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1 Introduction

We introduce a near-�eld to far-�eld transformation method that relaxes the usual restriction
that data points be located on a plane-rectangular grid [1]. It is not always practical
or desirable to make uniformly spaced measurements; for example, the maintenance of
positioning tolerances becomes more di¢cult as frequency is increased. Our method can
(1) extend the frequency ranges of existing scanners, (2) make practical the use of portable
scanners for on-site measurements, and (3) support schemes, such as plane-polar scanning,
where data are collected on a nonrectangular grid.

Although �ideal� locations are not required, we assume that probe positions are known.
(In practice, laser interferometry is often used for this purpose.) Our approach is based on
a linear model of the form A» = b (see section 2). The conjugate gradient method is used
to �nd the �unknown� » in terms of the �data� b (section 3). The operator A must be
applied once per conjugate gradient iteration, and this is done e¢ciently using the recently
developed unequally spaced fast Fourier transform [2], [3] and local interpolation (section
4). As implemented, each iteration requires O (N logN) operations, where N is the number
of measurements. The required number of iterations depends on desired computational
accuracy and on conditioning. In section 5, we present a simulation that is based on actual
near-�eld antenna data.

2 The Model

Consider a transmitting test antenna (located in the half space z < 0) and a receiving probe
(translated without rotation). According to Kerns�s theory [4], the probe response w (r)
may be modeled as
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We assume that the probe response is negligible outside the interval jxj · Lx, jyj · Ly

for z values of interest. [That is, w (r) is a periodic extension.] To improve conditioning
(see below), we include only propagating plane waves (°

º¹
real) in the summation in (1).

Evanescent waves (°
º¹

imaginary) are exponentially attenuated and are negligible in the
far-�eld region. We must also ensure that evanescent waves are not important contributors
to the measured probe response; this is usually accomplished by maintaining a probe-to-
test-antenna separation of several wavelengths.

In matrix form (1) becomes
w = Q» (2)

where w ´fw (rn)g, rn is the location of the nth measurement point, » ´
©
»
º¹

ª
, and

Q ´fQn;º¹ = exp (ikº¹¢rn)g. The objective of near-�eld to far-�eld transformation is to

1U.S. Government contribution not subject to copyright in the United States.



determine the coupling product » from measurements w made in a restricted region near
the test antenna.

In practical situations, where the number of measurements often exceeds the number of
unknowns, the system (2) is overdetermined and will generally not have a solution. We will
actually solve the normal equations

A» = b, (3)

where
A = QHQ, b ´ QHw.

The operator QH ´
©
QH
º¹;n = exp

¡
¡ik¤º¹¢rn

¢ª
is the Hermitian (conjugate) transpose of

Q. The solution » of (3) minimizes kw¡Q»k (where kyk2 ´ yHy); that is, this » is the
least-squares estimate. Most methods for processing planar near-�eld data [based on the
model (1)] solve (3), either directly or indirectly. In the standard plane-rectangular grid
algorithm, A is diagonal and QH and Q can be applied with fast Fourier transforms, giving
a computational complexity of O (N logN). On the other hand, a direct solution using
Gaussian elimination requires O

¡
N3

¢
operations. For typical problem sizes (104 < N <

106), the importance of computational e¢ciency is readily apparent.

3 Conjugate Gradient Solution

Because A is Hermitian and positive de�nite (assuming that Q is full rank) the conjugate
gradient method is applicable. The algorithm is an iterative scheme which produces succes-
sive estimates »(j). Initial estimates are not critical and we use »(0) = 0 for simplicity. The
relative error (at the jth iteration) is bounded by the residual r(j) = b¡A»(j):°°°»(j) ¡ »

°°°
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Rate of convergence can be estimated with
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Here kyk2A ´ yHAy and the condition number c2 is the ratio of the largest to smallest
eigenvalue of A. (The condition number of Q is c, c ¸ 1.) Thus, the conjugate gradient

algorithm will always converge.
When condition numbers are large (poor conditioning), equations (4) and (5) indicate

potential problems with computational accuracy and/ or convergence rate. Fortunately, it
is often possible to improve conditioning by adding physically reasonable restrictions. For
example, arbitrarily large condition numbers can arise when evanescent plane waves are
included in the model (1). In the example of section 5, the exclusion of evanescent �elds
results in an acceptable condition.

4 E¢ciency

In the conjugate gradient procedure it is necessary to apply the matrix A = Q
H
Q to a

vector once each iteration. This can be done by a straightforward summation, but only in
O
¡
N2

¢
operations. In order to reduce complexity to O (N logN) operations per iteration,

we have developed a scheme that combines the unequally spaced fast Fourier transform with
interpolation in z. For example, to apply Q to »

(j), we use the unequally spaced fast Fourier
transform to evaluate (2) [in O (N logN) operations] at the points xnx̂+ynẑ+zẑ for several
�xed values of z. We then use local interpolation in z to reach the actual measurement
locations rn. Since we are dealing with bandlimited functions, the numerical precision of
the algorithm can be controlled and is speci�ed as an input parameter. Computational time



depends on the desired numerical accuracy and on the spatial distribution of data points.
Our technique is most e¢cient when measurement locations lie close to a plane. Details will
be presented elsewhere.

5 Simulation

We began with planar near-�eld data for a radiometer antenna with an aperture diameter
of 25 cm and an operating frequency of 31:65 GHz. These data consist of 161 points in x
by 161 points in y spaced by ¢x = ¢y = 0:38 cm (0:4¸ ). A phase gradient was introduced
into the near-�eld data to steer the main beam 300 from boresight. The model (1) was
speci�ed with Lx = Ly = 161£0:38=2 = 30:59 cm and the coupling product was calculated
using standard near-�eld to far-�eld transformation software. Position errors were then
simulated by using (1) to calculate the probe response at nonideal measurement locations.
In this setup, there are about 26 000 simulated measurements and about 20 000 unknowns
(evanescent modes excluded).

Figure 1 shows the result of probe position correction when the position error at the grid
point n¢xx̂+m¢yŷ is given by
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A¸. (6)

The peak magnitude of this position error is 1:1¸ and the rms magnitude is 0:52¸. The
pattern computed ignoring probe position errors bears little resemblance to the correct
pattern�the main beam is no longer recognizable. If we correct only for z position errors,
much of the true pattern is recovered. However, the gain is still about 1 dB low, and
there are anomalous sidelobes. There is no discernible di¤erence between actual and the
fully position corrected patterns. Thus, three-dimensional position error correction can be
important for steered-beam antennas.

For this example, the condition number is c2 t 21,
°°r(9)°° = kbk < 10¡4, and

°°r(29)°° = kbk <
10¡8. Calculations were done on a 200 MHz personal computer and required approximately
75 seconds per iteration.

6 Summary

A number of papers that treat nonideal measurement locations have been published (see,
for example, [5]�[7]). We think that our approach compares favorably in terms of e¢ciency,
accuracy, and simplicity. Major features are:

²The algorithm is iterative, with a �xed cost per iteration that is O (N logN). The memory
requirement is O (N) and is independent of the number of iterations.

²Convergence is guaranteed. Bounds [see (5)] on the convergence rate for the conjugate
gradient procedure are tighter than for many alternative iterative techniques.

²Computational error (not measurement error) is bounded by the residual [see (4)].

²Our current implementation is fully three-dimensional.

²The recipe given in this paper is also applicable to cylindrical and spherical scanning geome-
tries. The basic ingredient is an e¢cient procedure for predicting probe response at the
measurement locations, based on an estimated modal spectrum.

The software is available from the authors.
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Figure 1: H-plane pattern of the antenna with a steered beam. Probe position errors are
given by eq (6). The solid line corresponds to the corrected and to the actual pattern. The
dashed line shows the result of ignoring the position errors. The dotted line is the result of
correcting for only the z position errors.


