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Abstract We develop a new causal power- Classical waveguide equivalent-circuit theories, of
normalized waveguide equivalent-circuit theory that,  which [1] is representative, are based on frequency-
unlike its predecessors, results in network independent modal solutions with a constant wave
parameters usable in both the frequency and time impedance. While we will see that the network
domains in a broad class of waveguides. Enforcing parameters of these classic theories satisfy the causality
simultaneity of the voltages, currents, and fields and and power-normalization conditions we develop here,
a power normalization fixes all of the parameters of they are strictly limited to TEM, TE, and TM
the new theory within a single normalization factor, ~ waveguides.

including both the magnitude and phase of the The theories of [2] and [3] attempt to eliminate the
characteristic impedance of the waveguide. restriction to TEM, TE, and TM waveguides by adding
a power normalization, an approach first suggested by
INTRODUCTION Brews [4]. The power normalizations used in these

theories ensure that the real part of the impedance of

We develop a causal power-normalized waveguidePassive circuits is always positive, a basic requirement
equivalent-circuit theory. The theory determines for stable circuit simulation.
voltages, currents, and network parameters suitable for Nevertheless the waveguide circuit theories of [2]
use in both frequency- and time-domain circuit @nd [3] do not fix all of their parameters uniquely: they
simulations from fields in a single-moded waveguide. require in addition a user-defined integration path to
The theory maintains the simultaneity of the voltages define either the voltage or current. Since they construct
currents, and fields inherent in classical waveguidev andi independently at each frequency, they also do
circuit theory but is not restricted to TEM, TE, and TM hot explicitly relate the behavior of their parameters in
guides. the frequency domain to their behavior in the time

Waveguide equivalent-circuit theories prescribedomain, and so leave unspecified the temporal
methods for constructing a waveguide voltagend ~ Properties ofv andi. In particular, the voltage and
currenti from the electromagnetic fields in uniform current may not start simultaneously with the electric
waveguides. The intent is to construandi so that ~ and magnetic field.
the electromagnetic problem reduces to a simpler Leaving the temporal properties of and i

circuit problem that can be solved with conventionalUnspecified can have serious consequences. For
circuit simulators. example, the network parameters of passive devices in

the circuit theories of [2] and [3] are not constrained to
be causal. That is, passive circuits may appear to

Publication of the National Institute of Standards and"€SPond to inputbefore rather than after, the input
Technology, not subject to copyright. Revised June 21signal reaches the device. This complicates the
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interpretation of the circuits network parameters in the In the following development we will refer only to

time domain, and renders them unsuitable for use with the transverse electric and magnetic field components

conventional time-based simulation tools. in the waveguide, for they capture all of the physics
This new waveguide circuit theory enforces required to construct a waveguide circuit theory.

simultaneity of its voltages and currents with the actual However there is no implication that the axial

fields in the circuit while eliminating the TEM, TE, and components of the fields vanish; the analysis is not

TM restrictions of classical waveguide circuit theories. restricted to TEM, TE, or TM modes and the

This simultaneity ensures that the network parameters longitudinal fields can always be reconstructed from the

of passive devices are causal, a necessary condition for transverse fields [2].

stable time-domain simulations. The theory also We write the transverse eIectrEA;(ﬁ,eld) and

employs the power-normalization of [2], so that the magnetic Fﬁq{dr,z) at a given, tiramsverse

actual time-averaged powgiin the circuit is equal to coordinate= (x,y), and longitudinal positiom in the

Yovi' guide in terms of their frequency-domain
The simultaneity and power constraints fix all of representations

the parameters of this new causal circuit theory, N

including the characteristic impedanZg within a E(tr2)- 1 f E (0.2 d )

single positive frequency-independent multiplier that 2n-,

defines the overall impedance normalization. The

implications are significant, and some have alreadyand

been explored in [5]. For example, the us&pf 1 for .

the TE, mode of rectangular waveguide, a choice H (tr.2) = 1 f H,(w,r,2) el dw, @)

permitted in some waveguide circuit theories (see [2], 2n 7,

[3], and chapter 4 of [6]), is not consistent with the

causal theory developed here. wherew is the angular frequency.
We introduce the voltaggw,z) and frequency-
VOLTAGE AND CURRENT dependent normalizatiog(w) with

We begin with a closed waveguide that is uniform E(wr.2= [c(w)e™ C—((‘*’))eﬂ] &(wr)
V(®,2

in the axial direction. The waveguide must have only a = =7 g(w,r)
single dominant mode and be long enoughufapsrt Vo(®)

only that mode at a reference plane wheaadi are

defined. We also require that the dominant mode b@nd the curreri{w,z) and normalizatio,(w) with
unique and distinct from any other modes in the system:

modes with degeneracies or modes that bifurcate violate Hwr2)= [c.(w)e™-c (@)e¥] hwr)

this restriction. _ (7 h(@.r), (4)
()

®3)

! The factor of ¥ appears in the relation for time-averaged h dh the t dal electri d
power because the complex magnitude of voltages, currenty eree.t a.n ¢ are e. ransverse m(.) ale e(.: r!c an
and fields are defined here as the peak values. The factor shagnetic fields of the single propagating modes its

% does not appear in [2] because there complex magnitudggodal propagation constant, and and c. are the

3;Tug§f'ned in terms of the root-mean-square of the IOealélmplitudes of the mode in the forward and reverse



directions. The two normalizing factovsandi, define In what follows we will present a prescription for
v andi in terms of the modal field solutiore{ h}, determining v, and i, consistent with the power
which has a fixed but unspecified normalization. normalization(6) such tha’rEt ancﬂ:lt start at 0.

The normalized transverse modes are defined byrhese latter constraints ensure simultaneity of and
the equations E, and ofi and, .

g(w,r) _ h(w,r)

Et(oo,r) = VO((,o) = io(—oo)’

; Hywir) (5) TEM, TE, AND TM GUIDES

Construction of causal, andi, that satisfy the
power normalizatior(6) is straightforward in TEM,
TE, and TM guides. In those guides there exists a
Vo(@)ig™(w) = po(w) = f g(w,r)xh(w,r)-zdr, (6) unique wave impedan@,(w) and the modal fields can
be written as

which imply E,=vE, and H,=iH, . The power
normalization is achieved with the constraint

where the integral i(6) is over the entire guide cross
section. This  normalization  implies  that g(wr) = f(r); h(wr) =
f E(w,r)xH,*(w,r)-zdr =1, and ensures that the total
time-averaged power p is given by
psl/szt(w,r)XHt*(w,r)-zdr =Yvi ",

We say that a functior=(t,r)  starts at a tigié
F(tr)=0 for t < t, and is nonvanishing at some
starting att =t,. Equationg1)-(5) imply that

zxf(r)
Z,(@)’

(10)

wheref(r) is real. Without loss of generality, we can set
f|f(r)|2dr =1.

With this normalizationp, = 1/Z,, andv, =4 and
ip=1/(AZ,), where is a positive constant multiplier,
satisfy the power normalizatiof6). We also have
E(tr,2) = W2 eEtr) E(t,r) = A" 18(t)f(r)andH (t,r) = A5(t) zxf(r) , wherd is
(7) the Dirac delta function, so we see that  starts
simultaneously withE and starts simultaneously
with H, .

If we choosel=1, thenE, =v e andH, =i Z, h,

Htr2) = itz ef L),
o

where Fourier transformation gives the temporal

voltage =i zxg, and we see that andi correspond to the
1 ® _ voltages and currents of the classic theory. Thus in both
V(I’Z)Eﬁ f V(w,2) e/ dw (8) the classic waveguide circuit theoand our causal
- generalization of that theory, the voltage and current
start simultaneously with the electric and magnetic
and the temporal current field, and the characteristic impedancg is
A 1 °° _ proportional to the wave impedance of TEM, TM, and
i(t’Z)Eﬁ f i(w,2) e dw, (9) TE modes. Other choices, such as setffggd 1 in

-0

lossless rectangular waveguide, which is allowed in [2],
[3], and [6], will not be consistent with the classic
waveguide circuit theory or with our causal
generalization.

ande represents convolution with respect to the time
We observe that iE, andl, starttat 0, then the
temporal voltagey  starts simultaneously V\Eﬁth , and
the temporal currerit  starts simultaneously with



NON-TEM, TE, AND TM GUIDES LIMITATIONS

Appendix 1 constructs a normalizing voltagé For TEM, TM, and TE modes our causal theory
such that the time-domain voltagie — associated with it reduces to the classic circuit theory. These modes
and the electric field start at the same time when the include a number of useful idealizations for which
modal electric fields is separable and can be expanded explicit expressions for the modal fields and wave

as a finite sum impedance are available. In treating these modes we
have placed no restriction on the form of the wave
n impedance Z,; it need not have a rational
e(wr) = Zl c(w) f(r), (11) approximation.
m

We used the construction algorithm of Appendix 1
to overcome the TEM, TE, and TM restriction of the
classic circuit theory. That algorithm requires that the
Cn in (11) be rational functions ab. Nevertheless the
_ _ form of (11) is general enough to represent any

ffm(r) ) o = { é :; m:j L2 piecewise continuous modal field up to any finite
frequency to any desired accuracy. This is because
rational functions are sufficient to approximate to

A similar argument shows that wherseparates in - arhitrary precision any function analytic in a half-plane
this way we can construct a nyrmalizing curght  4nd either regular at infinity or possessing an isolated
such that the time-domain currdént  associated with itp0|e there [7]. Thus we can approximate the wave
and the magnetic field start at the same time. solutions in guides constructed entirely of materials

We now apply a Wiener-Hopf decomposition [7] 10 ith finite loss as accurately as we wish with this
the functiorf = py/vy'i;". Define the auxiliary function  exnansion, and we see that it is not overly restrictive in
G from argG) = argf) andH(In|G|) = argf), whereH  hractice. However we may not be able to treat some

is the Hilbert transform. (See Appendix 2 for a osgjess idealizations that are neither TEM, TM, nor
discussion of minimum-phase functions and the Hilbertrg \yith the two approaches suggested here.

transform3.) Then we haveH(In|G|) = arg@) =
arg(), with G minimum phase by construction. CHARACTERISTIC IMPEDANCE

Then define K, and K; from
In|K,| =%(Inlf| +In|G|), In|K,|=%(In|f[-In|G]),
argK,) =H(n|K,|), andargK,) = H(In|K;|) , andy,
andi, fromyv, = A K, " andiy = K ip’/A, wherel is a
positive constant multiplier.

K, and K; are minimum phase by constructionyso

where thec,(w) are rational functions ab and the
fo(r) are real vector functions that satisfy the
orthogonality condition

Figure 1 shows a source connected to an infinite
waveguide with the reference plane chosen far enough
away from the source to satisfy the single-mode
restrictions of this theory. Since only the forward mode

) ) / is present =0,
starts simultaneously witi' , and therefore with
andi starts simultaneously with , and therefore with V. (w,2) = Vy(w)c,(w)e ™,
H,. Furthermorey,i,* =K K."p/f vyl =Ip,| ,and i (0.2) =i (w)c, (e 7, (13)
arglvi, ) =argK,) -argK;) +argf,) -argf) =arg(,),
S0 V, andi, satisfy the power normalization constraint and so

(6).



source infinite waveguide

reference plane
z=0

Fig. 1. A source connected to an infinite waveguide.

V(@)
(@)

v(w,2)
i(w,2)

c =0

Zy(w) =

(14)

which is indeed independent of Thus

argzy()) = arg{ \IIO((:::))
0

) - ardy(@)io" @) (15)

is fixed by the power normalizatid6) [2].

Maxwell's equations imply that, when only the
forward mode is present, E andi arrive
simultaneously (see Appendix 3), €0
well. Thus in our causal theo&, = v/i must be a
minimum phase function, and

HIIn(|Zy(w)])] = arglZy(w)].

t

(16)

This fixesZ, within a positive scalar multiplier, which
we determine when we choakeAs a corollary, if the

{vo i

{vo i}

passive

source —ANN>

circuit
S— :

1 1
input output
reference reference
plane plane

Fig. 2. A source exciting a passive circuit connected to
another waveguide.

in the guide the temporal voltagé must start
simultaneously with the electric field, so the two
temporal voltages, ang, associated withandvy,

will always start at the same time as well.

Simultaneous starting times @f aad  for any
excitation implies that,/v, = Vip,/vy, is minimum phase,
S0 arg{o/Voy) = HIn(v,/v,,)]. However, once we have
chosen the constant multipligr and thus fixed,, we
must also have|v,|?=|v,(p/i,")] = 1Z,p,] . which
implies that \,,/vod = 1, so argk,/vo) = 0, and

and must ado1 = Voo A similar argument shows thigtis unique.

CAUSALITY CONDITION

Consider the passive circuit of Fig. 2. It connects
an input waveguide with voltages and currentandi,
at the reference plane on the left far enough from the

guide has a unique wave impedance, that wavéource and circuit to satisfy the single-mode

impedance will be minimum phase.

UNIQUENESS

The causal power-normalization is unique. Imagine
that there are two possible voltage normalizatigns
andv,, in the theory. We require that for any excitation

assumption of this theory to an output waveguide with
voltages and currents andi, at the reference plane on
the right, again far enough from the circuit to satisfy
our single-mode assumption.

If the voltage or current at the output were to start
before the voltage and current at the input, the fields at
the output would have to have started before the fields
at the input. This is clearly not possible, so we conclude
that the voltage at the output always starts after the



0.012 with the power constraint @b) to construct andi.
I However, different choices of voltage and current paths
in (17) and (18) result in different characteristic

—— Causal Z0
—— Power/total-voltage
————— Fower/oxide-voltage

0.010f

= 0.008 impedances. Now we will show that not all of these
S 0006 choices are consistent with our causal circuit theory.
';O Figure 3 compares three characteristic impedances

0.004 for the TM,; mode of the infinitely wide MIS line
0_002__ investigated in [9]. This MIS line consists of a 1.0 um

- thick metal signal plane with a conductivity of 3%10

0ol oL U/, S/mseparated from the 100 um tHi€0Q-cm silicon

Frequency (GHz) supporting substrate by a 1.0 pm thick oxide with

Fig. 3. FJ| for the metal-insulator-semiconductor conductivity of 1& S/m. The groundmductor on the
transmission line of [9]. The two solid curves are so closepgck of the silicon substrate is infinitely thin and
as to be indistinguishable. perfectly conducting.
voltage at the input. This shows that transfer functions  The two solid curves in Fig. 3, which are labeled
such asZ,, that determine voltage or current at the “Causal Z,” and “Power/total-voltage,” agree so
output from voltage or current at the input are causalclosely as to be indistinguishable on the graph. The
A similar argument shows that the “driving-point” curve “Causak,’ is the magnitude of the characteristic
impedances [8] of the system are minimum phase, aninpedance determined from the phasegpfnd the
that our voltages and currents cannot propagate fastenininum phase properties of, The curve
than the speed of light. “Power/total-voltage” is the magnitude of the
In essence, by enforcing simultaneity in our causalkharacteristic impedance defined with a power-voltage
circuit theory, the causal properties of the actualdefinition. Here the power normalization is based@&)n
circuits are preserved as well. This is significant (the integral of the Poynting vector over the guide cross
because causal network parameters are a basigection) and the voltage normalization(d¥), where
requirement for stable time-domain circuit simulation. the path if(17) begins at the ground on the back of the
silicon substrate and terminates on tbeductor metal
MIS TRANSMISSIONLINE on top of the oxide.
The conventional theories of [2] and [3] do not
Metal-insulator-semiconductor (MIS) transmission specify the voltage path uniquely, and the choice is not
lines are neither TEM, TE, nor TM. The theories of [2] obvious. For example, devices embedded in MIS lines
and [3] suggest combining either a voltage are fabricated on the silicon surface; they areected

normalization to the signal line with vias through the oxide and to the
d ground with ohmic contacts at the silicon surface. This
Vo = - fe‘ a7) suggests that a voltage path in the MIS line from the

path

silicon surface through the oxide to the signal line,
which is equally consistent with the conventional
theories, might correspond more closely to the actual

or a current normalization

iy = 7{ h,-dl. 18) voltage seen by the device than the total voltage across
°L‘;Stﬁd the MIS line.



However, Fig. 3 shows that the characteristic 0.75x10°
impedance defined from the power constrainicdfand I
the voltage across the oxide, which is labeled
“Power/oxide-voltage,” differs significantly from the
characteristic impedance required by the causal theor
presented here.

Figure 4 shows the Fourier transform of the
characteristic impedance defined with the voltage path
through the oxide and illustrates the difficulty with this

0.50x10° [

eﬁoltagé” o0

0.25x10° |-

Power-oxid

definition: the guide will respond to input signals before %0 25 o 25 50
the excitation reaches it. t(ns)

Fig. 4. The Fourier transform of the characteristic

This example illustrates an important contribution : _
) impedance labeled “Power/oxide-voltage” of Fig. 3.
of the causal theory presented here: it replaces the

subjective and sometimes misleading “common-sense”  The expression iflL9) shows that the error id{|

criteria for definingZ, in guides that are neither TEM, can be made as small as required if we are willing to
TE, or TM with a clear and unambiguous procedure restrict the frequentieshich we apply the theory

that guarantees causal responses. This new approach to frequencies much smallethtbdirequency to
should be especially useful in complex transmission which we evaluate the phpgeAdthough the
structures where the choice of voltage and current pathsonvergence indicated §§9)is slow, it corresponds to

is not intuitively obvious. a worst case scenario: convergence for more forgiving
phase errors will be better.
ERROR IN|Z| It should perhaps be emphasized that, while small

errors in Z,| will sometimes be unavoidable, the

This causal circuit theory determingg| from the  resulting model will nevertheless be consistent both
phase ofy, through a Hilbert transform relationship. With the actual values of aggj and the actual fields
Evaluating the Hilbert transform requires integrating for ko|<too|. Therefore this circuit theory should lead to
over all frequencies. Ignorance of the phase,ait ~ useful time-domain  simulations when  higher
frequencies above those at which the theory is to b&equencies, where the waveguide behavior is poorly
applied will result in errors in th&/] at the frequencies characterized, contain minimal energy.
where the theory is applied.

Appendix 4 develops a bound for the erroiZi &t CONCLUSION
a given frequency when the argy) is known exactly
up to some greater frequenoy. The result is We have presented a causal power-normalized
, y 5 waveguide circuit theory that overcomes the TEM, TE,
Do "@ < ﬁ < w_o (19) and TM restrictions of classic waveguide circuit
‘*’02 Z ‘*’02 -? theories. The network parameters of the causal circuit

theory presented here preserve the causal properties of
wherez, is the actual characteristic impedance Zjid  the actual circuit and the power in the network. This is
is the value of characteristic impedance we determingignificant because these properties are required for
from incorrect assumptions about the high frequencystable time-domain circuit simulation. Since classical
behavior of argy). waveguide circuit theories also enforce these properties



in TEM, TE, and TM guides, we can say that this Referring again to Fig. 1, only the single forward
theory conserves the essential attributes of the classical mode is present, so the'adtsgeated with the
waveguide circuit theory in a more general setting. normalizing voltagez = 0 is

In the causal circuit theory the magnitude of the
characteristic impedance is related to its temporal  V/(w,0)=c,(w)v,’ ()
properties, not to its properties in the frequency n
domain. This adds a new perspective to the debate over - n;l 8 (w) f fr()-E@r.0)d.
the relative merits of the various impedance
normalizations possible in waveguide equivalent-circuit

(22)

In the time domaitf22) is

theories.
. . . n
We could have felpplled cgusallty co.nstralnts to an (0) - Z a (e f f (ELLOd. (23)
analogous reciprocity-normalized circuit theory [10]. m1

However, the new reciprocity-normalized theory would

fail to enforce the passivity condition that ensures thatSince thea,, are polynomials, they have no poles at all
the real part of the impedance of passive circuits igahd are analytic everywhere. As a resdl(t)=0  for
always positive, which will make stable circuit t<O0 (see Appendix 2). So, if the electric field vanishes
simulation impossible in certain circumstances. Ourfor t <0, then so do its moments with respect td the
causal power-normalized theory, on the other handand we see that, by construction, a vanishing electric
explicity enforces the passivity and causality field for t < 0 implies that?/(t,0)=0 fot < 0.

conditions, both of which are requirements for stable ~ We will now show that it is possible to construct

time-domain simulation. the polynomialsa,, so that the inverse is true as well.
That is, so tha/(t,0)=0 fot < O implies that the
APPENDIX 1: moments of the electric field with respect to feand
CONSTRUCTION OFy hence the electric field itself, vanish for< 0. In

essence, we will show that there are enough degrees of

freedom available in the choice of the polynomag|s

that we can eliminate all of the poles in the lower half

of thew plane from an expression that determines the

moments of the electric field fromi. This will ensure

that the expression is analytic in the lower half plane,

and so that their Fourier transforms are 0 for t < 0.
The mth moment of the total electric field with

respect td,, is

Referring to Fig. 1, we seek a normalizing voltage
V,'(w) such that the temporal voltagét,0)  will start
exactly when the electric field arrives 2& 0 ande
can be written in the form ¢f1). That is, if¥(t,0)=0
for t < 0, then the electric field at= 0 vanishes for
timest < 0, and vice versa.

Consider the normalizing voltage

Y'(@) = n; am(w)ffm(r)-q(w,r)dr, (20) ff (N)-E,(w,r,0)cr :—V/(w’o)ff (r)-e(w,r)dr
m t VO/(Q)) m

where thea, (w) are polynomials iw. This normalizing _ V/(OO,O)C () = | "Yo)v/(w) &4
voltage is defined so that viw " .
0
V(@) = Y a ()¢, (@) (22)
m=1



If, for somem, 1,;* has no poles in the lower half of the ,
w plane, then?(t,0)=0 fot < 0 implies that thenth | () - XJ: 3(@)lj(@)
moment of the total electric field vanishes fer 0. Our m | n/1 (@)
aim is to show that we can pick thgso that none of
the I,,* have any poles at all. We will do this by ; 7
showing that we can construct thgso that none of () Im(@)
thel,, have zeroes.

We can write thec,, asc(w) = P (w)/Q(w),
where thd>,, andQ,, are polynomials iw, and expand

(28)
_Gw) _ 1

We have just shown that it is possible to construct
a., so that thé , in (24) have no zeroes. This guarantees

theln as that we can construct a normalizing voltagdrom the
n modal fields such that the voltageassociated with it
ey 2 a@)c() . . U
| (@)= Vo(w) is O for timest < 0 whenever the electric field is 0 for
mit/ C,() C.(w) (25) t < 0, and vice versa. That is, we have constructed a
) Qm(w)ia(w) Pj(oo) \;:)E:;[jgsf\i?;(lzm that starts simultaneously with the
Pi@)ii " Qw) '
APPENDIX2:
We can rearrangé5) to obtain a single common MINIMUM PHASE FUNCTIONS

denominator:

Y ( a(@)P )] 0ue) Throughout this work we denote the frequency-
| (@) - 2 (a]. @I K u w) domain representation of a function B®), and its
m P (@) [] Q) time-domain representation at) W[lerds the
t=m (26) angular frequency andis the time. Herd=(t) is the
Z a].(oo) I j/ (w) inverse Fourier transform &f{w):
=
Inf) ) = L [Fo)eido
(t) ZWL() : (29)
where wheret is real, and the integration (&9) is performed
oo - over real values ab. F(w) is the Fourier transform of
@) = R@II Q. @) Fo:
The numerator of26) is independent of the index F(w) = flf(t)e‘j‘”tdt, (30)
DefineG(w) to be a greatest common divisor of the .

l;'. That is,G is a polynomial of largest possible order

such that;” = 1;” G, wherel,”(w) is a polynomial of  wherew may be complex. If eithe(w) or F(t) in(29)
order less than or equal to the order I6f The  or (30)has poles for reab ort, we take the principal
Euclidian algorithm provides a procedure for finding a value of the integrals.

set ofg so thatz a].(oo) I j/ (w)=G(w) [11]. So we can Causal functionA causal functiorlf(t) equals 0
write (26) as fort < 0. This implies that~(w) is analytic for



Im(w) < 0 and that Inff(w)) = HRe(F(w))], whereH APPENDIX3:

is the Hilbert transform [12], [13] SIMULTANEITY OF Et AND Ht
Minimum phase functioitwWe call a functiorF(w)
minimum phase if botk(w) and its reciprocal E{w) We will now show thalft(t,r,O) aneﬁt(t,r,O) due

correspond to causal functions in the time domain [13]‘[0 the source in Fig. 1 start simultaneously. Assume

.Since ngither the dfapendent nor mdep(.ar?dent variableg,,t the transverse electric field due to the source has
in the time domain related by a minimum phasenq yet arrived at some transverse coordinatethe
function in the frequency domain can occur before thereference plane of Fig. 1 far< 0. That is, we will
other, two nonzero signals related by a minimum assume thaEt(t,r,z)=O far< 0 andz > 0. The fields

phase function start simultaneously in the regiorz > 0 must satistXIf - _9B/ot for<O,
A minimum phase function is causal, so has thewhich implies

property that its real and imaginary parts are a Hilbert A A

transform pair. In addition, the real and imaginary parts asz B 3Ezy __3B .

of the complex logarithm of a minimum phase function oy ox ot

are a Hilbert transform pair [13]. That s, A

argF(w)) = Hn|F()]]. The minimum phase AsaresultB,/(tr2=0 fot<0 andzA> 0. X
constraint is much stronger than the causality The fields must also satisfyxH =edE/ot  for
constraint: it allows the phase of the function to bet < 0 andz > 0, wheree is the position-dependent
determined from the Hilbert transform of the logarithm Permittivity. SinceE(t,r,2) =B,(t,r,z) =0 fort <0 and

of its magnitude and the magnitude of the function to be&> 0,

(32)

determined within a constant multiplier from its phase. aHy aﬁx 8Hy aﬁx OE,
Rational functionA rational functiorF(w) can be - X+—y+ - z-e—z. (33)
. 0z 0z ox oy ot
written as
=) I (0-«) This in turn implies that
Fo) =) -, S @
Qw) I (@-) oH. oM
X
—Y - X0 (34)
oz 0z

wherew may be complex} is a scalar, anB(w) and
Q(w) are polynomials im with complex roots; and ¢4 ¢ < 0 andz > 0. This shows that, except for a dc

;. Except for the multipliei, any rational function componentj—it(t,r,z) -0 fot<0 andz> 0. So we see
F(w) is entirely described by its zeragsand pole$;. that Ift(t,r,z) -0 fort<0andz> 0 impliesl—it(t,r,z) -0
Pole and zero positionsSince causal rational
functions are analytic in the lower half of #heplane
defined by Im@) < O, all of the poles of a causal
functionF(w) must lie in the upper half of the plane

there as well, and the transverse magnetic field starts at
the reference plane no earlier than the transverse
electric field.
A similar argument shows that the transverse
[12]. Thatis, Img;) > O for all thef; in (31) electric field starts no earlier than the transverse
If F(w) is minimum phase, then its reciprocal magnetic field. This completes the argument, showing
1/F(w) is also causal, and its zeroes must also lie in thg, 4 neitherlft(t,r,O) nol—it(t,r,O) precedes the other,

upper half of the> plane. That is, both Ifi) >0 and 514 thys that they start simultaneously.
Im(e;) > O for all of thex; and f; in (31) [13].
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APPENDIX4: ERRORBOUND FOR|Z| The sign of the real part gf, indicates the
direction of the real time-averaged power carried by the

Assume that we have determined exactly the phasgode down the guide. If the real part mffor the
of p, up to some frequenay, and that we wish to forward (decaying) mode were negative, the mode

determine Z,(w)| at frequenciess < w,. We will would no longer dissipate energy as it propagated down
develop an expression bounding the error with whichthe guide, and violate conservation of energy. So the
we calculateZ,|. phase ofy, can only vary betweenrtt2, and the error
The logarithm of Z,| is the inverse Hilbert b(w) we make in evaluating the phasepptannot be
transform of argg,): greater than #. Since the denominator (89)is odd,

R the worst case error is made whEw) = +n. So we
_ 1 A90(9) can bounch with
In|Zy(w)| = -= f ——— do. (35)

g-w
“oo 2

do = In—0
In(co)|<2<nf0 e n|oo2—oo2| - (40)
0

If b(w) is the error we make in determining the phase of
P, We calculate the characteristic impedaggefrom Straightforward manipulation givé9).

iz )] = -t [ HID RO

-0

do. (36) ACKNOWLEDGMENT

0O-w

_ - We thank Ronald C. Wittmann for his many
We will always use a condition such @) 10 o54ings of this manuscript in its early stages of

match the low frequency limits &| and "], sOwe ) onaration and suggesting the approach we present to
can write the magnitude of the characteristic impedanc?econcile temporal constraints and the power

Z," we will use in the theory as normalization.

|29 (@)]- (37)

Zy(0)
1Z/(@)] = ‘ Zz/(o)

Expandingn(w) = In[Zy’| - InfZ| using(35) and(36),
we obtain

n(w) = —oon'lm _b) do. (38)

_o(0-w)

Sinceb(w) is odd and equal to 0 fap||< w,, we can
rewrite (38) as

o

) = 20’ [ ——=—r b(o) ;@ (39)

o o(0?-
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