (1965), (1964), (1965) have dealt with the problem of finding the
solution set of a system of m equations in n unknowns,

Ax b,

where A and b are known only to some limited tolerance, A-AA =< A =< A / AA, b-Ab -< b

_
b / Ab with

AA and Ab being arrays consisting of positive elements. Given an n-vector x, necessary and sufficient
conditions are established in 3] for x to be an exact solution for some system .,x- , where A-AA-< =<
A /AA and b Ab -<_ =< b / Ab. These results are extended and the emphasis changed. If it is known from
some a priori consideration the orthant in which the true solution vector x lies, and if A and b are as above, it is
possible to compute bounds for x by linear programming. The tableau for the problem is developed. The
results are extended to finding confidence intervals for x in the case where A and b are random samples from
distributions with known variances. A discussion of the application of the technique to solving first kind
Fredholm equations is also given. The technique is applied to three example problems.

1. Introduction and develo,pment of method. In this paper we show how to
compute bounds on the solution set of a system of m equations with n unknowns,

(1.1) Ax- b.

The elements a0 of the coefficient matrix A, and the elements bi of the right-hand side b,
are known only to limited accuracy, and may take any values within the intervals

o oa i] Aai _-< ao. _-< a ij + Aa,
(1.2)

b -Abi < bi < bo -t- Abi

where Aaj and Ab are all nonnegative tolerances. In order to simplify later notation, we
rewrite (1.2) as

A-AA _-< A _-< A + AA,
(1.2)’

b Ab <_- b <- b + Ab

or

A . {A[A-AA =< A -<_ A + AA}
(1.2)"

b 3 {bib- Ab _--< b -< b + Ab).

An n-vector x is said to be a solution of the system (1.1) if there exist 8ai and 8bi with
],a;I =< zXa;, ],b]-< abe, 1, , m,/" 1, , n, such that x is an exact solution of the
system (A + 8A)x b + b. It is shown in [3] that the above condition holds if and only
if

(1.3) aa,lx, + Ab > oaix-bil, i= 1,..., n.
j=l =1

In [3], Oettli shows that if the Aai and Abi are small enough so that all solutions lie in the
same orthant, then bounds on the possible solutions can be found. We extend the results
of [3], [4], [5] and change the approach to the problem. Instead of requiring that AA and
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Ab remain small, we allow the solution set to extend over many orthants, or even be
unbounded, and look for bounds on all of the solutions which lie within a given orthant.
The reasons for this point of view are that there is no a priori way to tell how small AA
and Ab must be to keep all solutions in the same orthant, and that often nothing can be
done about uncertainty in A and b. Hence, instead of keeping AA and Ab small.enough
to keep the solutions from going outside a given orthant, we do not consider any
solutions lying outside that orthant. The problem becomes the following: given A and b
as above, find in the given orthant, values x <=xi, 1,... n, such that for all
solutions x in that orthant to the systems defined by (1.1) and (1.2), xi[x, Xi].
Although we do not know A and b exactly, we assume that an exact A and b exist, and
that A AA _--< , _--< A + AA, b Ab _-< -< b + Ab. We assume that the system ,x
has at least one solution x, and that we know in which orthant x lies. We then find
bounds on all solutions within that orthant.

Knowing the orthant of the solution vector is not so artificial as it may seem, since in
many applied problems, a priori physical constraints dictate the signs of the components
xi. The system Ax b may have solutions in other orthants, but those are not considered
in computing bounds for x. We note that if AA is large enough and if there is no orthant
constraint, the solution set may become unbounded. Thus the assumption of an orthant
constraint replaces the requirement that AA and Ab be small. Of course it is possible to
have problems in which an orthant constraint is not powerful enough to bound the
solution set.

Using (1.3) we set up the tableaux for the linear programming problems which
must be solved to compute the bounds for the solution. We can write

(1.4) Ixl=q,

where q is an n-vector, qi Ix l,
Rewrite (1.3) as two inequalities,

(1.5a) E Aaijlxj[ + Abi >= E axj bi,

(1.5b) ., Aailxl / Abi > a iixi d- b

Let sgn xi 1 if xi >= 0, and sgn xj 1 if xi < 0. Since the orthant of x is known, sgn xj is
known, and xi sgn xi[xi[, so (1.5a) and (1.5b) may be rewritten

(1.6a) halx, + Ab, >- a . sgn x, lx l b

(1.6b) Y’. Aalxl + Ab, > - a. sgn x lx l + b i"

Since q Ix[, we have, in matrix notation, where Sg diag (sgn Xl, , sgn x,),

(1.7)
ASg-AA\ [ b+Ab’
-ASg AA}q <---- \-b + Ab]"

We wish to find the minimum and maximum possible values of x. so that x will satisfy
(1.3) and the orthant constraint. This can be done by solving a series of 2n linear
programming problems, each having the constraint region defined by (1.7) and a
nonnegativity constraint on the vector q. To find the upper bound for xi choose the cost
vector to be c (0, ., 0, sgn xj, 0, , 0)7- and maximize the quantity cfq. Similarly
to find the lower bound for xi maximize the quantity -cfq. The bounds on x are then
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found by solving, the 2n linear programming problems:

(1 7)’ xj
lo max -cfql -AS-AA q --< >

x q -b + Ab}’ q 0

The solutions yield lower bounds x and upper bounds xi for the components x of a
solution vector. Hence, the vector interval I Ixl, xhi

_
R contains the solution set to

the system Ax= b (except, of course, for solutions which do not lie in the proper
orthant). Note, however, that our results give only maxima and minima on each
component of x; they do not imply that every vector x e I is a solution. A priori
information about x, in addition to the orthant constraint, can sometimes be
incorporated into the tableau. For example, suppose it is known that xl->-x2 =>’" >-

xn >_-0, i.e. x is monotonically nonincreasing and nonnegative. Then we can write
x=Rq, where qi>-0, j= 1,..., and

1 1 1 1
0 1 1 1

R= 0 0 1 1

0 0 0 1

i.e. R is the upper triangular matrix with Ri 1 for _-< j. Similarly, if 0---xl _-<. _-< x,
then x Rq, where R is the lower triangular matrix with all ones. We then have the

system ARq b, and we wish to find / min 1 T (Rq) i.e our new cost vector is eTR The
tmaxJ

e

constraints are then

ASgR AAR \ /’ b + Ab ’-ASgR-AAR)q <-
\-b + Ab]’ q >-- 0,

and we seek max {cTRq} and max {--cTRq}. If desired, further information on bounds
for linear combinations of the x may be obtained by using suitable choices of R; for
example, (x + x2)h may be computed by taking

1 1 0 0 0
0 1 0 0 0

o0 0 1 0
0 0 0 1 0

0 0 0 0

and using the cost vectors eTR. Similarly, (x + X2)l may be computed by taking the
vectors --elTR.

Up to now; we have assumed that although there was uncertainty about the exact
values of A and b, we knew for sure that they lay within certain bounds (1.2), i.e.,

Pr{Ae}=l and Pr{b}=l

Now suppose that we know only confidence intervals for A and b, that is,

(1.8) Pr{AC}=a-<_l and Pr{b}=a’=<l.
loWe wish to establish probabilistic bounds for x. Suppose (1.8) holds and compute x



LINEAR SYSTEMS WITH INACCURATE COEFFICIENTS 953

and X
hi as above. Now suppose that i is a solution of the system Ax b, lying in the

proper orthant. If , and , then Ixl, xhi by the preceding results. Hence the
probability that lies in the interval [xI, xhi] is at least as large as the combined
probability that , and . Since Pr {. } and Pr { } are assumed
independent,

(1.9) Pr { Ixl, xhi]}
In summary, we have shown that if we are given a system Ax b with uncertainties

in A and b, and if we know the orthant of the true solution vector 3, we can find bounds
for the solution vector. Further, if a confidence interval for A and a confidence interval
for b are known, a corresponding confidence interval can be established for x. Note that
the sizes of Aai; and Abi do not affect the problem, except in widening the bounds on x. It
is not necessary for Aaij and Abi to be sufficiently small to keep x within one orthant; we
simply do not consider x-vectors not in the proper orthant.

2. Application ot the method to ill-posed problems. The extension of the above
described linear programming technique to the problem of computing confidence
interval bounds has wide application in solving problems arising in physical situations
modeled by Fredholm integral equations of the first kind:.

b

(2.1) | K(t, s)x(s) ds y(t),

where K(t, s) and y(t) are known functions and x(s) is the unknown to be estimated. In
practice one does not usually know y(t) exactly but rather has a measured pointwise
approximation so that (2.1) is replaced by the system

b

(2.2) | Ki(s)x(s) ds i + i, 1, 2,. m,

where the i are unknown stochastic measuring errors which are assumed to have mean
0 and a known covariance matrix S2, i.e.,

(2.3) E(:) 0, E(f7") S

There is no loss of generality in assuming that S2 is a diagonal matrix. The functions
Ki(s) are generally not known exactly either, but it is often possible to measure them
quite accurately relative to the accuracy obtainable for the )i. We assume that we can
determine pointwise approximations Ki(sj) at as fine a mesh si as may be necessary to
give a discrete problem that accurately models the system of continuous equations. The
discrete problem obtained by applying a quadrature rule to (2.2) can be written

(2.4) x=+:
where K is an m x n matrix composed of the K(si) and the quadrature weighting
coefficients and x is an n-vector whose elements constitute a pointwise approximation to
x(s). We assume that there is essentially no uncertainty in K.

It is important to take n large enough so that the discretization errors are negligible
in comparison to the statistical errors i. If n is not chosen large enough so that (2.4)
accurately models the physical situation, then because the problem is ill-conditioned,
the resulting solution set may not be consistent with physically motivated a priori
constraints. The most commonly encountered a priori physical constraint is.that the x
be nonnegative. One of the first studiesof the use of nonnegativity constraints in
problems of this type was. that of W. R. Burrus [1] who introduced the idea of
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constrained interval estimation. Burrus extended the classical statistical interval esti-
mation technique to take into account the a priori constraints in order to reduce the
sizes of the confidence intervals obtained (cf. also Rust and Burrus [6] and Replogle,
Holcombe and Burrus [7]).

In order to use the linear programming techniques described in 1 to construct
confidence interval estimates for the xi, it is necessary to know the probability
distributions of the errors i. For physical problems, it is usually assumed that the i are
independently normally distributed with mean 0 and covariance matrix S2=
diag(s2, ,s2,,). These assumptions imply that yi’-’N(i, si), hence
N(0, 1), where we denote by the "true" vector y that would be obtained if there were
no measuring errors, i.e., the unknown mean vector of the y-distribution. For any
constant define a box in y-space by

() {ylmx tYi-it}.Si

Given a probability level a, we wish to choose so that Pr { ()}

Pr{()} Pr{ mx. ([fi--i[) N}Si

=Pr 1-ff11 A A A
S1 S2 Sm

Pr {;i- si ]i ;i + si}.
i=1

The last equality follows because the y are independently distributed. Now let
Pr {)-/xs _-< 37 _<- )i +/si} _-> , 1, 2,. ., m. Then Pr { ;(/z)} _-> ". Hence, /x

I/m,must be chosen such that --> a i.e.,/x must satisfy

4 _,
exp (-r/2/2) dr/= a

and hence can be obtained from standard tables of the normal distribution. In this case
the Ay of 1 are equal to s, 1, 2, , m. Using this zy and the knowledge of the
orthant of x, we apply the methods of 1 to obtain a confidence region for x. The
required tableau is

(2.5) [-KK]x L-+/x Se_l

where e (1, 1, 1,. , 1)r. This tableau is a special case of (1.7) in which S I and
AA=0.

Another approach to the problem defined by (2.3) and (2.4) is to notice that it is
formally identical to the statement Of the classical linear regression model. To construct
a confidence region for x, we choose a confidence level a for y and consider the
corresponding confidence ellipsoid in y-space"

(2.6) (y- )rs-E(y-) _-</z 2

where/x is determined by a. If we assume that y has an m-dimensional multivariate
normal distribution with mean and variance-covariance matrix S2, it follows that
(y-)rS-2(y-) has a chi-squared distribution with m degrees of freedom (cf. [8,
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Appendix V]). The relationship between the probability level a and the parameter/x 2 is
then

,,2 p,,/z-1 exp (-p/2)
(2.7t c F(m/2)2,,,/z dp

where F denotes the gamma function. This relationship is tabulated in standard tables of
the X2- distribution.

In order to relate the ellipsoid defined by (2.6) to the physical problem it is helpful
to consider an underlying system of equations

(2.8) K=
where is an unknown, in some sense "true" approximation to x(s), and is the
corresponding, unknown vector in the observation space. The assumption here is that n
has been chosen large enough so that (K)i gives a very accurate representation of
b Ki(s)x(s) ds and that is the vector of observations that would be obtained if it were
possible to completely eliminate stochastic measuring errors. The sample vector ,
which contains measuring errors, is a point estimate of , and the ellipsoid (2.6) is a
confidence ellipsoid for , i.e.,

(2.9) Pr {(-)$-z(-) _<- /x

The problem of finding confidence intervals for the xj can be formulated as follows"
taking ej to be the n-vector with 1 in the/’th place and 0 elsewhere the confidence bounds
are given by

lo
xj min {ejrxlx_->0 and (Kx-)7,S-Z(Kx-)_-<

(2.10)
max 0 and (Kx-)7, S-z(Kx-) _-</z

where e]’x is the objective function for constrained optimization, the constraints being
2x-> 0 and (Kx-)7,S-2(Kx )-</z More generally, confidence interval estimates for

any linear function

(2.11) q(x) =wT,x

of the xi can be obtained from
lo

q min {wT,xlx>= 0 and (Kx-)7,s-Z(Kx-) <= },
(2.12)

hi 2}.o max {wT,xlx _--> 0 and (Kx )7-S-Z(Kx ) _-</x

Such estimates are useful in physical problems when it is desired to determine integral
quantities of the form

b

(2.13) 0[x(s)] | w(s)x(s) ds.

The form (2.11) can be obtained from (2.13) by applying the same quadrature rule used
to reduce (2.2) to (2.4).

In theory there are a number of ways to calculate solutions to the problems (2.10)
and (2.12). The most obvious approach is to apply the Wolfe duality theorem to obtain a
linearly constrained quadratic maximization problem. A similar approach involving
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parametric quadratic programming has been described in [6, Chap. 5]. In practice these
approaches have so far not been successful. We believe that this failure is caused by the
ill-conditioning of the problem. The failure of standard optimization codes to solve
these ill-conditioned problems has led us to consider suboptimal approximating prob-
lems which are computationally more tractable. These are obtained by replacing the
y-ellipsoid by a circumscribing polytope (cf. [9, Chap. 3]) to obtain linear programming
problems which yield confidence interval estimates that are wider than the optimal one
that would result from solving the quadratic problem. It is easy to see that the w-norm
polytope yields a tableau formally identical to (2.5), the only difference being that/z is
chosen by means of the X

2 rather than the normal distribution so that the intervals
obtained are wider than in the previous case. An alternative is to use a 1-norm
circumscribing polytope, which has fewer corners and hence fewer potential extreme
points than the c-norm box. In some cases this gives narrower interval estimates, but
the 1-norm box gives rise to a (2m + 1) (m + n) linear programming problem, whereas
the size of (2.5) is only 2m n. Intersecting the two circumscribing boxes should give
better results than either alone, but the tableau is enlarged to (3m + 1)(m +n).
Experience has shown that with ill-conditioned problems which are large to begin with,
enlarging the tableau will often compound numerical difficulties, so that the possible
advantages of intersecting the boxes are lost. It is an open question whether the
approach to take is problem-dependent.

3. Examples. We conclude by presenting three examples, first the 4 4 example
of Oettli [3], then a 5 5 Hilbert example, and finally, a physical problem involving the
Fredholm integral equation already mentioned. All of the solutions were obtained
using either the tableau (1.7)’ or (2.5).

Example 1. Oettli’s Problem.

4.33 -1.12 -1.08 1.14

1.12 4.33 .24 -1.22

1.08 .24 7.21 -3.22
1.14 -1.22 -3.22 5.43

3 52
57
54
O9

Aaij Abi .005.

In this problem, Aaij and Abi are small enough so that all solutions lie in the same
orthant. The true solution vector is

1.04621
x=| "56271

| "1110

The bounds obtained using the tableau (1.7)’ are the same as those of [3], i.e.,

1.040q F1.052
|.569|

.105/-- [.117["

.236_J -.221/
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Figure 1 is a plot of x (3) vs. x (1) for several hundred solutions of the Oettli problem as A
and b are varied within their bounds. Note that the spread in each component of the
solution vector is on the order of .01, about the same as the uncertainty in the elements
of A and b. Thus the Oettli problem is a very well-conditioned one.

00.117
x

0.1115

0.115

0.111/4

0.113

0.112

0.111

0.110

0.109

O. 101

0.107

0.106

l.Oq) i.Oql l.Oq2 1.01/43 l.Oqq 1.01t5 l.Oq6 1.01t7 l. Ott8 1.0149 1.0 1.051 l.f2
1

FIG.

Example 2. A Hilbert Problem. The 5 x 5 Hilbert example is an ill-conditioned
problem which shows how the orthant constraints can be helpful in reducing the size of
the allowed solution set. To form the 5 5 Hilbert matrix A, set aij 1/(i +- 1). Let

x 10-]
[.2210 x 101

b =/.1817 x 105[, b=
|.1545 x 10[
[_.1344 x 105A

2837 x 10
2210 x 105
1818 x 105
1545 x 105
.1345 x 105

Suppose that the true right-hand side is b, that we know A exactly, and that

Abi 10. Then b falls within the range b+/-Ab. The exact solution to the system
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Ax b is

20103
30xlO
32x 105
40 x 10
30 x 105

The solution to the system Ax b1, correctly rounded to four places, is

X

.1113104]

.1316x 104[

.9823 x 105[.
5603 x 105/
.7552 x lOSJ

In a physical problem involving measurement bf the right-hand side, it might be
expected to have errors in the fourth place, x would be a meaningless solution to a
physical system where the solution vector is known to lie in the positive orthant. Putting
positive orthant bounds on x, however, we obtain the following reasonable bounds on
the solutions of the two systems Ax b, and Ax hi;

0. F.5075 103

1.9099 x 104
_<-x<_- 1.5237x 10s

168x10 1.9588x 10s
[_.5142 x 10s

O. F.5788 lOaq
.8986 X 1041

_<xl=< .4790 x 105[.
1338x10 1.9591x105|

[.4392 105J
In each case, the bounds include the vector x, the solution to the true system

Ax b. Figures 2a and 2b show plots obtained by Monte Carlo sampling of x(4) vs. x(3)
for a large number of solutions for sample problems with Abi <_- 10. Figure 2a represents
all solutions outside the positive orthant, while Fig. 2b represents all solutions in the
positive orthant. The graphs show that the solutions are very sensitive to small changes
in b, and would be practically unbounded if it were not for the orthant constraint. Since
many physical problems are ill-conditioned, the Hilbert example demonstrates the
usefulness of an orthant constraint in providing meaningful solutions to problems where
there may be errors in input data.

Example 3. A stellar density problem. We now present an example of the
Fredholm integral equation disc

(3.1)

dr



LINEAR SYSTEMS WITH INACCURATE COEFFICIENTS 959

300000

25OOO0

2O0OOO

15OOOO

100OOO

5OOO0

-000

100000

-150000
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X

FIG. 2a

The problem is to estimate density of stars of a given type in a volume dV tor2dr,
where to is the solid angle covered by the observations. Images of stars on a photo-
graphic plate are classified by brightness (magnitude) m. The integral equation to be
solved, for density D(r), is"

(3.2) I,, c(m)am I I, [(m +5-5 log r-a(r))] dm tor2D(r)dr

where
r distance from the sun, measured in parsecs (1 parsec 3.25 light years),
to solid angle in steradians,
c(m) number of stars of apparent magnitude m,
a(r) interstellar absorption in magnitudes,
M absolute magnitude m + 5 5 log r a (r), a measure of intrinsic luminosity,

1
(M) /exp {-[( -Mo)2/tr]} luminosity function,

Mo mean absolute magnitude for the stars in question,
2

o- dispersion in absolute magnitude.
It is clear from the expression for (M) that we are assuming a Gaussian distribution for
the intrinsic luminosities of the stars in question.
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FIG. 2b

We put (3.2) in the form more usually seen by discretizing m. Stars are placed into
magnitude bins when counted. Let c(rni) be the number of stars between magnitude mi
and rn/l. We then have

(3.3) c(rni) (m + 5-5 log r-a(r)) dm tor2D(r) dr,
rmin

where rmi and rmax are determined by the brightest star observed on the plate and the
plate limit. Equation (3.3) is a Fredholm integral equation of the first kind with kernel
K(i, r) [-,+1 (m + 5 5 log r- a(r)) dm which can easily be evaluated by numerical
quadrature for any r, rn, and rn/l, c(rn) is observed by counting images of stars on a
photographic plate. We assume that the counting errors are Poisson distributed so that
the square root error law applies.

To solve (3.3) we now discretize r and apply a quadrature rule for integration.

(3.4) c(m,) Y K(i, ri) 2wlor/D(rj)

where wi is the weight associated with the quadrature rule that is used. In this case a
simple rectangular rule was used. We can now put (3.4) in the form of a system of linear
equations. To form the matrix A, we set ai K(i, ri)wiwr. Note that the columns of A
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correspond to r-mesh points and the rows of A to magnitude bins. For the right-hand
side, bi=c(mi), Abi=x/--, and we solve for the vector D(rj). We choose the
magnitude bins to contain enough stars so that the Poisson distribution assumed in
estimating the counting error is reasonably approximated by a normal distribution
which is used in making confidence interval statements about the solution bounds.
Choosing Abi /c(mi) means that we are seeking the 66.7% confidence interval.

In general, A has many more columns than rows. As an example, we choose
G8-G9 stars of luminosity, class III [2]. In this case,

tr .8 to .1206 square radians,

M0 1, rmin 75. p.c.,

a (r) 0, rmax 7000 p.c..

In order to have a problem whose solution vector is known, we used the above data
to generate A, then put in a simulated solution generated by

D(r,) exp [(-In (r,-75:)_-ln 75.)2.]
with tr

2 2.

D(r) o.s

0.2

0.

FIG. 3
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...-T-, .":-.. ,’T-i. F"T.. ,-T-;;.

0 1000 2000 3000 I000 5000 6000 7000
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FIG. 4

We then multiplied A by D to Create a right-hand side. D(r) is a plausible density
function for this problem. Further, D(r) is always nonnegative and is a monotonic
nonincreasing function of r for r _-> 75. We chose a monotonic solution in order to
simulate a problem obtained from plates covering an area of the sky in the direction of
the north galactic pole, i.e. "looking" in a direction perpendicular to the plane of the
galaxy. We used 13 magnitude bins and 50 r-mesh points. Two different spacings of
mesh points were tried; first, an equally spaced r-mesh was used, and then the mesh
points were spaced so as to yield equal volumes dV. Trials were made with both mesh
spacings, with and without the monotonicity constraint. Figure 3 is a graph of the true
solution and bounds obtained using nonnegativity and the monotonicity constraint. The
solid line is the true solution, the dashed lines represent the bounds obtained using
equal r-mesh spacing and the symbols are the bounds obtained using equal volume
mesh. Figure 4 gives the results using equal volume spacing both with and without the
monotonicity constraint.
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