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Abstract. Type Ia supernova light curves are characterized by a rapid rise
from zero luminosity to a peak value, followed by a slower quasi-exponential
decline. The rise and peak last for a few days, while the decline persists
for many months. It is widely believed that the decline is powered by the
radioactive decay chain 56Ni → 56Co → 56Fe, but the rates of decline in
luminosity do not exactly match the decay rates of Ni and Co. In 1976, Rust,
Leventhal, and McCall [19] presented evidence that the declining part of the
light curve is well modelled by a linear combination of two exponentials whose
decay rates were proportional to, but not exactly equal to, the decay rates for
Ni and Co. The proposed reason for the lack of agreement between the rates
was that the radioactive decays take place in the interior of a white dwarf star,
at densities much higher than any encountered in a terrestrial environment,
and that these higher densities accelerate the two decays by the same factor.
This paper revisits this model, demonstrating that a variant of it provides
excellent fits to observed luminosity data from 6 supernovae.
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Figure 8.1.1. B-magnitude light curves for 6 Type Ia supernovae.
The label on each plot is the name assigned to the supernova,
specifying the year of the explosion and the order of discovery in
that year. The time unit for the measurements is Julian Days (JD),
the number of days since Greenwich noon on January 1, 4713 BC.
The brightness units are astronomical magnitudes measured in the
B (blue) wavelength passband.

8.1. Introduction

Supernovae are exploding stars that, for a few weeks, can be as bright as or
even brighter than their parent galaxies. Most types of supernovae have irregular
light curves, but for one class, Type Ia, the light curves display a very uniform and
regular behavior. The light curves of 6 such supernovae are given in Figure 8.1.1,
where the discrete data points are measurements of the apparent brightness of
the supernova and the smooth curves are fits of a 6-parameter model that will be
described in Section 8.2. The similarity of the 6 plots attests to the uniformity of
the phenomenon.
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This uniformity makes Type Ia supernovae excellent standard candles for es-
timating distances to their parent galaxies. In 1974 Rust [18, Chapt. 11] demon-
strated a linear dependence of estimates of the peak absolute magnitude on the
post-maximum rate of decline of the light curve. The absolute magnitude is a mea-
sure of the intrinsic luminosity that can be combined with the apparent (observed)
magnitude to get an estimate of the distance. If the relationship is calibrated by
observations of supernovae in nearby galaxies whose distances can be reliably es-
timated by other means, then the observed rate of decline of the light curve of a
distant supernova leads to an estimate of its absolute magnitude and thence its dis-
tance. Rust’s sample of light curves was limited and not completely homogeneous,
so the linear dependence that he pointed out was scarcely noted by the astronom-
ical community. Fortunately the correlation was rediscovered in 1993 by Phillips
[16] who established it as a foundation for Type Ia standard candles. The light
curve model that we describe in this paper has potential use in refining this tool
for distance estimation.

The uniformity of the linear long time decays in the light curves, together with
theoretical considerations, has led to the belief that the light curve is powered by
the radioactive decay chain 56Ni → 56Co → 56Fe, where the 56Ni is deposited
by fusion reactions in a carbon-oxygen white dwarf star [2]. A white dwarf star
contains a mass comparable to that of our sun, collapsed into a volume smaller than
that of the earth, so the interior densities are extraordinarily high. All atoms in
the star are totally stripped of their electrons, which circulate through the interior
in a Fermi sea, providing the pressure that keeps the star from collapsing further.
The cause of the collapse is thought to be the exhaustion of the hydrogen fuel that
provided the fusion energy powering the star before the collapse. According to this
theory, the star is part of a binary system in which the other star expands and
sheds its outer layers. Some of this lost material falls onto the white dwarf to ignite
a new round of fusion reactions that burn the carbon and oxygen to produce 56Ni.
One problem for this scenario is the fact that the supernova light curve decay rates
are always faster than the terrestrial decay rates of 56Ni and 56Co.

In 1974 Van Hise [22] analyzed the light curve of SN1937c. He found two decay
rates, faster than those of (terrestrial) 56Ni and 56Co, but having approximately
the same ratio as these rates. Thus the decays in the star seemed to be accelerated
by the same factor. In a terrestrial environment, 56Ni beta decays to 56Co entirely
by electron capture, and 56Co beta decays to 56Fe by electron capture 80 % of
the time. In 1975, Leventhal and McCall [12] suggested that the decays occur in
the high-density interior of the white dwarf, where the electron capture rates are
enhanced. In 1976, Rust, Leventhal and McCall [19] fit a model consisting of a
sum of two exponentials to the post-maximum light curves for 15 supernovae. This
work was one of the first real-world applications of the renowned VARPRO [5, 6]
program for solving separable non-linear least squares problems, and the first of
many subsequent applications of the variable projection algorithm in spectroscopy
[14]. They found a statistically significant correlation between the two exponential
decay rates, with average lifetime values τ1 = (6.46±1.98) d and τ2 = (81.2±25.7)
d 1. The ratio of these two values, 81.2/6.46 = 12.6 is approximately the same
as the ratio 111.42/8.764 = 12.71 of the terrestrial average lifetimes of 56Co and

1The abbreviation “d" denotes “days", and we have specified standard uncertainties for the
quantities.
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56Ni. In spite of this evidence, the astronomical community [1, 3] rejected the
Leventhal and McCall hypothesis, and concluded that even though the light curve
is powered by the radioactive decay chain, the observed decay rates were not related
to the radioactive decay rates, but rather depended on the physical conditions of the
expanding atmosphere of the supernova, and that the apparent exponential decay
in the late-time light curve was not even necessarily a true exponential. Placing
a straight edge along the long tails in the light curves in Figure 8.1.1 provides a
sufficient rebuttal to this last idea.

In this paper we revisit this data-fitting problem, using higher-quality data that
have become available since the 1970s. We describe our model in Section 8.2 and
the computational tools and results in Sections 8.3 and 8.4. Our basic hypothesis is
that radioactive β-decay rates increase in high density environments by an amount
proportional to the density. While as far as we know this result is not predicted
by theory, other explanations of the apparent observed increase in decay rates are
not forthcoming. We show that under this hypothesis, the B-passband light curve
is well explained, and that combining those results with a light echo effect allows
the luminosity evolution in the other passbands to be explained also.

8.2. The basic model

We present a model consistent with the assumption that the fusion reactions
that deposit the 56Ni and the subsequent decays to 56Co and 56Fe all occur in the
interior of a white dwarf that is not totally disrupted by the outburst. The atmo-
sphere of the star may be exploded outward, but the central engine powering the
whole outburst remains intact, providing a very stable energy source that main-
tains a constant, enhanced decay rate even at very late times in the light curve.
The energy is generated in the form of gamma ray photons that are degraded to
visible light by interactions with the expanding atmosphere and possibly also with
a pre-existing planetary nebula surrounding the white dwarf.

The model can be represented schematically as follows:

W (t;α1, α2, α3) −→ 56Ni
k1

−→ 56Co
k2

−→ 56Fe ,

where W (t;α1, α2, α3) is a pulse of 56Ni deposition and k1 and k2 are the nuclear
decay rates of 56Ni and 56Co. The initial pulse is modelled by a Weibull probability
density function

W (t;α1, α2, α3) =
α2

α3

(
t− α1

α3

)(α2−1)

exp
[
−
(
t− α1

α3

)α2
]
, (8.1)

where α1 is a location parameter, α2 is a shape parameter, and α3 is a scale
parameter. These three adjustable parameters give the Weibull function great
flexibility in modelling the Ni deposition process. Note that the parameter α1 is
the starting time for the fusion pulse.

In a terrestrial setting, the decay rates k1 and k2 would be the inverses of the
average lifetimes 8.764 d and 111.42 d, but in the high density interior of the star,
the model allows these two rates to be accelerated by a common factor α4, so

k1 =
1

8.764α4
, k2 =

1
111.42α4

, (8.2)
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Figure 8.2.1. The Weibull pulse for SN1999dq and the relative
abundances of Ni, Co and Fe that it generates.

and α4 becomes a fourth parameter for the model. If N1(t), N2(t), and N3(t)
represent the abundances of 56Ni, 56Co, and 56Fe, respectively, then the ordinary
differential equations (ODEs) for the 56Ni deposition and subsequent decay pro-
cesses can be written

dN1
dt = W (t;α1, α2, α3)− 1

8.764α4
N1 , N1(α1) = 0 ,

dN2
dt = 1

8.764α4
N1 − 1

111.42α4
N2 , N2(α1) = 0 ,

dN3
dt = 1

111.42α4
N2 , N3(α1) = 0 .

(8.3)

Since the Weibull pulse is a probability density function, it has unit area, which
means that it produces a unit amount of 56Ni, so N1(t), N2(t) and N3(t) are relative
abundances that are scaled up in the fit of the model to the observed data. Plots of
the Weibull pulse and the relative abundances that it produces for the supernova
SN1999dq are given in Figure 8.2.1.

It is luminosity generated by the nuclear decays, rather than relative abun-
dance, that is actually observed. We can write our model for luminosity in the
standard VARPRO notation by defining

Φ1(t;α) =
1

8.764α4
N1(t) , Φ2(t;α) =

1
111.42α4

N2(t) , (8.4)

where Φ1 and Φ2 are the relative contributions to the total luminosity by the decays
of 56Ni and 56Co, respectively. The total observed luminosity can then be written

L(t,α) = C1Φ1(t;α) + C2Φ2(t;α) , (8.5)

where C1 and C2 are linear adjustable parameters that convert the relative lumi-
nosities to observed luminosities. So our model has 6 free parameters: 4 nonlinear
parameters α1, α2, α3, and α4 that specify the properties of the central engine
generating the gamma rays that power the luminosity, and 2 linear parameters C1

and C2 that specify how the gamma rays interact with the expanding atmosphere
and/or the surrounding planetary nebula to generate the observed luminosity. It
is easy to get initial estimates for α1 and α4 from the observed light curves. It
is somewhat more difficult to get initial estimates of α2 and α3. Since we used
VARPRO to do the fits, no initial estimates for C1 and C2 were needed.
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8.3. Fitting the model to the B-passband observations

Substituting Eqs. (8.4) into (8.5) allows us to write the model in the form

L(t,α) = C1
1

8.764α4
N1(t) + C2

1
111.42α4

N2(t) , (8.6)

where N1(t) and N2(t) depend on α1, α2, and α3 and are obtained by solving
the system of ODEs (8.3). It is possible to find closed form solutions for N1(t)
and N2(t), but the formulas obtained are complicated, involving an integral of the
Weibull pulse (8.1). The formulas for the partial derivatives ∂Φ1/∂α and ∂Φ2/∂α
are even more complicated, so we instead compute N1(t) and N2(t) by numerically
integrating the system (8.3) using the Runge-Kutta code DERKF [20].

8.3.1. Choice of units. In the light curves in Figure 8.1.1, astronomical mag-
nitudes are plotted versus Julian Days, but this is not the space in which the fits
were computed.

Julian Day would be a very unwieldy time variable, so for each supernova,
the zero point for the time t was reset to be a few days before the first observed
magnitude. Row 5 in Tables 1 and 2 gives, for each of the 6 supernovae, the Julian
Day chosen to define the zero point for t.

Astronomical magnitude would also be an unwieldy variable for fitting. The
magnitude scale is logarithmic, with a difference of five magnitudes corresponding
to a change by a factor of 100 in apparent brightness. The scale runs backward,
with smaller magnitudes corresponding to brighter objects. To produce a more
convenient variable for fitting, a reference magnitude Bref was chosen for each
supernova, and the measured magnitudes Bi were converted to relative luminosities
Li by the formula

Li = 10−0.4 (Bi−Bref ) . (8.7)

The reference magnitudes chosen for each of the supernovae are given in row 6 of
Tables 1 and 2. So the fits were calculated in the {t, L} space, and the light curves
obtained were transformed back to the {JD,B} space, using the inverse relation

B(t) = Bref − 2.5 log10[L(t) ] , (8.8)

to get the light curves plotted in Figure 8.1.1.

8.3.2. The variational equations for the partial derivatives. The model
(8.6) is nonlinear in the four parameters α, so it was necessary for VARPRO to
iterate in the 4-dimensional α-space. That required the 8 partial derivatives

∂Φ1

∂α
=

∂

∂α

[
1

8.764α4
N1(t)

]
,

∂Φ2

∂α
=

∂

∂α

[
1

111.42α4
N2(t)

]
. (8.9)

All attempts to use finite difference approximations to these derivatives met with
complete failure. VARPRO was never able to improve on any given set of initial
estimates when it was using numerical derivatives. The fact that noisy derivatives
cause difficulty in optimization settings has been previously documented; see, e.g.,
[11].

   

150 Exponential Data Fitting and its Applications Bert W. Rust 

   



Analytic derivatives can be obtained by noting that

∂Φ1

∂αj
=

1
8.764α4

∂N1

∂αj
, j = 1, 2, 3 , (8.10)

∂Φ1

∂α4
=

1
8.764α4

∂N1

∂α4
− 1

8.764α2
4

N1 , (8.11)

∂Φ2

∂αj
=

1
111.42α4

∂N2

∂αj
, j = 1, 2, 3 , (8.12)

∂Φ2

∂α4
=

1
111.42α4

∂N2

∂α4
− 1

111.42α2
4

N2 . (8.13)

Thus the problem is reduced to one of computing the 8 partial derivatives

∂N1

∂α
and

∂N2

∂α
,

where N1 and N2 are defined by the ODEs (8.3). Since we did not want to solve
that system in closed form, we instead used the identities

d

dt

(
∂N1

∂αj

)
=

∂

∂αj

(
dN1

dt

)
, j = 1, 2, 3, 4 , (8.14)

d

dt

(
∂N2

∂αj

)
=

∂

∂αj

(
dN2

dt

)
, j = 1, 2, 3, 4 , (8.15)

to extend the system to include 8 more ODEs defining the required partial deriva-
tives. Substituting the derivative expressions from (8.3) into the two expressions
above gives

d

dt

(
∂N1

∂αj

)
=

∂

∂αj
W (t;α1, α2, α3) − 1

8.764α4

(
∂N1

∂αj

)
, j = 1, 2, 3 , (8.16)

d

dt

(
∂N1

∂α4

)
=

1
8.764α2

4

N1 −
1

8.764α4

(
∂N1

∂α4

)
, (8.17)

d

dt

(
∂N2

∂αj

)
=

1
8.764α4

(
∂N1

∂αj

)
− 1

111.42α4

(
∂N2

∂αj

)
, j = 1, 2, 3 , (8.18)

d

dt

(
∂N2

∂α4

)
= − 1

8.764α2
4

N1 +
1

111.42α2
4

N2 (8.19)

+
1

8.764α4

(
∂N1

∂α4

)
− 1

111.42α4

(
∂N2

∂α4

)
,

which, using the initial conditions

∂N1

∂αj
= 0 ,

∂N2

∂αj
= 0 , j = 1, 2, 3, 4 , (8.20)

can be integrated numerically along with the ODEs in (8.3). But to do so, it is
necessary to find expressions for the 3 partial derivatives ofW (t;α1, α2, α3) defined
by (8.1). We used Matlab’s Symbolic Math Toolbox with the program
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syms a1 a2 a3 t

w = a2/a3*(t-a1)^(a2-1)/a3^(a2-1) * exp(-((t-a1)/a3)^a2)

dw_da1 = diff(w,a1)
dw_da2 = diff(w,a2)
dw_da3 = diff(w,a3)

fortran(dw_da1)
fortran(dw_da2)
fortran(dw_da3)

to generate not only the symbolic derivatives, but also Fortran statements to be
inserted into a Fortran subroutine for computing them numerically.

8.3.3. The fits. We fit the model (8.6) to the relative luminosity data for the 6
supernovae whose relative luminosity light curves are plotted in Figure 8.3.1. These
particular 6 examples were chosen for this study because they have modern photo-
metric observations, in several wavelength passbands, with observations beginning
well before maximum luminosity, and with B-passband light curve data extending
at least 150 days past that maximum. The shortest light curve (SN1999dq) con-
tains 25 data points spanning 163.66 days, and the longest (SN2003du) contains 51
data points spanning 474.04 days.

In computing the fits, we weighted each observation inversely with the observed
luminosity so that all of the observations contributed equally to determining the
parameter estimates. This was absolutely necessary to assure that the long tails
were fitted as well as the peaks. The good fits in the tails in Figure 8.1.1 demonstrate
the effectiveness of this weighting strategy. Even very small misfits in the tails in
Figure 8.3.1 would have transformed into large misfits in the tails in Figure 8.1.1.

We have already noted that VARPRO was unable to improve on our initial
estimates when we used numerical approximations for the partial derivatives (8.9).
Programming the analytic derivatives by the method outlined in Section 8.3.2 was
an intricate and complicated task, but using them enabled VARPRO to always con-
verge to a good fit, even if the initial estimates were poor. However, a surprisingly
large number of iterations was required for convergence. If the initial estimates
were not very close to the final converged values, then 20 000 - 40 000 iterations
might be required. Apparently this simple model produces a very difficult fitting
problem, even though we were iterating in a 4-dimensional space rather than the
6-dimensional space required by conventional nonlinear least squares programs that
do not take advantage of the conditional linearity of C1 and C2.

We checked to see if any of the observed luminosity could have come from the
fusion reactions in the Weibull pulse. We did this by appending an additional term

C3Φ3(t;α) = C3W (t;α1, α2, α3) (8.21)

to the model and fitting it to several light curves. In every case the modified model
failed to yield a significant improvement in the fit. The fits often gave physically
meaningless estimates for C3, e.g., Ĉ3 = −15± 124 for SN1992bc, and always gave
covariance matrices exhibiting extremely high correlations, e.g., ±0.999 · · · between
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some of the parameters. This is a sure indication of a model with too many free

Figure 8.3.1. B-luminosity light curves for the 6 supernovae
whose B-magnitude light curves are plotted in Figure 8.1.1. The
observed luminosities here were computed by applying the trans-
form (8.7) to the observed magnitudes plotted in Figure 8.1.1. The
curves shown here were obtained by fitting the model (8.6) to these
observed luminosities. The curves shown in Figure 8.1.1 were cal-
culated by applying the inverse transform (8.8) to the curves shown
here.
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parameters. Thus it appears that all of the observed luminosity from a Type Ia
supernova comes from the radioactive decay chain.

The parameter estimates and their uncertainties for the 6 supernovae are given,
together with some other pertinent data, in Tables 1 and 2. The key to these tables
follows:

row 1: Source for the measured magnitudes.
row 2: Name of the parent galaxy.
row 3: Galactocentric velocity of recession implied by measured redshift of

the galaxy. These data, together with those in row 4, were taken from
the NASA/IPAC Extragalactic Database (NED) [10] which is operated
by JPL under contract with NASA.

row 4: Galactocentric distance to the galaxy estimated from the Hubble
law Vr = H0D using H0 = (73.0 ± 5.0) km/s/Mpc, where the units are
kilometers per second per 106 parsecs.

row 5: Julian Day chosen for zero point in time.
row 6: Reference magnitude used in Eqs. (8.7) and (8.8) for transforming

between magnitudes and relative luminosities.
row 7: Estimate of Weibull location parameter (gives time of initial eruption

of Weibull pulse).
row 8: Estimate of Weibull shape parameter.
row 9: Estimate of Weibull scale parameter.
row 10: Estimate of acceleration parameter speeding up Ni and Co decay

rates.
row 11: Estimate of linear parameter which determines how supernova’s

atmosphere transforms energy from Ni decays into observed luminosity.
row 12: Estimate of linear parameter which determines how supernova’s at-

mosphere transforms energy from the Co decays into observed luminosity.
row 13: Percentage of total variance explained by fit. R2 is from Eq. (8.22).
row 14: Time of maximum luminosity.
row 15: Julian Day of maximum luminosity.
row 16: B magnitude at maximum luminosity.

Since the fits were nonlinear, the uncertainties for the parameter estimates
were derived from an estimate of the covariance matrix based on a local quadratic
approximation to the sum-of-squared-residuals (SSR) surface at the point where the
SSR was minimized. Therefore those uncertainties should be treated with caution.
The value R2 in row 13 of the table is the coefficient of determination,

R2 = 1− SSR

CTSS
, (8.22)

where SSR is the weighted residual sum of squares and CTSS is the corrected total
sum of squares. The latter quantity is computed by

CTSS =
N∑
i=1

w2
i (Li − L̄)2 , (8.23)

where the Li , i = 1, . . . , N , are the observed relative luminosities, L̄ is the weighted
average luminosity, and the wi = 1/Li are the weights used in the fits. Thus R2 is
a normalized residual sum of squares which will always have a value between 0 and
1. We express it as a percentage, indicating the percentage of the total variance.
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Table 1. Results for SN1990N, SN1991T, and SN1992bc for the B passband.

SN 1990N 1991T 1992bc

1 Reference [13] [13] [8]

2 Galaxy NGC 4639 NGC 4527 ESO 300-9

3 Vr [km/s] 974± 6 1654± 3 5881± 600

4 D [Mpc] 13.3± 0.9 22.7± 1.6 80.6± 10.0

5 JD (t = 0) 2 448 050.0 2 448 350.0 2 448 875.0

6 Bref 12.0 11.0 15.0

7 α̂1 13.7 ± 1.6 2.1 ± 2.8 22.08 ± .40

8 α̂2 2.32 ± .25 2.66 ± .34 1.730 ± .052

9 α̂3 17.5 ± 1.6 22.0 ± 2.9 15.56 ± .43

10 α̂4 0.676 078 5 0.662 474 7 0.618 920 3
± .000 006 8 ± .000 003 0 ± .000 004 3

11 Ĉ1 10.63 ± .22 12.02 ± .16 19.21 ± .17

12 Ĉ2 4.24 ± .10 5.004 ± .080 6.104 ± .073

13 R2 99.57 % 99.67 % 99.88 %

14 tmax [d] 32.83 25.91 37.36

15 JDmax 2 448 082.83 2 448 375.91 2 448 912.36

16 Bmax 12.75 11.70 15.18

8.4. Extending the model to U-, V-, R- and I-passband observations

The B passband light curves in Figures 8.1.1 and 8.3.1 are quite extraordinary.
But the model is not so successful when it is fit to observations in other wave-
length passbands. Astronomers often measure apparent brightness in 5 different
passbands, U, B, V, R, and I which represent ultraviolet, blue, visual, red, and
infrared, respectively. The U, B, V, R, and I light curves for SN2003du are shown
in Figure 8.4.1. The departures of the measurements from the simple model used
to fit the B light curve (upper right hand plot) are apparent in the V, R, and I light
curves.

8.4.1. A light echo model for the I-passband observations. The most
striking departures are in the I light curve, where it appears that a secondary peak
occurs about 30 days after the maximum luminosity. This suggests that it may
have been caused by a light echo from the back side of a pre-existing shell of dust
surrounding the supernova. White dwarfs are often surrounded by planetary nebula
which were presumably formed when the parent star ejected its outer layers before

   

Modelling Type Ia Supernova Light Curves Exponential Data Fitting and its Applications 155 

   



Table 2. Results for SN1998aq, SN1999dq, and SN2003du for the
B passband.

SN 1998aq 1999dq 2003du

1 Reference [17] [9] [21]

2 Galaxy NGC 3982 NGC 976 UGC 9391

3 Vr [km/s] 1187± 7 4370± 6 2055± 7

4 D [Mpc] 16.3± 1.1 59.9± 4.2 28.1± 2

5 JD (t = 0) 2 450 900.0 2 451 410.0 2 452 725.0

6 Bref 12.0 14.5 13.0

7 α̂1 14.72 ± .40 5.4 ± 2.6 25.07 ± .60

8 α̂2 2.085 ± .058 2.37 ± .29 1.966 ± .095

9 α̂3 15.33 ± .42 19.3 ± 2.6 15.40 ± .66

10 α̂4 0.655 925 3 0.729 83 0.662 263 8
± .000 003 1 ± .000 11 ± .00000 11

11 Ĉ1 14.752 ± .090 16.76 ± .37 13.54 ± .14

12 Ĉ2 4.355 ± .043 5.59 ± .18 4.395 ± .048

13 R2 99.93 % 99.87 % 99.79 %

14 tmax [d] 31.19 26.45 41.35

15 JDmax 2 450 931.19 2 451 436.45 2 452 766.35

16 Bmax 12.36 14.85 13.49

collapsing into a white dwarf. If we make the crude assumption that the echo comes
almost entirely from material very close to our line of sight to the star, then we can
approximate the observed relative luminosity with a model of the form

L(t;β) = D1Ψ1(t) +D2Ψ2(t) +D3Ψ3(t;β) +D4Ψ4(t;β) , (8.24)

where the Di are linear parameters to be determined by fitting, and the functions
Ψi(t;β) are defined by

Ψ1(t) =
1

8.764 α̂4
N̂1(t) , (8.25)

Ψ2(t) =
1

111.42 α̂4
N̂2(t) , (8.26)

Ψ3(t;β) =


0 , t ≤ α̂1 + β1[

1
8.764 α̂4

N̂1(t− β1)
]
Q(t;β2, β3) , t > α̂1 + β1

, (8.27)
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Figure 8.4.1. UBVRI light curves, in relative luminosity space,
for SN2003du. The discrete points represent the measurements
and the smooth curves are model fits. The fit for the B passband
is the same as the one in Figure 8.3.1. The other fits are for the
model described in section 8.4.

Ψ4(t;β) =


0 , t ≤ α̂1 + β1[

1
111.42 α̂4

N̂2(t− β1)
]
Q(t;β2, β3) , t > α̂1 + β1

. (8.28)

In Eqs. (8.25) and (8.26) the α̂4 is not a parameter to be determined by fitting, but
rather the estimate of α4 that was obtained in fitting the B light curve. Similarly,
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the functions N̂1(t) and N̂2(t) are the estimates of N1(t) and N2(t) that were
obtained in the B-curve fit. They depend only on the estimates α̂ and do not
involve any free parameters to be determined by the fit. The functions Ψ3(t;β)
and Ψ4(t;β) are essentially lagged versions of N̂1(t) and N̂2(t), with the nonlinear
free parameter β1 being the lag. They are multiplied by a quenching function

Q(t;β2, β3) =
1
2
erfc[β3(t− β2)], (8.29)

which is included to model the vaporization of the reflecting dust as the shell sur-
rounding the supernova is heated to ever higher temperatures. When all of the
dust is vaporized, the shell will cease to reflect. We used the complementary error
function

erfc(z) = 1− erf(z) = 1− 2√
π

∫ z

−∞
exp

(
−u2

)
du (8.30)

to model the quenching because it has the appropriate general shape, and the two
free parameters β2 and β3 give it the flexibility to model a wide range of possible
shapes and extents. The quenching function for SN2003du is shown in Figure 8.4.2.

Figure 8.4.2. The light echo quenching function for SN2003du

The model (8.24) has 4 linear and 3 nonlinear parameters, which again makes
it a candidate for VARPRO. It was stable enough to permit the use of numerical
derivatives. The fitted I-luminosity light curve for SN2003du is shown in the lower
left panel in Figure 8.4.1, and the corresponding parameter estimates are given
in column 4 of Table 3. The fit is good, but not as close as the B passband fit.
This deterioration in quality is also reflected in the decrease in the R2 value. The
I-magnitude light curve is shown in the lower left panel of Figure 8.4.3. It too is
not nearly so close as the B-magnitude light curve in the upper right panel. The
decline in the quality of the fit is probably due to the use of a very crude model
for the light echo. A proper model would take the spherical geometry of the shell
into account, and the light observed at any give time would be a mixture of many
different lags. If our light curve model is correct, then the estimate β̂1 = 27.86
implies that the inner radius of the reflecting shell is 13.93 light days.

8.4.2. Extending the light echo model to the V, R, and I observations.
Since the I-light curve gave by far the best representation of the light echo, we
decided to keep the estimates β̂1, β̂2, and β̂3 fixed in fitting the model to the R, V,
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Table 3. The parameter estimates for the B, I, R, V, and U light
curve fits for SN2003du. The ordering of the columns reflects the
order in which the fits were done. A← entry means that the value
was not a free parameter but rather an estimate obtained in a
preceding fit. A blank entry means that neither the corresponding
parameter not its estimate was used in the fit. Row 14 gives the
percentage of the total variance explained by the fit, and Row 15
gives the total number of free parameters in the fit.

Color B I R V U

1 α̂1 25.07 ± .60 ← ← ← ←

2 α̂2 1.966 ± .095 ← ← ← ←

3 α̂3 15.40 ± .66 ← ← ← ←

4 α̂4 0.662 263 8 ← ← ← ←
± .000 001 1

5 Ĉ1 13.54 ± .14

6 Ĉ2 4.395 ± .048

7 β̂1 27.86 ± .90 ← ← ←

8 β̂2 112 ± 34 ← ← ←

9 β̂3 0.032 ± .029 ← ← ←

10 D̂1 9.95 ± .42 13.72 ± .57 13.34 ± .38 18.37 ± 0.94

11 D̂2 3.34 ± .21 2.81 ± .14 4.75 ± .15 1.54 ± .11

12 D̂3 4.38 ± .58 3.07 ± .43 1.80 ± .25 -0.12 ± .19

13 D̂4 6.2 ± 7.1 7.52 ± .66 3.97 ± .41 2.59 ± .48

14 R2 99.79 % 97.32 % 96.94 % 98.55 % 97.95 %

15 Nfp 6 7 4 4 4

and U light curves. This means that each of those fits was a linear least squares
problem with only 4 free parameters. The results, shown in Figures 8.4.1 and
8.4.3, are reasonably good fits. It is not obvious why the light echo would appear
in the U but not in the B observations. Perhaps the departures from regularity in
the U light curve are due to limb brightening rather than a light echo.

Row 15 of Table 3 gives the number of free parameters in each fit. It is re-
markable that we were able to get good fits to five different light curves using an
average of only 5 free parameters per fit.
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Figure 8.4.3. UBVRI magnitude light curves for SN2003du, cal-
culated by applying the inverse transform (8.8) to the relative lu-
minosity curves in Figure 8.4.1.

8.5. Conclusion

We have proposed a model for Type Ia supernova light curves and validated
it using observed luminosity data from 6 supernovae. Our results support the
hypothesis that decay rates for Ni and Co are proportional to, but not exactly
equal to, their terrestrial values, perhaps because higher densities accelerate the
two decays by the same factor.
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Our model was fit using the VARPRO algorithm. VARPRO’s reduction of the
parameter space is essential for the efficiency and even the feasibility of studying
such models.

In future work we will examine differences in transmission curves as a source
of error in comparing fits from one supernovae to another, and we will compare the
UVRI fits for these supernovae. We will also investigate the idea of fitting multiple
passbands simultaneously; see, for example, [4, 7, 14].
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