Using VisualDSolve to Analyze Nonlinear Differential Equations

P. Aaron Lott*
June 23, 2000

Abstract
Many nonlinear differential equations are used to model physical phenomenon, and thus there is considerable
interest in knowing how to predict the behavior of solutions to a nonlinear equation. Such an understanding is often
obtained by doing phase plane analysis. Using the computer algebra system Mathematica and an add-on package
VisualDSolve, we investigate various methods to predict the behavior of solutions to undamped autonomous and
damped autonomous nonlinear second order differential equations, through the use of contour plots, numerical
solutions, and more sophisticated graphics programs.

1 Introduction

One of the key discoveries of modern mathematics has been the usefulness of nonlinear differential equations to model
physical phenomenon. Differential equations arise in models for motion, energy flow, and many other mechanical
and natural phenomenon. In recent years, with the advent of high powered and low cost software and hardware,
such investigations into the behavior of nonlinear equations have been made more or less easy to accomplish. We
will study two classes of second order nonlinear differential equations, the non-damped autonomous homogeneous
equations of the form

&+ f(x) = 0; 1)

and the damped autonomous homogeneous equations of the form

i+ f(&,2) =0; (2)

We will discuss critical values, separatrices, animations, and other numerical and graphical ways to illustrate the
global and local behavior of solutions and of phase plane trajectories.

2 Undamped Autonomous Homogeneous Equations

Computing numerical solutions to nonlinear differential equations can be quite time consuming. So if one wants to
analyze the global behavior of the solution, we may not want to compute numerical solutions for a large number of
initial conditions. Moreover, if the equation has a damping term in it, it may be helpful to ignore the damping and
investigate the non-damped case first. We illustrate two approaches by considering a representative example.

3

. -

|8

2.1 Energy Approach
If we take the above equation, multiply through by Z and integrate, we obtain the equation

&2 oz gt
PRIy @

Treating ””2—2 as kinetic energy and —%2 % as potential energy, and by setting & = y, trajectories in the phase plane
can be thought of as contours in the energy surface.

*This research was conducted under the direction of Prof. T.H. Fay

The critical values of the system

i=5-%
turn out to be the same as the critical values for the surface E(z,y). And given initial conditions z(0) = z¢ and
y(0) = yo, the trajectory in the phase plane is the contour in the energy surface E(z,y) = E(zo,yo)-

For our example, there are three critical values (+1,0), which are centers and (0,0), which is a saddle point.
These points have the associated ”energy levels” E(+1,0) = %, and E(0,0) = 0. The contour E(z,y) = 0 yields
a trajectory passing through (0, 0) which is called the separatrix because it separates the phase plane into distinct
regions of behavior. In Figure 1 we illustrate this by plotting several contours as well as the separatrix. The global
behavior of any trajectory is now determined by where in the phase plane the initial values lie.

Figure 1: Phase portrait using energy approach.

2.2 Phase Plot Approach

Through an animation, one can view the trajectories of the system quite nicely, and gain better insight of the system
with respect to time. Using VisualDSolve’s PhasePlot command, one may plot the trajectories over a specified time
interval, thus for animations we increment our interval in a loop. PhasePlot uses Mathematica’s NDSolve to acquire a
numerical solution to the equation, it then calls the ParametricPlot command to view the phase portrait. PhasePlot
has included a few extras on top of ParametricPlot to assist in the visualization of the trajectories. In the code
below, we see the FlowParametricPlot option, this option plots small “fish” with varying length that corresponds to
the speed of the trajectory at that point. In viewing such an animation, one can see that as a trajectory nears the
saddle point (0, 0), it slows down, since velocity is approaching zero. So if the trajectory is not the separatrix, it will
eventually speed back up as time moves on, as it moves away from the saddle point.

For[i = 1, i <= 22,
PhasePlot[{x’[t] == y[t]l, y’[t] == .b*x[t] -.5*x[t]"3},
{x[t], y[t1}, {t,0,i}, {x, -1.7, 1.7},{y, - .75, .75},
InitialValues -> {{.5,.2}, {- .5, .2}, {-.5,-0.33071891388307384},
{.5,0.33071891388307384}, {- .425939794623, .53}},
ParametricPlotFunction —-> FlowParametricPlot, Rainbow -> True,
NumberFish -> 120, Segments ->5,MaxSteps -> Infinity, WorkingPrecision -> 28];
i++]

Producing vector fields is a common practice in analyzing the global behavior of the system. VisualDSolve allows
one to produce vector fields with fish, the FlowField option can be used to produce a random vector field of the
phase plane. As seen in Figure 3 the fish produce a better sense of direction than traditional vectors.

04 0 4
. . 77N T,
0.2 \ 7 0-2 /1 N /S
Y 0
'02 '02\ / \\\ /
-0.4 -0. 4 N\ S/
-0.6 -0.6
-1.5%0.500.511.5 -1.5%:0.500.511.5
0.6 0.6
0.4 0.4
0.2 0.2
0 0 (
-0.2 -0.2
-0. 4 -0.4
-0.6 -0.6

1.53:0.500.511.5 1.520.500.511.5

Figure 2: Sample phase plots shown in stages of an animation .

- N = == . o~ N\ | e s s s e e e S
o6y /on N 0.6 7 2 = v e v e e e e e N
/o~ ~= e \ L vy
0.4t/ SN L a2 A 0.4f 1 4 e v v e e e e e e N
177 o\ N Y BN \ T or e o e e e e Ty
0.2 ',l R ST SN | ozt .
’ A > » T e e e e e N
0 ye f WL v ".“”i Ot e e e W
\ ‘¢ e N . T e e A
-0.2 “\\ St N 1 T S S DU W
\\ R A \: >(// T Oy
-0.4\ AN P P -’/ .0,4"(............ .
- - - R e e e e e e e
s AN - o RN 2./ |06l N LT T, i
N\ 27 = (oY AR 6 e e e e e e e e e
15 -1 -05 0 05 1 1.5 15 -1 -05 0 05 1 15

Figure 3: Phase Portrait with fish vs. vector field.

3 Damped Autonomous

When damping occurs in the equation we can not use the ”energy approach” because we are unable to integrate the
&2 term, however, the VisualDSolve phase plot command can be used to view the phase plane just as above; this
command provides a color option and other features. To illustrate this we consider the equation.

a‘f+—:‘c—§+%=0 6)

3.1 Phase Plot Approach

The following code is used to produce phase plane trajectories.

PhasePlot[{x’[t] == y[t], y’[t] == .6xx[t] -.016*x’[t] - .5*x[t]"3},
{x[t1, y[t1}, {t, 0, -22}, {x, -1.7, 1.7}, {y, - 1, 1},
InitialValues -> {{ .5, .2}, {- .5,.2}, {- .5,-0.33071891388307384},
{.5, 0.33071891388307384}, {- .425939794623, .53}},
ParametricPlotFunction —-> FlowParametricPlot, Rainbow -> True,
NumberFish -> 120, Segments -> 5,

MaxSteps -> Infinity, WorkingPrecision -> 28]

Figure 4: Phase Portrait of eq.(6) using PhasePlot.

In Figure 4 we can now see that our periodic trajectories in Figure 2 are now spiraling into either (—1,0) or (1,0).
This change in behavior is caused by the damping in the system. Using PhasePlot, one may see which attracting
point their initial condition leads to. However if there are small perturbations in the initial conditions the orbit may
go to the opposite attracting point. In this case it would be nice to view the separatrix and form two basins of
attraction to let us know for which initial conditions we go to (—1,0) and for which initial conditions we go to (1,0).
The following code yields a phase portrait of the two basins of attraction.

PhasePlot[{x’[t] == y[t], y’[t] == .6xx[t] -.0156*x’[t] - .5*x[t]"3},
{x[t], y[t1}, {t,-.1, -100}, {x, -1.7, 1.7}, {y, - .75,.75},
InitialValues -> {{0, -1*10"-16}, {0, 1%*10°-163}}, ShowEquilibria -> True,
PlotStyle -> {{White},{Black}}, SolutionName -> "DuffingSeparatrices",
WindowShade -> GraylLevel[0.5], MaxSteps ->Infinity]

Figure 5: Combining the 2 halves to get the approximate separatrix for (6).

The previous code is based on the idea that if we take two points close to the origin and trace back the path they
took to get there we will get our approximate separatrices. For initial conditions closer to the saddle point, we will
obtain a better approximation to our separatrix.

3.2 Accuracy of the separatrices

In the previous section we obtained a phase plot of the separatrix that was an interpolating function derived by
solving the initial value problem over a negative time interval. However, if one chooses one of the points from each
of interpolating functions and then uses that point as an initial condition and then solves the equation again over a
positive time interval, the trajectories of the two points will lead to opposite basins of attraction instead of moving
towards the saddle point. This implies that our separatrix obtained from solving over negative intervals of time is
does not give us a separatrix for positive time intervals.

0.75 0.75
0.5 0.5
0.25 0.25
0 L] L] 0 L]
0.25 0.25
0.5 0.5
0.75 0.75
1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5

Figure 6: Trajectories obtained by running PhasePlot over the positive time interval (0,80).

3.3 Finding an accurate separatrix

By the geometry of the phase plane, we can see that if we pick two points p;,ps that are close to each other,
with trajectories that lead to opposite basins of attraction, then there is a point p* between them that lies on the
separatrix. One may now use the bisection method on the line segment joining (p;,p2) and search for the point p*.
The downfall to this approach is if one of the trajectories of the original points p;, or ps are very close to the actual
separatrix. In this case it would be good to view the trajectory to see how much time it spends near the saddle
point, and then take a small step away from the close point and use the bisection method on this interval. This idea
can be used in an interactive trial and error method, by plotting the two trajectories and estimating how far to shift
the starting point coordinates to obtain a better approximation. The following phase portraits were obtained by this
method. The original points p; and p; were (-.4,.63) and (-.5,.61).

Figure 7: Trajectories obtained by running PhasePlot over the positive time interval (0,80).

4 Conclusion

There is a reform under way in the teaching of elementary differential equations which down plays the solving of
specific types of equations and emphasizes qualitative aspect and nonlinear equations. Computer oriented projects
and visualization are the heart of the reform. We have been investigating how to display the nature of critical
values, trajectories, phase portraits, and other features of a nonlinear equation so that one can effortlessly analyze
the global behavior of dynamical systems. We have demonstrated how easy nonlinear equations can now be solved
numerically how phase plane analyses can be performed routinely. We have examined a contour plot approach
for undamped autonomous equations that permits phase plane investigations. We have also used VisualDSolve to
generate animations that give further insight to the dynamical behavior of solutions. We have demonstrated how
VisualDSolve’s PhasePlot routine can be used effectively to generate phase portraits for the undamped case as well
as for the more difficult damped case. Separatrices can be detected and basins of attraction can be distinguished by
color. All of this can be easily implemented in a first course in ordinary differential equations. Similar analyses can
be done with non autonomous equations.

References

[1] T.H. Fay and S.V. Jobert. Energy and contour plots for the analysis of nonlinear differential equations. Mathematics and
computer Education, 33:67-77, 1999.

[2] T.H. Fay and S.V. Jobert. Energy and the nonsymmetric nonlinear spring. International Journal of Mathematical Education
in Sciencce and Technology, 30(6):889-902, 1999.

[3] R. Knapp and S. Wagon. Orbits worth betting on. C.ODE.E, pages 8-13, Winter 1996.

[4] D. Swalbe and S. Wagon. VisualDSolve visualizing differential equations with mathematica. Springer-Verlag NewYork Inc.,
1st edition, 1997.

[6] S. Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press, NewYork, 3rd edition, 1996.

