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Chapter 1

Introduction

Consider the (possibly nonlinear) differential equation
Z(t) + Ci(t) + g(t, ) = e(t), (1.1)

where C' is a constant; ¢ is continuous, continuously differentiable with respect to
x, and is periodic of period P in the variable t; e(t) is continuous and periodic of
period P. We are interested in determining initial conditions that guarantee the
solution of this equation to also be periodic of period P. Li and Shen [7] assume
that there exist two continuous functions a(t) and b(¢) and a positive integer n so

that

dg

n? < af(t) < B

(t,z) <bt) < (n+1) (1.2)

for all values of ¢ > 0, so that n? < a(t), and b(¢) < (n + 1)? on a subset of positive
Lebesgue measure of the interval [0, P], then they show that there exist unique initial
values z(0) = o* and £(0) = S* so that the solution to this initial value problem is
periodic of period P and is unique with this property. (The continuity assumption
on a and b can be weakened to continuity almost everywhere.) Moreover, there
is a constructive proof of this result. That is, starting at any initial conditions
z(0) = a and (0) = B, we can produce a path of initial values starting at («, 5) in
the phase plane and terminating at (o, 5*), and we can produce a homotopy that
continuously deforms the starting solution to the unique periodic solution. We call
this the Theorem of Li and Shen throughout this paper. We will discuss both the

proof of this theorem and a Mathematica implementation.



Chapter 2

The Existence Proof of LLi and Shen’s Theorem

The idea of the proof is as follows. We write the solution to the initial value problem

having (z(0),2(0)) = (a, B) as z = z(¢,v) where v = (o, 8)7. Define

f() = (z(P,v), &(P,v))"

and set

F(v) =v— f(v).

Observe that the desired initial conditions for a periodic solution form a fixed point
for f and a zero point for F. The continuous dependence on initial conditions
theorem in [4] shows that the evaluation of our initial value problem is a continuous
function of the initial conditions. Thus, both f and F are C! differentiable functions
with respect to v. We want to show that F' is a homeomorphism from IR? to IR?.
This will guarantee that F' has a unique zero point and thus the theorem follows.
Linearizing equation (1.1), we compute its fundamental solution matrix Y (¢) and

show that

dF
—(Ww)=1-Y(P
=0 (P),
where I is the 2 x 2 identity matrix. The bounds given in (1.2) yield a bound on
d dF
the eigenvalues of the matrix d—(v) This shows that d—(v) is invertible and hence
v v

dF
||d—(v)*1|| exists and is uniformly bounded. By Hadamard’s Theorem [11], this is
v

sufficient to imply that F' is a homeomorphism.



F
2.1 Bounding ||Cfi—(v)_1||
v

Assume we have a solution z to equation (1.1), and a nearby solution z*. We let
€ = z(t) — 2*(t) and & = #(t) — #*(t). We re-write £ as a system and consider its

fundamental solution matrix Y'(¢). To obtain this system we have the following

£ = i(t)— (1)

e
|
any
|
|
8)
~

Turning this into a system by setting y = €. We have the first variational system

( .5 ) - ( —g—zo(t,x) —lc ) ( § ) (2.1)

We use the bounds on g_g from the hypothesis of Li and Shen’s Theorem to bound
x

the eigenvalues of the fundamental solution matrix of equation (2.1) away from zero.
) ) dF )
Then we form a second fundamental solution matrix that corresponds to - Using
v

the bounds on the eigenvalues of the first fundamental solution matrix, we bound
—1

dF dF
the eigenvalues of —y away from zero. We conclude by showing || || exists and
v
is bounded by some constant M.

Computing the fundamental solution matrix of equation (2.1) we have

t 0 1
Y() = Ea:p[/o (—@(s,x) _C)ds]

Oz
0 t
— ¢
= Eapl| _ i g—i(s,x)ds —Ct k
We are interested in Y (P). Computing
0 P
Y(P)=E r :
(P) | @(s,x)ds -CP ]
0 8.’1)

3



The eigenvalues of Y (P) are of the form e* where ) is an eigenvalue of

0 P
( —/ %(s,x)ds -CP ) . (22)

The eigenvalues of this matrix are

P 89
0

We now rewrite (1.1) as a system, and compute the partial derivatives with respect to
the initial condition v. This gives us a system whose fundamental solution matrix

corresponds to o and also satisfies equation (2.1). By obtaining a bound on
v
dF~!
(2.3), we will have obtained a bound on ”d— ||. We begin this process by letting
v

u = (x,y)T and observing that

2 (20) _ 2

0
0
= %(R(t: u(ta U))),
where
_ Yy
and
20 = oy )
It follows that
0 OR Ou
OR, ORy 0z(t,v) 0z(t,v)
or Oy O op
| R, R di(t,v) Dilt,v)
or Oy oo op
0 1 oz(t,v) 0x(t,v)
. _ oa op
B dg 0%(t,v) 0x(t,v)
_a_x(t’ z) —C Do op



This shows that du/0v formally satisfies the differential equation (2.1), and conse-

quently
oz(t,v) 0z(t,v)
ou _ Ao aB
ov | 0x(t,v) 0x(t,v)
o op
is also a fundamental matrix for equation (2.1). Furthermore, when we compute
dF
%(v) we have
E(U) _ 7 9
dv N ov

(%
N Ooa 0f

0x(P,v) 0x(P,v)

_ 7_ ox 0B
= I=1 9:(Pv) 0i(P,v)
Ox op
ou
= I—%. (2.4)

Lemma 2.1.1. Let A be an n xn matriz. Then X\ is an eigenvalue of A if and only

if 1 — X is an eigenvalue of I — A.

ai; Q2 ... Qip
o1 Q92 ... Q2
Proof. Let A=
Ap1 Qp2 ... QOpp
ai; — 1 12 c. Q1p

91 Q99 — 1 ... (459}
and note that A — I,«,= . "

Qp1 Ap2 e Qpp — 1
Thus A is an eigenvalue of A if and only if A = 1+ x4 where p is an eigenvalue of

A—1I,,,. Hence, u = A — 1, or equivalent 1 — A is an eigenvalue for I,,,, — A

O

Li and Shen [7] obtain a lower bound for all the eigenvalues of Y (P) by using the

0
bounds on a—g in the original hypothesis. Then, using Lemma 2.1.1, they find a
x



bound on |1 — \|?, where ) is an eigenvalue of Y (P), by taking the minimum of the

four positive values
{4sin®>(VPA/2),4sin*(vV2PB/2), (1 — e F¢)?%, (1 — e=4/€)?}.
The constants A and B are defined as
P P
n2Pp </ a(t)dt= A< B :/ b(t) dt < (n+ 1)2P.
0 0

Since the determinant of a matrix is the product of its eigenvalues, which in our

case are always bounded away from zero, and since a 2 x 2 matrix is invertible if

and only if its determinant is non-zero, we have shown that d—(v) is invertible and
v

dF
therefore ||d—(v)’1|| is bounded by some constant M.
v
2.2 Hadamard’s Theorem

We are now able to apply Hadamard’s Theorem to F'(v).

Theorem 2.2.1 (Hadamard’s Theorem [11]). Assume that F : R" — R" is
continuously differentiable on R™ and that |[F'(z) || < M < +oo for all z € R".

Then F is a homeomorphism of IR™ onto IR™.

This shows that F'(v) has a unique zero point, v* € IR%. Consequently, we have

shown there exists a unique periodic solution of period P to equation (1.1).



Chapter 3

The Constructive Proof of Li and Shen’s Theorem

3.1 Existence of v(d)

Now that we know there is a unique point v* € IR?, that satisfies F'(v) = 0, we would
like to find it numerically. To do this we form a path taking us from an initial point

vy € IR? to the point v*. This is done by forming the function
['(v,0) = F(v) — (1 = 6)F(v), (3.1)
and solving the equation
T'(v,6)=0 (3.2)

for all 0 between 0 and 1. When 6 = 0, v = vy, and of course I'(v,0) = 0, and when
§ =1, (v,1) = F(v) = 0. Thus, by starting at some point vy € IR?, and § = 0, we
construct a path of v,’s that satisfy I'(v,,d,) = 0, and we reach our desired point v*
when ¢,, = 1. Before following this path, we show that the solution to equation 3.2
exists for all § between 0 and 1. To accomplish this, we turn equation (3.2) into the
solution of an initial value problem by differentiating with respect to 6. We consider
v as a function of 6 and have

0 = dI'(v,9)

dF  _dv
= %(U)% + F(vo)

and since at 6 = 0, v = vy we have

dv dF(v)\ "
% - ( dU ) F(UO)’ (33)
v(0) = vy.



The standard existence and uniqueness theorems imply there exists a solution for all
d € [0,¢]. The difficulty lies in the possibility that € may be less than 1. However,
Li and Shen [7] argue that by analytic continuation, the solution domain can be
extended to include € = 1.

If we define, for each §, v(6) = v(d), where v(d) is the corresponding value of
the solution to (3.3), and thus satisfies equation (3.2), then - defines a path with
¥(0) = vo and ¥(1) = v* = (a*, 8*)". This provides a continuous deformation of

x(t,v) to z(t,v*) by considering z(t, 7(5)) as 0 ranges from 0 to 1. See Figure 3.1.

W 05 1 L 2 T {05 O — 3

Figure 3.1: Continuous Deformation of z(¢,v;) in the Phase Plane

3.2 Following 7(9)

Now that we know the path 7(J) exists, we recast (3.3) into a form that we can solve
numerically. Instead of differentiating I'(v, J) with respect to J, we re-parameterize

I'(v,§) with respect to arc length. This turns the initial value problem (3.3) into

dl'(a(s), B(s),8(s))/ds = 0,
{ a(0) = ag, B(0)=po, 4(0) =0. (3.4)

where we have the additional arc length constraint
[ (c/(s), B'(s),6"(s)) [ = 1. (3.5)
We re-write equation (3.4) in matrix form (3.6), and implement a two step solution

process.



( oz oz a'(s)

1— £(P) —%(P) ag — z(P, vp) 0
9 di e = 0) (36
4 z z
) -5 ) s )| g
. O[(O) = O, ﬁ(O) = ﬂo, 5(0) = 0.

The first step of the solution process is to estimate the slope of the tangent line
to the curve I'(v,d) = 0 at a point v(J) which is represented by (a(s), B(s),d(s)).
When s = 0, we begin at vy = 7(0), which is the initial condition in (3.6). We solve
equations (3.6) and (3.5) simultaneously for o/(0), 5'(0), and §'(0), and increment
s by setting s = h. Then we find a point on the tangent line to I'(v,d) at vy using

Euler’s method with step size h. This new point, 9, is
(2(0) + ha!(0), 5(0) + AB'(0))
and we increment ¢ by setting
d(h) = 6(0) + hd'(0).

It is unlikely this new point ¢ lies on the curve I'(v,d) = 0, so the second part
of our solution process is to use Newton’s method starting at v to find a new v(s)
that satisfies (3.2). We iterate this process until §(s) = 1, at which point we have
reached the end of the path (), and v(s) will be the unique point v* € R? that
satisfies F'(v*) = 0. In Figure 3.2, we give a graphical interpretation of the iterative
solution technique in the phase plane.

When following the path 7(J), Newton’s method may fail to converge due to
a large Euler’s step size. We insure convergence by testing the rate of conver-
gence of Newton’s method. If this convergence appears to fail, or is slow, namely
if ||T'(vpy,y,0)|| > 10| (vn,,0)||, then we reset our Euler’s step at half the step

size and re-calculate the sequence of points using Newton’s method to find v,;.

9



On the other hand, when Newton’s method does converge to a point on the path

v(9), we double the current step size used in Euler’s method to increase its rate of

convergence, especially when the curvature of y(d) is small.

(0, Bo)

(o, Br)

Tangent line at (ag, B)
(&ka Bk‘)

(ag+1, Br+1)\  Correction Steps

(a",87)

z(t)

Figure 3.2: Path of Initial Positions in the Phase Plane
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Chapter 4

Conclusions

In previous chapters we discussed how to form the “homotopy path” (d). Here we
give some numerical output of this algorithm using the two examples in [7] as well
as an example that does not satisfy the hypothesis of Li and Shen’s Theorem to
show this algorithm will find a periodic solution when more than one such solution
exists. In each case, we set the accepted tolerance for the convergence of Newton’s
method to be 1 x 107'2; to obtain a higher precision solution, one only needs to
change the homepsilon constant in the program to the desired accuracy. The code

used for these calculations is given in the Appendix.

4.1 Linear Equations

We implemented this method to find the periodic solution of period 27 to the fol-

lowing equation with corresponding starting initial values

{ i+ @ 4 2z = 2sin®(t) 4 3sin(2t), (4.1)

2(0) =1,  #(0)=0.

It is easy to verify that equation (4.1) satisfies the original hypothesis by observing
0
that 2sin?(t) + 3sin(2t) is of period 27 and noting 8_9 =2 with 12 < 2 < 22, We
b
then run our program and after 47 iterations we obtain the point

o 1.369 x 10~

B —2.000

Since (4.1) is a linear equation, we can solve for the closed form solution of this

system and verify that v* yields the unique periodic solution of period 27. Using

11



the method of undetermined coefficients, we find the general solution to the second

order differential equation to be

1 1
(t) = cleétsin(gt) + Cze_étcos(gt) tg- 5005(215) — sin(2t).

Note that z(0) = ¢ and £(0) = ?cl + 3¢ — 2, s0 if z(0) = 0, then ¢, = 0, and if

#(0) = —2, then ¢; = 0. Under these initial conditions the solution becomes
1 1 .
z(t) = 5 5005(215) — sin(2t),

which has fundamental period of = and thus is of period 2.
We tested the accuracy of our numerical solution by substituting o*, 5* into our
initial value problem and evaluating x and z at zero and the period as well as 5

times the period. Finding the differences we obtained

z(0) —z(27) =1.393 x 107 2(0) — z(107) = 1.363 x 10~
#(0) — #(21) = =5.620 x 1012 #(0) — &(107) = —6.174 x 104,

Figure 3.1 shows a few iterations of the continuous deformation from xz(t,vg) to
x(t,v*). Figure 4.1 shows the trajectories of the beginning solution and the periodic

solution.

Figure 4.1: z(t,v9) and z(¢,v*) in the Phase Plane ¢t = [0, 27]

4.2 Non-Linear Equations

4.2.1 Li and Shen equation

Next we consider a non-linear equation from [7] satisfying the original hypothesis

{ i — 2+ 21 + sin(z/V2) = V21 + 2sin(t) + cos(cos(w/4 — 1)),

z(0)=1,  %(0)=0. (4.2)

12



The hypothesis of Li and Shen’s theorem is verified by noting /27 + 2sin(t) +

0 2
cos(cos(m/4—t)) has period 27 and 8_g =2+ %COS(.T/\/i) which, as in the previous
x
example is bounded by 1% and 2%, After running our program for 47 iterations we

obtained the point
a* 3.221

B* 1.000

Which yields the following numerical results

z(0) — z(27) = —3.136 x 1072 z(0) — 2(107) = —6.116 x 107
#(0) — @(2m) = —3.956 x 1072 &(0) — @(107) = 5.237 x 1077,

Figure 4.2 shows a plot of the trajectory of the beginning solution for v = (1,0)”

along with the trajectory for the periodic solution, for v = 3.221,1.00)".
/ 1
40 Of
20

T 0
-20 -10 /w 20 i

Figure 4.2: z(t,v) and z(¢,v*) in the Phase Plane ¢t = [0, 27]

4.2.2 A more general equation

Now that we have shown our code works for examples that satisfy the original
hypothesis, we show that this method will find initial conditions that yield periodic

solutions to a more general class of Duffing’s equation. For this we start with

3
1
T+x— % = 5005(3/5t),

2(0)=1,  #(0)=0.

as our initial value problem. We run our program, and after 50 iterations we obtain

(4.3)

the point
o 0.55079

B 2.51454 x 1012

13



Once we test the accuracy and obtain

10 50
2(0) — x(%) = 811018 x 10712 (0) — m(%) — 3.9968 x 10717

10 50
#(0) — a';(%r) = 7.40786 x 10712 (0) — i(%) = 11726 x 1075,

Figure 4.3 shows the trajectories of the beginning solution and the periodic solution.

v.25 0.5 0.75

Figure 4.3: z(t,v9) and z(¢,v*) in the Phase Plane ¢t = [0, 27]

4.3 Summary

We found the homotopy method to be a quick and accurate way to find periodic

solutions to nonlinear differential equations. The method requires only that the

matrix
0z 0z
- 5e(P) —52(P)
(4.4)
0% 0%
—a(P) 1- %(P)

be non-singular in order for F'(v) to be a local homeomorphism, and hence for a
homotopic path to exist from a given initial condition to the initial condition that

yields a periodic solution.

14
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Appendix A

Nonlinear Homotopy Code

A.1 A General Case

(*Initializationx*)
Clear[A, alpha, beta, gamma, alphadot, betadot, gammadot, n]
epsilon = 1/1076;
homepsilon = 1/10712;
h = 1/10;
step = 1/10;
maxsteps = 500;
alphaO = 1;
beta0 = 0
gamma0 =
n = 0;
P = 10%Pi/3;
solution0 =
NDSolve[{x’[t] == y[t],
y’ [t] == -x[t] +x[t]1~3/6 +1/3*Cos[3/5%t],
x[0] == alphaO, y[0] == beta0}, {x, y}, {t,0, P},
WorkingPrecision -> 26, MaxSteps -> Infinityl];
faz = alpha0 - Evaluate[x[P]/. solutionO];
fbz = beta0 - Evaluate[y[P]/. solutionO];
alpha = alphaO;
beta = betal;
gamma = gammaO;
u = {alpha, beta, gamma};
Hpu = Hprime[u];
alphadot = Hpu[[2]];
betadot = Hpul[31];
gammadot = Hpul[[41];
If [gammadot < O, {alphadot = -alphadot, betadot = -betadot, gammadot = -gammadot}];

(*End Initialization*)
(¥Predictor Corrector Method*)

alphaold = alpha;

betaold = beta;

gammaold = gamma;

alpha = alphaold + step*alphadot;
beta = betaold + step*betadot;
gamma = gammaold + step*gammadot;

Print["Euler’s Prediction : ", alpha, " ", beta, " ", gamma];
Clear[q];

q = Correct[alpha, beta, gammal];

w = ql[2]];

17



alpha = w[[11];

beta = w[[2]];

gamma = w[[3]];

If[q[[1]] == True,
{ step = 2*step, Print["New Point Found:
1},
{ step = step/2, alpha = alphaold, beta = betaold, gamma = gammaold,

Print["Step size reduced to ", stepl

}

", alpha, " ", beta, " ", gamma]

1;

For[n = 1, n < maxsteps && gamma < 1, n++,
{u = {alpha, beta, gamma},
Hpu = Hprime[u],
alphadottest = Hpu[[2]],
betadottest = Hpu[[3]],
gammadottest = Hpul[[4]],

alphaold = alpha,

betaold = beta,

gammaold = gamma,

alpha = alphaold + step*alphadot,

beta = betaold + step*betadot,

gamma = gammaold + step*gammadot,

Print["Euler’s Prediction : ", alpha, " ", beta, " ", gamma],

If[gamma < 1, {
q = Correct[alpha, beta, gammal,
w = q[[2]],
alpha = w[[1]1],
beta = w[[2]],
gamma = w[[3]],

If[q[[1]] == True,
{step = 2*step,
Print["New Point Found: ", alpha, " ", beta, " ", gammal}, {step =

step/2, alpha = alphaold, beta = betaold, gamma = gammaold,
Print["Step size reduced to ", stepl}
]
1,
{step = step/2, alpha = alphaold, beta = betaold, gamma = gammaold}
]

1

(*End Predictor Corrector Method*)

(*Newton’s Correction Method*)
(¥ In this method, we recieve an Euler approximation (alpha, beta, gamma),
and try to correct it with a sequence of Newton’s steps towards the homotopic path

*)
Correct[alpha_, beta_, gamma_] := Module[{Hpu, v, Hpv, Hom, test},

v = {alpha, beta};
Hpv = Hprime[v][[11];

18



Hom = Homotopyl[v, gamma];

Homv = {Hom[[11]1[[111[[111, Hom[[21T[[111[[111};

(*Newton’s Step*)
w = v — Inner[Times, Inverse[Hpv], Homv];
Hom = Homotopy[w, gamma];

Homw = {Hom[[111[[111[[111, Hom[[21T[[111[[111};

Print["H(v)", Homv];
Print["H(w)", Homw];
diff = Sqrt[(Homw[[111°2 + Homw[[2]11°2)1;
Print["diff ", diff];

(* If Newtons step is correcting our approximation i.e. making the homotopy evaluate closer
to zero, then we continue to make Newton’s steps. If, however, Newton’s method is not
returning better approximations i.e. not converging to the homotopic path, we reduce
our step size and make a new Euler’s prediction step

*)

test = 0;

While[ diff > homepsilon,

test = 1;
Print["Newtons step: ", w[[1]]l, " ", w[[2]], " ", gamma];
v =W,

Homv = Homw;
Hpv = Hprime[v] [[1]];
w = v - Inner[Times, Inverse[Hpv], Homv];
Hom = Homotopy[w, gamma];
Homw = {Hom[[1]]1[[11]1[[1]], Hom[[2]]1[[11]1C[1]11};
(¥Here we can see how fast Newton’s method is converging*)
Print["H(v)", Homv];
Print["H(w)", Homw];
diff = Sqrt[(Homw[[1]]"2 + Homw[[2]]1"2)];
Print["diff ", diff];
1;

If[test == 0, u = {False, {alpha, beta, gammal}},
u = {True, {v[[1]1], v[[2]], gamma}}]; ul

(*End of Newtons Correction Method*)

(*Homotopy Evaluation Method*)
(* Evaluates the value of the F(v)-(l-gamma)F(v0) at a given
values of v and gamma
*)
Homotopy[v_, gam_] := Module[{alpha, beta, gamma, solution, H1, H2},
alpha = v[[11];
beta = v[[2]];

gamma = gam;

solution =

19



NDSolve[{x’[t] == y[t],

y’ [t] == -x[t] +x[t]1"3/6 +1/3*Cos[3/5%t],

x[0] == alpha, y[0] == beta}, {x, y}, {t, 0, P},
WorkingPrecision -> 26, MaxSteps -> Infinity];

H1 = alpha - Evaluate[x[P] /. solution] - (1 - gamma)*(alpha0 - Evaluate[X[0, P] /. solution0]);
H2 = beta - Evaluate[y[P] /. solution] - (1 - gamma)*(betaO - Evaluate[Y[0, P] /. solutionO]);
{H1, H2}

]

(*End of Homotopy Evaluation Method*)

(* Runga Kutta Method *)
(* Runga Kutta 4 ODE system solver
Passed:
f is the rhs of the first system
g is the rhs of the second system
a is the time where we begin
b is the time where we end
xa is the initial displacement
ya is the initial velocity
h is the uniform step size to be used

Returned

T is the time matrix which is partitioned in steps of h between a and b
X is the matrix of x(t) for each time in t

Y is the matirx y(t) for each time in t

*)

Rk4sys[f_, g_, a_, b_, xa_, ya_, h_] :=
Module[{T, X, Y, M, f1, g1, f2, g2, £3, g3, f4, g4, i, j},
M = Ceiling[(b - a)/h];
ClearAll[T, X, YI;
Array[T, M + 1];
Array[X, M + 1];
Array[Y, M + 1];

For[i =1, i <= M, i++,
{T[i + 1] = ixh;

X[i + 1] = 0;
Y[i + 1] = 0;
};

T[1] = 0;

X[1] = xa;

Y[1] = ya;

For[j = 1, j <= M, j++,
{
f1 = N[£[T[j], X[31, Y[311];
gl = N[glT[3j1, X[j1, Y[311]1;

£2 = N[£[T[j]
g2 = N[glT[j]

+

h/2, X[j1 + £1*h/2, Y[j1 + £1*h/21]1;
h/2, X[j1 + gi*h/2, Y[j] gl*h/21];

+
+

+

£3 = N[£[T[j]
g3 = N[g[T[j]

h/2, X[j1 + f2%h/2, Y[j] + £2%h/2]];
h/2, X[j] + g2%h/2, Y[j] + g2%h/211;

+
+

20



f4
g4

X[ + 1]
Y[ + 1]
};

{T, X, Y}

1

(* End Runga Kutta

(* Hprime method *)

(* Computes H’
gammadot at

*)

Hprime[v_] :=

NLf[T[j] + h, X[j] + £3*h, Y[j] + £3*h1];
N[g[T[j] + h, X[j] + g3*h, Y[j] + g3*hll;

X[j1 + (£1 + 2%f2 + 2+£3 + £4)*h/6;
Y[j] + (g1 + 2%g2 + 2xg3 + g4)*h/6;

Method *)

in terms of the Matrix A and alphadot, betadot and
a given initial condition vector v

Module[{alpha, beta, gamma, solutionaph, solutionap2h, solutionamh,
solutionam2h, solutionbph, solutionbp2h, solutionbmh, solutionbm2h,
pxal, pyal, pxbt, pybt, fa, fb, ans, alphadottest, betadottest,
gammadottest},

alpha = v[[11];

beta = v[[2]];

fle_, x_, y_1

glt_, x_, y_]
a=0;

b = P;

xa = alpha;
ya = beta;

h = .01;

M = Ceiling[(b

= y;
:=—x+x"3/6+1/3*Cos [3/5*t] ;

- a)/hl;

soln = Rk4sys[f, g, a, b, xa, ya, hl;
solnaph = Rk4sys[f, g, a, b, xa + h, ya, hl;
solnap2h = Rk4sys[f, g, a, b, xa + 2*h, ya, h];

solnbph = Rk4sys[f, g, a, b, xa, ya + h, hl;
solnbp2h = Rk4sys[f, g, a, b, xa, ya + 2h, h];

(* Here we use second order forward differencing to compute our partial derivatives

pxal

Table[{soln[[1]][i],

( -3*soln[[2]]1[i] + 4*solnaph[[2]][i] - solnap2h[[2]1][i])/(2*nW)}, {i,

pyal

Table[{soln[[1]] [i],

( -3*soln[[3]]1[i] + 4*solnaph[[3]]1[i] - solnap2h[[3]1]1[il)/(2*n)}, {i,

pxbt

Table[{soln[[1]1] [i],

( -3*soln[[2]1[i] + 4*solnbph[[2]]1[i] - solnbp2h[[2]1[il)/(2*h)}, {i,

pybt

Table[{soln[[1]] [i],

( -3*soln[[3]]1[i] + 4*solnbph[[3]1]1[i] - solnbp2h[[3]1]1[il)/(2*n)}, {i,

*)

M}1;
M}1;
M};

M}1;

(* We re-write these because mathematica’s subscript syntax is difficult to follow *)

pxa
pxb

pxal[[MI1[[2]];
pxbt [MIT[[2]];
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pyallMI1[[2]];
pybt [M11[[2]];
faz[[1]];
fbz[[1]1];

pya

pyb
fa

fb

x1 = 1 - pxa;

X2 = -pya;
y1l = -pxb;
y2 = 1 - pyb;

A={{x1,y1},{x2,y2}};
(¥ Here we solve for alphadot, betadot, and gammadot using Cramer’s rulex)
z1l = fa;

z2 fb;
d = x1xy2 - x2%yl;

gammadot 1/Sqrt[(z2*yl - zl*yl )~2/d"2 + (z1*x2 - z2%x1)°2/d4"2 + 1];
alphadot = gammadot*(z2*yl - zlxy2)/d;
betadot = gammadot#*(z1*x2 - z2*x1)/d;

{A, alphadot, betadot, gammadot}
]

(*End of Hprime Method*)
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