Calibrating a Standard Candle for Extragalactic Distance Measurements

Bert W. Rust¹, Katharine M. Mullen¹ and Dianne P. O’Leary"
¹ Div. 771, ‡ UCLA Center for Applied Statistics, τ Div. 771 & Univ. Md.

Astronomical Measurements and Units

- B = astronomical apparent magnitude
- L_B = relative luminosity (rel. to B_{sun})
- $B_D = 10^{-0.4(B_d - B)}$
- $B_D = 2.5 log_{10} [B_d]$
- M_B = astronomical absolute magnitude
- $\mu = B - M_B$ = distance modulus
- $\mu = 5 \log D + 25$ (D = distance [Mpc])

Light Curve Data and Fits

- Fitted Magnitudes
- Obs. B magnitudes
- Δt_{max}

Components of the Luminosity

- $L(t) = W(t, \alpha, \beta, \gamma)$
- $W(t) = W(t, \alpha, \beta, \gamma)$
- Δt_{max}

Distance Calibration

- To estimate distance to a faraway supernova:
 1. Measure for light curve (more than 150 days)
 2. Use the model to determine α, β, and M_B
 3. $M_B = -25 + 5 \log D$
 4. $D = \frac{1}{5 \log D + 25}$

Radioactive Decay Model for Light Curve

- $W(t, \alpha, \beta, \gamma) = \exp \left(\frac{t}{\mu} \right)$
- Δt_{max}
- α = shape parameter
- β = scale parameter

Light Curve Data and Fits

- Snapshots of the luminosity of a recent supernova, indicated by the green arrow.
- The luminosity appears suddenly, peaks, and then fades over a period of months.