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CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION*

JANE E. PIERCE’ AND BERT W. RUST:

Abstract. We extend the classical least squares method for estimating confidence intervals to the rank
deficient case, stabilizing the estimate by means of a priori side constraints. In order to avoid quadratic
programming, we develop a suboptimal method which is in some ways similar to ridge regression but is

quite different in that it provides an unambiguous criterion for tlie choice of the arbitrary parameter. We
develop a method for choosing that parameter value and illustrate the procedure by applying it to an example
problem.
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1. Introduction. In this paper we shall be concerned with the problem of obtaining
confidence interval estimates from linear regression models with rank deficient or
nearly rank deficient matrices. We assume that the model has the standard form

(1.1) y=Kx+e

where K is the known m n matrix, x is the unknown solution vector, y is the vector
of observations, and e is a stochastic error vector satisfying

(1.2) E(e)-O, E(eer -S2,
where E denotes the expectation operator. We assume, without loss of generality, that
the covariance matrix S2 is diagonal. In most applications y is considered to be a
sample from a multivariate normal distribution with unknown mean which satisfies
Kx . We shall not be overly concerned here with the exact form of the y-distribution,
assuming only that the equi-probability contours are ellipsoidal and that for any
confidence level a < we can find a corresponding constant g so that the expression

(1.3) ( y) rS-2( y) _-</x 2

defines an a-level confidence ellipsoid for the unknown .
The classical linear estimation problem is to find, for a given n-vector w, the best

linear, unbiased estimator for the linear function

(1.4) b(x)-" wrx.
Assuming that rank (K)= n, the solution is

where is the least squares solution vector defined by

(1.5) (KrS-2K)-KrS-2y.

An a-level confidence interval [tlo, /)up] for b is obtained from

(1.6) tb op wT d- 4"(jtL 2 ro)WT(KTS-2K)-Iw
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where ro is the minimum of the sum of squared residuals, i.e.,

ro min {(y- Kx) rs-E(y- Kx)} (y-K)rS-2(y K).

Since (1.3) defines a confidence ellipsoid in y-space, it follows .that

(Kx y) rS-(Kx y) =< ft
2

or, equivalently,

(1.7) (x- i) rKrS-2K(x i) _-< ft2- ro,

defines a confidence ellipsoid in x-space. The confidence bounds o, bp are just the
values attained by b(x) on the two support planes of this latter confidence ellipsoid
which are orthogonal to the vector w (cf. [14, Appendix III]).

In the case rank (K)< n the ellipsoid (1.7) is unbounded in some directions and
the confidence intervals become (-oo, +c) for any vector w having a nonzero com-
ponent in the null space of K. In most applications it is not practical to pick w without
such a component, and in fact it is not even possible to unambiguously determine
rank (K). Therefore it is necessary to add some a priori side constraints to the problem
in order to obtain nontrivial interval estimates. In this paper we shall add side constraints
of the form

(1.8) p <-_ x <= cb, j= 1, ,.n,

where the p and q are known bounds obtained from external considerations.
The method that will be described here is basically a generalization and extension

of the FERDOR method of radiation spectrum unfolding which was developed at Oak
Ridge National Laboratory in the 1960’s by Walter R. Burrus and his colleagues. The
problem addressed by FERDOR is to give confidence interval estimates of quantities
of the form

d,

where x(g) is an unknown radiation energy spectrum which is related to a measured
pulse height spectrum yi by

(1.9) gi( g)x( ;) d y + e, i= 1,. ., m.

The K(g’) are the response functions of the measuring instrument, and the e are
random measuring errors. The functions w(g’), which are designed to exhibit the
various desired aspects of the unknown spectrum, are called window functions, and
we shall often refer to the vector as a window vector.

The FERDOR method has enjoyed great success in spite of the lack, until rather
recently, of adequate, coherent documentation. A succinct description of the method
has been given by Burrus et al. [4] in a paper which also briefly outlines the history
of its development and gives references to earlier published descriptions. The method
assumes that K(g) -> 0, 1, , m and x(g) _-> 0 for all energies g. The basic discrete
problems that must be solved are

(1.10) bo min {wrx[(Kx- y) rS-2(Kx- y) -<_ ft2, x->_ 0},

(1.11) b ’p =max {wxl(Kx- y) S-2(Kx- y) _<- m, x_>-0}.
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In [ 13, Chapt. 5], it is shown that each of these problems can be solved by parametric
quadratic programming, but because of the excessive amount of computation required,
this is an expensive approach for most applications which require a large number of
window vectors. The FERDOR approach is suboptimal in that it gives interval estimates
that are wider than the optimally narrow intervals obtained from the quadratic program-
ming procedures. The suboptimal estimates are obtained by an augmented least squares
procedure which is similar in approach to ridge regression, and it is necessary to choose
the value of an arbitrary parameter. The main contribution of the present work is to
provide a procedure for the optimum choice of that parameter value. We also extend
the previous work to allow different types of a priori side constraints and by iterating
the procedure to obtain improved suboptimal bounds. In the next section we
develop the new procedure without considering the statistical details which are
described at length in [13, Chapt. 6].

2. Development of the method. Given an n-vector w and an m x n matrix K, we
wish to find bounds for b(x)=wrx, where

y=Kx+e
and y lies in the error ellipsoid

(2.1) (y- Kx) rS-U(y Kx) -</x,
with S-u a positive definite diagonal matrix, and ft any constant such that

Ix >= ro min (y- Kx)7S-(y- Kx).

The problems are then

(2.2) Find
max {wrxl(Kx- y) rS-2(Kx- y) < ft}rain

Often w is taken successively as (1, 0,..., 0)r, (0, 1,..., 0)7,..., (0,..., 1)r, so that
the quantities wrx are estimates of the components of x. If K is an ill-conditioned
matrix, the error ellipsoid (2.1), which we will call the S-ellipsoid, is greatly elongated
in the directions of the eigenvectors corresponding to the small eigenvalues of KTS-EK.
(See Fig. 2.1.) The principal axes have the same directions as the eigenvectors of
KrS--K, and their lengths are inversely proportional to the corresponding eigenvalues.

2

P2I xq

FIG. 2.1. The S-ellipsoid and the Q-box.
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If W has a component in the direction of one of the long axes of the S-ellipsoid,
the bounds on wTx will be very wide. We seek to improve these bounds by incorporating
into the problem a priori knowledge of bounds on the components of x, pj _-< xj <_-q;,
j- 1,. -, n as shown in Fig. 2.1. The problems may now be stated as follows:

maX(wrxl(Kx-y)rS-2(Kx-y)<=tx2, p<-x<=q,j=l n}.(2.3) Find bUoP
min

Geometrically, the constraint region is the intersection of the S-ellipsoid and an
interval in R", which we call the Q-box. Since the calculation of a solution cannot
easily be done using the intersection of an ellipsoid and a box, we replace the Q-box
by an ellipsoid which circumscribes it, namely,

where

d (P + q P2+ q2

2 2

1 (x-d)TQ-E(x-d) =< 1,

2
and Q=diag qt-2 p’’’’’ q"

We call this ellipsoid the Q-ellipsoid and remark here that, unless a mistake has been
made in the analysis of the problem, the S- and Q-ellipsoids have a nonempty
intersection.

The intersection of two ellipsoids is no easier to handle computationally than the
intersection of a box and an ellipsoid. One strategy is to find another ellipsoid which
contains the intersection of the S and Q ellipsoids. W. Kahan [9] has defined a "tight"
circumscribing ellipsoid about the intersection of two ellipsoids with common centers,
but there is no guarantee that the S- and Q-ellipsoids have that property. Consequently,
we make one more suboptimizing step and take a convex linear combination of the
S- and Q-ellipsoids. The problems now become:

max{ 12 }(2.4) q)lUop
rain

wrx r/. (Kx-y)rS-2(Kx-y) + (1 1).1 (x-d)rQ-a(x-d) _-<
/x n

0-< /_-< 1,

where r/ determines how much of each ellipsoid is taken. It can be shown that every
such convex combination of the S- and Q-ellipsoids is an ellipsoid which contains the
original constraint region, i.e., the intersection of the S-ellipsoid and the Q-box. The
constraint in (2.4) can be written

/-2 S-2 0

(Ax-p)r/P’ 0

(Ax-p) <_-

’i"/Q_2
n

where

Now define new parameters

and
S 2 0 )V-2() .
0 _Q-2

n
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The constraint can then be rewritten as

(Ax p) rv-E(r)(Ax p) -_< r +/2,

with r chosen from the interval [0, /). Note that the matrix v-E(r) would be rank
deficient only if one or more of the xj were completely determined by a priori
information. We assume in the following that any such xj have been removed from
the problem. By conventional least squares,

(2.5) Po min (Ax- p) Tv-E(r)(Ax- p)

is attained at

or

[ArV-2( r)A]- ArV-2( r)p,

KrS-2K+Z Q-2 KrS_2y+-r Q_2d

Notice here the similarity to ridge regression (cf. [7], [8], [10]), where

x* [KrS-2K+ AI]-KTS-2y
would be the ridge estimate of x.

For a discussion of the technique of ridge regression, see Hoed and Kennard [7]
who point out that the variance of the estimate of x is reduced, at the cost of some
bias, the bias squared being a continuous monotonically increasing function of A.
Unfortunately, as Brown and Beattie show in [2], the bias produced by ridge regression
can be large, and since the expression for squared bias involves x, bias cannot be
accurately estimated. One advantage of the interval estimation technique is that for
any r[0, ) the interval [blo, ch up] contains wTx with at least the same confidence
level as that associated with the original error ellipsoid. Also, there is no universally
accepted way to choose the A of ridge regression, but the interval estimation strategy
provides a criterion for choosing r. Since all values ofrproduce valid confidence intervals,
one should choose that value which yields the narrowest interval.

The problems now are: Find

max{wTxI(Ax-p)TV-2(Ax-p)<-r+I2}man
wrxl(x-)r(ArV-A)(x-)_-<+-po

mln

The solutions, using Lagrange multipliers, are

(2.6) 4’oP wT+/r +/d,2 p0 N/wT(ATV-2A)-Iw.
Note that , Po and V-2, and hence bUP and (lo are dependent on the choice of r. We
wish to choose a r (if one exists) giving the minimum interval width. Let

2= (r+/2- po)wT(ATV-EA)-w.
We take 02/0r and solve the equation

-0 fort.
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Recall that ATV-2A KTS-2K+ (7./n)Q-, so that when 7.=0, the problem reduces to
the one corresponding to the S-ellipsoid, while as 7. increases, the S-ellipsoid becomes
insignificant compared to the Q-ellipsoid. For a typical ill-conditioned problem, we
might expect graphs of versus 7. and 02/07. versus 7. to look somewhat like the
ones in Fig. 2.2. The shapes of the graphs have been verified by trial examples.

CHOICE OF

Q-BOX
VA U
OF L

FIG. 2.2. Choice of "r.

To solve O/Or =0, we need to invert A’rV-2A=KrS-2K+(’r’/n)Q-2. It is con-
venient to make the following change of variables. Let

x’ Q-Ix.
We then have

Ax Qx’ x,

and the least squares solution of (2.5) is

7. 7.
ld’= QKrS-2KQ+- i QKrS-2y+- Q

n n

As in (2.6), we have

(2.6’) ck’/oP=wr(Qi’)+x/7.+/x-po rQ QKrS-2KQ+- I Qw.
n

Now it can be seen how the change of variables helps in writing the inverse. Consider
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the singular value decomposition of S-IKQ,
S-KQ L:XRr,

where L is an rn x m orthogonal matrix, R is an n x n orthogonal matrix, and is the
m x n singular value matrix. Using the singular value decomposition,

QKrS-2KQ+-I =R I +-I

2Notice that X7X diag (o-, , o-,), where some of the % may be 0. Now the inverse
can easily be written:

QKrS-2KQ+- I
n

R diag nr+ 7.’ ntr2 +
It is now straightforward, but tedious, to calculate the partial derivative 00T2/07., where

oT2=(r+tx2-O0) wrQ QKrS-2KQ+-I Qw
n

The result is

07"

2

where

r=RrQ-ld, v=RrQw, z=XT"LrS-ly.
An equation solver may be used to seek values of 7" at which this derivative is

zero. We supply lower and upper bounds for 7" and use an adaptation of Brent’s ZERO
([ 1, Chapt. 4]). In conventional ridge regression, the columns ofK would be normalized
to have zero means and unit variances; we choose initial bounds for 7" in terms of the
norms of the columns of S-KQ. If the problem is a well-conditioned one, ZERO may
fail to find an axis crossing because 00’2/07"> 0 for all 7" (see Fig. 2.3a). In that case,
we set 7" 0 and solve the unconstrained problem. If the a priori bounds are the best
obtainable, ZERO also fails since 02/07"<0 for all % indicating that the Q-box
provides the best bounds. (See Fig. 2.3b.)

Notice that w does not enter into the singular value decomposition of S-KQ, so
that 7" can be found for any number of window vectors w without doing the SVD again.
In particular, w can successively be taken to be (1, 0,..., 0)T, (0, 1, 0,""", 0)T,...,
(0, 0, , 1) T to find new bounds on x, , x,. The bounds thus obtained define a
new interval in R" which is guaranteed to contain the intersection of the S-ellipsoid
with the original a priori constraint region. Hopefully the new bounds are all better
than the original ones. if they are not better for some of the xj, then the original bounds
are retained in those cases. The new vector interval can then be used to define a new
Q-matrix and d-vector and the whole process can be iterated to improve the bounds
further. At each step of the iteration the current Q-box is not necessarily a 100%
guaranteed vector interval for the solution x, but it is guaranteed to contain the
intersection of the original 100% a priori constraint box with the S-ellipsoid, so it
defines confidence intervals for the x; with confidence levels that are at least as great
as those of the S-ellipsoid. The idea in iterating this type of calculation was first
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Q-BOX
VALUE
OF L2

Q-BOX
VALUE
OF L2

0L

(a) (b)
FIG. 2.3. a. Well-conditioned problem, b. A priori bounds best obtainable.

suggested by W. R. Burrus [3, Chapt. 9] and was briefly discussed by M. T. Heath [6,
Chapt. 3]. The iteration process is expensive in our procedure because the singular
value decomposition must be repeated at each step. This is not a prohibitive disadvan-
tage, however, because the iteration converges very quickly. Two or three iterations
have been sufficient for every problem we have tried. A referee suggested reducing the
calculations by using a bidiagonalization of S-tKQ (cf. Elden [5]) rather than the full
singular value decomposition.

It is possible to use extra knowledge about the solution vector x to improve the
bounds even more. For example, suppose 0 <_-x-_<... _-< x,. Then x can be written

x Pu, u>_-0,

where

0 0

0

The initial bounds on the uj can be obtained from

p <- u <-_ q pj cb_ <= uj <- qi pj_ j 2, 3 n.

Now suppose that we want to find max,
rnin[Xl -1- X4). Then w" (1, 0, 0, 1, 0, ,0), and

wT"x=wTPu. The matrix P is essentially a "shape" matrix, incorporating a priori
knowledge of the shape of the solution. The vector w is a "window" vector determining
which linear combination of components of x we look at. The final problems are then"

find

max { (wrP)ul(KPu y) arS-2(KPu y) _</z2}min

We replace K by K’= KP, and the initial bounds on the u are used to form a matrix



678 JANE E. PIERCE AND BERT W. RUST

Q’ analogous to the Q in the original problem. The transformation of variables is then
u’ (Q,)-lu.

3. An example. We now present a well-known integral equation problem as an
example illustrating the method and the use of a priori constraints on the solution x.
The problem was originally given by Phillips [I I, and was discussed by Rust and
Burrus ([13, 1.5]). The problem is to solve

K(t, s)x(s) ds= y(t),
6

where

r(s-t)+cos Is-t[<3
K(t,s)= 3

O, [s-tl>-3, It[ _-< 6,

and

y( t) (6- ]t[) l+cos-- +--sin-, Itl-<6.
The solution is

We present a 60 x 41 discretization of the problem. Let

sj=-3+(j-1), j=1,...,41,

6 =-6+1/2(i--5), i= 1,.’’, 60,

0, otherwise,

where the % are the quadrature weights for the implied integration. Using Simpson’s
rule, those weights become

- k=l 2,... 19., k 1, 2,. , 20, + o,

The discretized right-hand side becomes

2cs ti +--sin 6
and the discretized solution is

Note that K,../ and N are always nonnegative and that is symmetric about s =0,
x<-x2N’"<-x2o<-x21>=...>--x41. Even if we did not know the true solution x(s),
we could deduce that it must be symmetric because y(t) is symmetric and the shape
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of the kernel, considered as a function of s, is the same for all values of t. In order to
derive the initial upper bounds for the xj, we can use the following technique which
works for any problem with all of the Kij and xj nonnegative (see 12, Chapt. 2]).

For all values j* of the subscript j and all i, we have

Dividing by Ko., we get

and hence

Ko.x;. <= , K,;x; Kx ,.
j---I

x. <
(Kx)

for all i,

(Kx),
(3.1) x _-< min .

--i<m Kij

We now need to find upper bounds for the (Kx)i. From the error ellipsoid (2.1), we have

(Kx y) S-2(Kx y) -</x 2,
where

S-2=diag ( sl-)2

In this example, we let s .0001 . Equation (2.1) can be written in the form

[(Kx-y)]2< 2
2 =,

i=1 Si

hence

(Kx- Y) 2

<: for all i= 1,... m,
S
2

or

(Kx)i Yi +

Substituting in (3.1), we have

x < man {yi;s} j=l,...,n.
lim

In this way we obtain the initial upper bounds of 2, and we set p 0, j 1,. , n.
Note that the bounds [p, ] in this case are not guaranteed to contain the x with
100% confidence but they are guaranteed to contain the intersection of the error
ellipsoid with the positive ohant, and that intersection is the basic constraint region
for this example. In practice, initial bounds computed by this method are always
extremely conseative and in fact do provide 100% confidence boxes. In addition to
using a priori constraints and initial bounds on x, we can try to improve the bounds
by solving a slightly less ambitious problem. Instead of solving for bounds on all of
the x, we find bounds for an average of the x’s. For example,

Xj-- sJ

ds.
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The integral may be approximated by using a 3-point Simpson’s rule, yielding

2j (x2j_ 4- 4x2j 4- x2+), j 1,. ., 20.

For a 60 x 41 example, we let the jth window vector w (0,. , 1, 4, 1,. 0), with
the 4 in the 2jth place, and estimate 2, 4," ", 4o. Figure 3.1 compares the pointwise
estimates with 3-point Simpson averaging for the 60 x 41 problem with a symmetric
hump constraint (see below). As can be seen from the graphs, averaging greatly
improves bounds in this case. Next, we obser4e the effect of a priori knowledge of x
by solving the 60 x 41 problem three ways with Simpson 3-point averaging.

5.0

4.5

4.0

3.5

(o) POINTWISE ESTIM/TES (b) 5-- POINT SIMPSON
AVERAGING

Fit3. 3.1. 60 x41, symmetric hump constraint.

We first solve the problem using no knowledge of x except the initial bounds.
Next, we incorporate the knowledge of a "hump" in x, 0< x _-<x2_<- _-< x2, x22-->

x23 >- >--Xil, but we do not assume symmetry. For this case the 41 x41 "shape"
matrix is the following:

where T and U are 21 x 21 and 20 x 20 triangular matrices, respectively, of the form

0 0 0

0 0 0

0 U= 0 0

0 0 0 0 0
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Finally, we use all we know about x, namely that 0_-< xl -< x2 X20 X21
X22 X41 with xj x42_j, j 1, 20. For this "symmetric hump" case, the shape
matrix has the form

with T as defined above, and is the 20 x21 matrix formed by adjoining a column
of zeros to U, i.e., (UI0). In this case we have effectively reduced the size of the
problem by half. Figure 3.2 compares the nonnegativity only and nonsymmetric hump
solutions. For the case of the symmetric hump, refer to Fig. 3.1. From this example,
the advantage of incorporating all possible knowledge of x is clear.

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

(a) NON-NEGATIVITY ONLY

-2.7 -1.8 -0.9 0 0.9

(b) NON-SYMMETRIC HUMP CONSTRAINT

FIG. 3.2. 60 X41, 3-point Simpson averaging.

It is reasonable to hope that the more information put into the problem, the better
will be the bounds on an x-vector of a given size. Accordingly, we compare 20 x41,
40 x41, and 60 41 examples of the problem with 3-point Simpson averaging and
symmetric hump constraint. The 20 x41 and 40 x 41 graphs are shown in Fig. 3.3. For
the 60 41 example, see Fig. 3.1. From this example, we see that the more information
that can be used, the better the result will be. This is true only up to a point, however.
If the integration is very crude (n small) compared to the amount of information (m
large) the problem becomes inconsistent, due to discretization error. For pointwise
estimates the 40 x 21 and 60 x 21 examples fail with the quantity z 4- ].g

2
t90, one of the

factors of 2, becoming negative. There was a small discrepancy in all of the pointwise
estimates in that the bounds for the first four points did not include the true values,
which were all close to zero. We surmise that this was caused by the discretization
error in approximating the continuous problem with the quadrature rule.

In all cases, the method was allowed to iterate three times, and in all of the cases,
the bounds did not improve after the first iteration. However, the authors have
encountered problems where bounds kept improving slightly for several iterations.

The method has been applied to several radiation spectrum unfolding problems
using real, measured data. In all cases it has produced useful bounds for the unknown
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5.0

4.5

4.0

5.5

5.0

2.5

2.0

0.5

r._j ,---
-, r-il
-{7.,7

20 41
40 41
AVERAGED TRUE
SOLUTION

-1.8 -0.9 0 0.9 .8 2.7

FIG. 3.3. 3-point Simpson averaging, symmetric hump constraint.

spectrum, and in some of these cases the bounds were so sharp that the effect of
suboptimality was scarcely noticeable. In most cases, however, the intervals were
noticeably wider than those obtained from the quadratic programming solutions of
problems (1.10) and (1.11). In these cases the suboptimal intervals provide good starting
estimates for the parametric quadratic programming procedure and significantly reduce
the work required to obtain the optimal intervals.
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