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Abstract� The standard planar near-�eld to far-�eld
transformation method requires data points on a plane-
rectangular lattice. In this paper we introduce a trans-
formation algorithm in which measurements are neither
required to lie on a regular grid nor are strictly con�ned
to a plane. Computational complexity is O (N logN),
where N is number of data points. (Actual calculation
times depend on the numerical precision speci�ed and on
the condition number of the problem.) This algorithm
allows e¢cient processing of near-�eld data with known
probe position errors. Also, the algorithm is applicable
for other measurement approaches, such as plane-polar
scanning, where data are collected on a nonrectangular
grid.
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1. Introduction

The standard planar near-�eld antenna measurement
technique requires that data be obtained on a plane-
rectangular grid. However, it is not always practical
or desirable to make regularly spaced measurements.
The maintenance of positioning tolerances becomes
more di¢cult as frequency is increased. An e¢cient
algorithm for processing data with probe position er-
rors can signi�cantly extend the frequency ranges of
existing scanners. Such an algorithm can also make
it practical to consider portable scanners for on-site
antenna measurements. In addition, there has been
much recent interest in schemes, such as plane-polar
scanning, where data are collected on a nonrectangu-
lar grid.
Here we introduce an algorithm which does not

require �ideal� probe locations. We do assume, how-
ever, that the probe positions are known. (In prac-
tice, laser interferometry is often used for this pur-
pose.) Our approach is based on combining the re-
cently developed unequally spaced fast Fourier trans-
form [1], interpolation, and the conjugate gradient
algorithm. Computational complexity is O (N logN)
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operations per iteration, where N is the number of
measurements. The number of iterations depends on
desired computational accuracy and on conditioning
(see below). We present several simulations, which
are based on actual antenna data.

2. The Model

Consider a transmitting test antenna (located in the
half space z < 0) and a receiving probe (translated
without rotation). According to Kerns�s theory [2],
the probe response w (r) may be modeled as

w (r) =
X
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We assume that the probe response is negligible out-
side the interval jxj · Lx, jyj · Ly for z values
of interest. [That is, w (r) is a periodic extension.]
To improve conditioning (see below), we include only

propagating plane waves (°
º¹

real) in the summation
in (1). Evanescent waves (°

º¹
imaginary) are expo-

nentially attenuated and are negligible in the far-�eld
region. We must also ensure that evanescent waves
are not important contributors to the measured probe
response; this is usually accomplished by maintaining
a probe-to-test-antenna separation of several wave-
lengths.
In matrix form (1) becomes

w = Q» (2)

where w ´fw (rn)g, rn is the location of
the nth measurement point, » ´

©
»
º¹

ª
, and



Q ´fQn;º¹ = exp (ikº¹¢rn)g. The objective of
near-�eld to far-�eld transformation is to determine
the coupling product » from measurements w made
in a restricted region near the test antenna. The
transmitting (far-�eld) pattern can be found from
the coupling products of the test antenna with each
of two independent, known probes.

3. Normal Equations

In practical situations, where the number of measure-
ments often exceeds the number of unknowns, the
system (2) is overdetermined and will generally not
have a solution. We will actually solve the normal
equations

A» = b, (3)

where

A ´ QHQ

b ´ QHw.

The operator QH ´
©
QH
º¹;n = exp

¡
¡ik¤º¹¢rn

¢ª
is

the Hermitian (conjugate) transpose of Q. The so-
lution » of (3) minimizes kw ¡Q»k; that is, this
» is the least-squares estimate. Most methods for
processing planar near-�eld data [based on the model
(1)] solve (3), either directly or indirectly. In the
standard plane-rectangular grid algorithm, A is di-
agonal and QH and Q can be applied with fast
Fourier transforms, giving a computational complex-
ity of O (N logN). On the other hand, a direct solu-
tion using Gaussian elimination requires O

¡
N3

¢
op-

erations. For typical problem sizes (104 <N < 106),
the importance of computational e¢ciency is readily
apparent.

4. Conjugate Gradient Solution

BecauseA is Hermitian and positive de�nite (assum-
ing that Q is full rank), any of a number of conjugate
gradient algorithms [3] is applicable. We implement
the iterative scheme

d(0) = r(0) = b¡A»(0)

®j =

°°r(j)°°2£
d(j)

¤H
Ad(j)

»(j+1) = »(j) + ®jd
(j) (4)

r(j+1) = r(j) ¡®jAd
(j)

d(j+1) = r(j+1) +

°°r(j+1)
°°2°°r(j)°°2 d(j),

where kyk2 ´ yHy. Initial estimates are not crit-

ical and we use »(0) = 0 for simplicity. Somewhat
earlier convergence may be obtained, for example, by
starting with the coupling product obtained from k-
corrected data [4]. The quantity r(j) = b¡A»(j) is
the jth residual.
Rate of convergence can be estimated with [5, p.

525]
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where kyk2A ´ yHAy and the condition number c2

is the ratio of the largest to smallest eigenvalue of A.
(The condition number of Q is c, c ¸ 1.) Thus, the
conjugate gradient algorithm will always converge.

5. Conditioning

Relative error is bounded by the residual°°°»(j) ¡ »

°°°
k»k

· c2

°°r(j)°°
kbk

. (6)

If we suppose that �perfect� measurements w0 and
�imperfect� measurements w correspond to the solu-
tions [of (3)] »0 and », then

k» ¡ »0k

k»0k
· c

kw¡w0k

kw0k
. (7)

When condition numbers are large (poor condi-
tioning), equations (5)�(7) indicate potential prob-

lems with convergence rate, computational accuracy,
and/or experimental design. Fortunately, it is often
possible to improve conditioning by adding physically
reasonable restrictions. For example, arbitrarily large
condition numbers can arise when evanescent plane
waves are included in the model (1). In the examples
of section 7, the exclusion of evanescent �elds results
in reasonable condition numbers.

6. Efficiency

In the conjugate gradient procedure of equations (4),
it is necessary to apply the matrix A = QHQ to a
vector once each iteration. This can be done by a
straightforward summation, but only inO

¡
N2

¢
oper-

ations. In order to reduce complexity to O (N logN)
operations per iteration, we have developed a scheme
that combines the unequally spaced fast Fourier
transform with interpolation in z. For example, to
apply Q to »

(j), we use the unequally spaced fast
Fourier transform to evaluate (2) [in O (N logN) op-
erations] at the points (xn; yn; z) for several �xed val-
ues of z. We then use local interpolation in z to reach



the actual measurement locations rn. Computational
time depends on the desired numerical accuracy and
on the spatial distribution of data points. Since we
are dealing with bandlimited functions, the numeri-
cal precision of the algorithm can be controlled and
is speci�ed as an input parameter. Our technique is
most e¢cient when measurement locations lie close
to a plane. Details will be presented elsewhere.

7. Simulations

7.1 Probe position errors

We began with planar near-�eld data for a radiometer
antenna with an aperture diameter of 25 cm and an
operating frequency of 31:65 GHz. These data consist
of 161 points in x by 161 points in y spaced by 0:38 cm
(0:4¸ ). The model (1) was speci�ed with Lx = Ly =
161 £ 0:38=2 = 30:59 cm and the coupling product
was calculated using standard near-�eld to far-�eld
transformation software. Position errors were then
simulated by using (1) to calculate the probe response
at nonideal measurement locations. In this setup,
there are about 26 000 simulated measurements and
about 20 000 unknowns (evanescent modes excluded).
We considered three cases:
For the �rst case, we used a moderate position error

of the form:
0
@
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1
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0
@

0:14 cos (0:35n) cos (0:65m)
0:14 cos (0:25n) cos (0:15m)
0:20 cos (0:15n) cos (0:11m)

1
A¸,

(8)
where n is the x index and m is the y index. Both
indices run from ¡80 to +80. Peak magnitude of
this position error is 0:28¸ and the rms magnitude
is 0:14¸. Figure 1 shows the result of probe position
correction in this example. There is no discernible
di¤erence between actual and position corrected pat-
terns. However, the pattern computed ignoring probe
position errors has a broader main beam than the cor-
rect pattern and also has a gain that is about 2 dB
too low. The relative residual at the jth iteration is
de�ned as

¿ j ´
°°°r(j)

°°° = kbk .
We terminate our program after jmax iterations or
after the relative residual becomes less than ¿ (say,
jmax = 100 and ¿ = 10¡8). For the displacements
(8), the condition number is c2 = 12:8, ¿ 5 < 10¡4,
and ¿ 19 < 10¡8. Condition numbers are estimated
using a procedure due to Lanczos [5, p. 523]. Calcu-
lations were done on a high performance RISC work
station and required approximately 1 minute per it-
eration.

The second case was a more severe test:
0
@

¢x
¢y
¢z

1
A =

0
@

0:3 cos (0:35n) cos (0:65m)
0:3 cos (0:25n) cos (0:15m)
1:0 cos (0:15n) cos (0:11m)

1
A¸. (9)

The peak magnitude of this position error is 1:1¸ and
the rms magnitude is 0:52¸. Figure 2 shows the result
of probe position correction in this example. The pat-
tern computed ignoring probe position errors bears
little resemblance to the correct pattern�even the
main beam is no longer recognizable. Again, there
is no discernible di¤erence between actual and posi-
tion corrected patterns. For the displacements (9),
the condition number is c2 = 21, ¿ 9 < 10¡4, and
¿29 < 10¡8.
The third case used the position errors of the sec-

ond case [see (9)], but a phase gradient was intro-
duced into the near-�eld data to steer the main beam
300 from boresight. As shown in �gure 3 the pat-
tern, ignoring probe position errors, bears little re-
semblance to the correct pattern. If we correct only
for z position errors, much of the true pattern is re-
covered. However, the gain is still about 1 dB too
low, and there are some anomalous sidelobes. The
condition number and the number of iterations were
the same as in the second case This example demon-
strates the importance of 3 dimensional position error
correction for steered beam antennas.

7.2 Plane-polar grid

Beginning with the model and the coupling product
data used in section 7.1, we simulated probe response
on a plane-polar grid: maximum radius rmax = 43
cm; radial step ¢r = 0:4¸; angular step ¢Á = ¼=356
(so that rmax¢Á = 0:4¸). Data were retained within
the rectangle jxj, jyj < 30:59 cm. In this setup, there
are about 65 000 simulated measurements. A direct
application of our algorithm resulted in a poor con-
dition number c2 ¼ 2 400 and ¿ 100 ¼ 5£ 10¡7.
The condition number can be dramatically reduced

by �nding a weighted least-squares solution of (2).
For example, when data points were weighted by
their measurement radii, the condition number was
c2 = 46, and ¿29 < 10¡8. This weighting scheme
is consistent with an �information content� that is
constant per unit area.
Alternately, by simply thinning the data so that

measurement spacing was never less than 0:15 cm,
the condition number was reduced to c2 = 5:9 and
¿17 < 10¡8. (In this setup, the number of simulated
measurements is about 44 000.)
There are noniterative schemes for processing

plane-polar data in O (N logN) operations [6]�[8].



Our approach is more �exible, however, since data
locations can be perturbed in 3 dimensions.

8. Summary

A number of papers that treat nonideal measurement
locations have been published [9]�[11]. We think that
our approach compares favorably in terms of e¢-
ciency, accuracy, and simplicity. Major features are:

² The algorithm is iterative, with a �xed cost per
iteration that is O (N logN). The memory re-
quirement is O (N) and is independent of the
number of iterations.

² Convergence is guaranteed. Bounds [see (5)] on
the convergence rate for the conjugate gradient
procedure are tighter than for many alternative
iterative techniques.

² Computation error (not measurement error, of
course) is bounded by the residual [see (6)].

² Our current implementation is fully 3 dimen-
sional.

² The recipe given in this paper is also applicable
to cylindrical and spherical scanning geometries.
The basic ingredient is an e¢cient procedure for
predicting probe response at the measurement
locations, based on an estimated modal spec-
trum.
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Figure 1 � H-plane far-�eld pattern of the test antenna. Probe position errors are given by eq (8). The solid
line corresponds to the corrected pattern and to the actual pattern. The dashed line shows the result of
ignoring the position errors.
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Figure 2 � H-plane far-�eld pattern of the test antenna. Probe position errors are given by eq (9). The solid
line corresponds to the corrected pattern and to the actual pattern. The dashed line shows the result of
ignoring the position errors.
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Figure 3 � H-plane far-�eld pattern of the antenna with a steered beam. Probe position errors are given by eq
(9). The solid line corresponds to the corrected pattern and to the actual pattern. The dashed line shows the
result of ignoring the position errors. The dotted line is the result of correcting for only the z position errors.


