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Chapter 1

Introduction

Advancements in numerical simulation have led to large-scale fluid simulations that

assist in characterizing flow behavior and understanding the effect of changes in physical

parameters on such behavior. With improved mathematical modeling and computational

methods, we are now able to attack more challenging fluid problems such as those in-

volving strong convection in geometrically complex domains. In such flows, inertial

and viscous forces occur on disparate scales causing sharp flow features. These sharp

features require fine numerical grid resolution and cause the governing systems to be-

come poorly conditioned. The coefficient matrix that arises from discretization of the

convection-diffusion system is the sum of a symmetric matrix that accounts for diffusion

and a non-symmetric matrix that accounts for convection, and the combined convection-

diffusion system is non-symmetric. As convection dominates the flow, the large discrete

non-symmetric ill-conditioned system becomes challenging to solve.

Conventional solution algorithms based on semi-implicit time stepping ([10], [42],

[13], [28], [34], [43]) avoid the challenges of solving the non-symmetric convection-

diffusion systems by applying intricate splitting schemes that separate the governing sys-

tem into convective (inertial) and diffusive (viscous) components [34]. Convection is

often handled through explicit time integration, while diffusion is treated implicitly, re-

quiring a Poisson solve. One of the central benefits of using such methods is that they
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take advantage of the vast research for solving symmetric systems on large computers.

As Deville et al. explain in [12], over the past 60 years, algorithms for obtaining

a three-dimensional solution to Poisson equation on a mesh with (N + 1)3 grid points

have improved remarkably. At the time of the first digital computer in 1947, Gaussian

Elimination using banded LU with an operation count O(N7) was state-of-the-art [24].

Over the next several years computational scientists took advantage of the structure of

the discrete symmetric system to construct more efficient algorithms such as Successive

Over-relaxation (SOR) O(N5) [60] and Modified SOR O(N4log(N)) [61], Fast Diagonal-

ization O(N4) [32], Cyclic Reduction [7] O(N3log(N)), Multigrid O(N3) [5] and Parallel

Multigrid O(N3log(N)/P) using P processors [37].

Deville et al. also point out that these algorithmic improvements have been accom-

panied by (indeed, exceeded by) gains in processing speed. We refer to Figure 1.1 to

illustrate gains in both algorithmic efficiencies and computer processing speed for per-

forming a three-dimensional Poisson simulation on a 643 grid. The dark blue curve in-

dicates that algorithms have contributed to nearly 6 orders of magnitude improvement,

whereas the green curve shows that vector machines have produced nearly 8 orders of

magnitude improvement. Gains from conventional vector hardware are not likely to con-

tinue to improve at such rates due to cost, memory and communication latency, as well as

load distribution on massively parallel machines. The current and projected trend in high

performance computing is in developing massively parallel architectures. The red curve

shows the combined speedup of algorithms and machines on the best vector computer,

and the light blue curve represents the speedup on the best parallel machine using 32 pro-

cessors. Finally, the black curve depicts the speedup of the best algorithm and machine
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using all machine processors. This combined curve shows nearly 18 orders of magnitude

in improvement from the most advanced simulation techniques available since the begin-

ning of digital computing in 1947. That is, a simulation that would have taken centuries

on the 1947 Mark I computer using Gaussian Elimination now takes only a few seconds

perform using Parallel Multigrid on the IBM Blue Gene/P supercomputer constructed in

2007.

Figure 1.1: Evolution of machines, algorithms and their combination over the past 60
years shown through the speedup of solving a 3D Poisson equation. Adapted from [12]
page 27.

This immense improvement in simulation speed through algorithms and hardware

might give the impression that conventional solution algorithms based on solving Poisson

equation are sufficient, and that there is little room to improve computational methods

for simulating fluids. However, the above analysis is for a fixed problem size with a

relatively small number of degrees of freedom compared to what is needed for modern
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science and engineering simulations. Figure 1.2 shows that there has been over 7 orders of

magnitude increase in problem size in the past 30 years. Despite the exponential increase

in simulation efficiency and size, relatively small gains have been made in our ability to

resolve the transfer of energy in fast moving flows.

The right pane in Figure 1.2 illustrates this by comparing the size of the largest

model of Taylor Microscale Reynolds number flow simulated during the past 30 years.

This figure shows that three-dimensional time-dependent direct numerical simulations

(DNS) that accurately resolve the length scale where viscous dissipation begins to affect

flow eddies (Taylor Microscale) have succeeded in resolving flows with speeds higher

only by two orders of magnitude. Even more troubling is that these state-of-the-art sim-

ulations are almost all performed in idealistic settings involving simple geometries and

periodic boundary conditions [40]. In particular, the techniques used in these high-end

simulations have limited applicability in engineering and scientific problems involving

complicated domains with mixed boundary conditions. Thus, the ability to solve the Pois-

son equation efficiently using conventional methods certainly does not translate directly

to a capability to study a wide range of realistic flow problems.

Moreover, direct numerical simulation of flows is not the only computational tool

available for exploring the physical properties of turbulence and determining critical flow

parameters that govern the behavior of fluids [8]. The study of small-amplitude pertur-

bations to base states of a flow can be used to categorize flow behavior near steady or

time-periodic flow states. This information helps quantify critical parameters that affect

flow instabilities in the transition to turbulence [48], [49], [56].

To perform such analysis, numerical simulations track steady solutions in parame-
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Figure 1.2: Number of degrees of freedom for a single flow field in modern turbulence
simulations needed to fully resolve a flow at increasing Reynolds number (left). Largest
Taylor Microscale Reynolds number flow computed via DNS versus year. Data from [40]
(1972), [51] (1981), [58] (1991), [29] (1993), [25] (2001), [59] (2002).

ter space. These simulations obtain steady states by either computing them directly via

nonlinear iteration or by integrating time dependent systems over long time periods un-

til unsteady phenomena settle. Nonlinear solvers have a computational advantage over

time-stepping techniques when quickly converging nonlinear iteration schemes can be

applied. Moreover, in cases where time-stepping is used, fully-implicit methods are pre-

ferred over semi-implicit schemes since large time steps can be taken. Both nonlinear

iteration and fully-implicit methods require solving non-symmetric convection-diffusion

problems, where many techniques used by conventional solvers do not apply. Addi-

tionally, high-order numerical discretization methods have been shown to have advan-

tages over low-order methods to accurately capture physical instabilities since low-order

schemes are inherently dissipative in space and dispersive over time [22],[30],[53]. The

challenge in applying these simulation techniques reduces to finding effective solvers for

poorly conditioned non-symmetric linear systems that arise from high-order discretization

of models of steady flows.
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The structure of the discrete algebraic systems arising in such fluid models is de-

termined by the choice of numerical discretization. This thesis will explore solution al-

gorithms for spectral element discretizations [44]. Element-based discretizations divide

the computational domain into non-overlapping sub-domains (elements), and represent

the variables on each element via a polynomial basis. The accuracy of solutions can

be improved by reducing element sizes (h-refinement) and also by increasing the order

of the polynomial basis (p-refinement). To improve the accuracy of element-based dis-

cretizations, the spectral element method was developed by Patera [44] in 1984. This

method uses a high-order Legendre polynomial basis on each element to achieve spectral

accuracy while maintaining the geometric flexibility of the finite element method. These

properties cause spectral element methods to be particularly well suited for modifying

the discretization locally without global refinement [36]. High-order element-based dis-

cretizations, such as the spectral element method, produce large matrices having sparse

block structure with dense sub-blocks. Each dense block corresponds to a single ele-

ment in the discretization and can be represented using tensor products of associated one-

dimensional phenomena. This element-based tensor product formulation can be coupled

with gather-scatter operations to incorporate elemental interfaces. This format admits

computationally efficient matrix-free solvers and preconditioners that can take advantage

of the tensor product structure within elements [12].

The development of iterative solvers for non-symmetric systems that allow for pre-

conditioners that vary at each step such as Flexible GMRES [47] and GMRESR [11] have

made Krylov-Schwarz and Krylov-Schur methods the contemporary approach [26] for

solving discrete steady flow systems. The number of iterations required for such methods
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to converge depends on various properties of the linear systems, such as the distribution

of eigenvalues of the coefficient matrix or the number of sets of clustered eigenvalues.

These properties can often be improved using preconditioning methods [19], [17], [14]

which is the focus of this study.

In recent years, preconditioners for fluid systems have been based on Block-Jacobi

and Additive-Schwarz methods [3], [20], [9]. These preconditioners have been shown

to provide improved convergence for symmetric systems, but they have not been demon-

strated to be effective when applied to non-symmetric systems. To incorporate the non-

symmetric components, we propose a Domain Decomposition preconditioner that uses

average velocity contributions on each sub-domain. We apply appropriate inter-element

boundary conditions to allow information to pass between elements based on the direction

of the fluid flow. We demonstrate that this class of preconditioner can be used to improve

convergence of the non-symmetric systems that arise from the steady convection-diffusion

equation. We also incorporate this technique into the “Least Squares Commutator” block

preconditioning framework of Elman et al. [17] to solve linearized Navier-Stokes equa-

tions efficiently. The efficiency of our solution method is centered on two advancements:

the use of an accurate high order matrix-free discretization to construct accurate discrete

solutions while minimizing memory requirements, and the use of fast iterative solvers

accelerated by domain decomposition based preconditioners to take advantage of local

tensor product structures by exploiting Fast Diagonalization. These features allow the

solution method to take into account memory hierarchies and efficient cache use in order

to improve processor performance.

The thesis is organized as follows. In Chapter 2 we outline fundamental proper-

7



ties of the spectral element method that are used in the discretization of the convection-

diffusion and Navier-Stokes equations. We discuss features of the discretization that are

important when developing solution methods. In Chapter 3 we construct a domain de-

composition solver for constant coefficient problems and then explain how this solver can

be used as a preconditioner for general convection-diffusion systems. We illustrate prop-

erties of the solver and preconditioner through a number of test cases. In Chapter 4 we

introduce a solution technique for solving the steady Navier-Stokes equations and then

construct a block preconditioner for the linearized Navier-Stokes equations based on our

convection-diffusion preconditioner and an approximation to the “Least Squares Com-

mutator” developed by Elman et al. [19]. We discuss results of this approach via several

case studies. In chapter 5 we summarize our results, draw conclusions about the method’s

effectiveness, and discuss some potential directions for future study and application.
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Chapter 2

Spectral Element Discretization

The spectral element method is a numerical method for solving differential equa-

tions using a finite representation of the solution. The method is based on the method of

weighted residuals which we describe by considering a linear differential equation on a

domain Ω, namely,

D(u) = 0, (2.1)

with appropriate boundary conditions. The solution to this equation, u(x), can be approx-

imated by

ũ(x) = uD(x)+
N

∑
i=1

ûiπi(x) (2.2)

where uD(x) satisfies Dirichlet boundary conditions, and πi(x) are known functions, re-

ferred to as trial functions and ûi are unknown weights. To determine these weights,

the approximate solution is substituted into the differential equation, which produces a

system

D(ũ) = R(ũ). (2.3)

Restrictions are then placed on the residual R(ũ) in order to minimize it over Ω. This is

done by setting the inner product of R and some set of test function {v j} equal to zero

over Ω, i.e. Z
Ω

v j(x)R(ũ) = 0, j = 1, ...,N. (2.4)
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The spectral element method is based on Galerkin method, in which the trial functions πi

and the test functions v j are taken from the same set of functions. The set of N equations

determined by (2.4) is solved for the weighting coefficients û. When multiple elements are

used, integrals of equation (2.4) are broken up into a sum of the integrals on each element.

In particular, the test and trial functions consist of high order Legendre polynomials at

Gauss-Legendre-Lobatto (GLL) or Gauss-Legendre (GL) nodes.

The resulting system of linear matrix equations consist of dense blocks that rep-

resent the coupling within local elements together with interface coupling. The use of

rectangular elements allow each elemental system to be represented via tensor products

of one-dimensional operators. This can be extended to higher dimensions, and gen-

eral quadrilaterals as well as certain deformed domains via invertible mappings to the

d-dimensional square (see [12] p. 178). Nodes that are shared between multiple elements

must be coupled in this matrix system. In particular, each element has nodes along el-

emental boundaries which are coupled to adjacent boundary nodes, as well as interior

nodes. These inter-element couplings can be enforced by either constructing a fully cou-

pled sparse linear system of equations, or by performing a gather-scatter operation (see

Program 1) that sums variables along element boundaries after element-based matrix-

vector products are performed. This gather-scatter operation coupled with the tensor

product formulation of elemental operators yields a matrix-free discretization in which

only matrices associated with one-dimensional phenomena need to be stored.

The efficiency and accuracy of spectral methods have led them to become a pri-

mary instrument for simulating fluid flows. However, these methods can only be applied

to flows that can be mapped to a simple reference domain, such as a cube or sphere with
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periodic boundary conditions. Since Orszag’s original formulation of spectral methods

for simulating flows [39], several alternative element-based methods have been proposed

to extend solution methods to complex domains, notably the h/p finite element method

of Babuška [2] and the spectral element method of Patera [44]. Both of these discretiza-

tion methods can manage complicated domains with a variety of boundary conditions.

Perhaps more importantly, these methods also allow for adaptive mesh refinement by

modifying the number of elements and the polynomial basis to capture local flow behav-

ior. Each of these discretization methods, divide the computational domain into several

non-overlapping subdomains, and on each subdomain the solution is expressed through

a polynomial basis. The two methods can be distinguished through the choice of basis

functions [2],[30].

In the case of h/p finite elements, the solution is expressed through a hierarchical

modal polynomial basis on each subdomain. The basis functions are written as:

πn(ξ) =


(1−ξ

2 ) n = 0

(1−ξ

2 )(1+ξ

2 )Pa,b
n−1 0 < n < N

(1+ξ

2 ) n = N.

(2.5)

The expansion modes π0 and πN correspond to the basis functions for linear finite ele-

ments, and are the only modes that are non-zero on the elemental boundaries. The higher

order modes are interior to the element, and are often referred to as “bubble modes”. As

N increases, the basis simply adds additional interior modes, thus making the basis hi-

erarchical. The functions Pa,b
n−1, are orthogonal Jacobi polynomials, the indices a and b

denote the type of polynomial defined as a solution to the Sturm-Liouville problem. For

example (a,b) = (0,0) produces Legendre polynomials, where as (a,b) = (−1/2,−1/2)
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corresponds to Chebyshev polynomials. The choice of these interior functions and the

order N determines the structure of the discrete linear systems that arise from discrete

partial differential equations. Typically, the Finite Element Method is employed as a low

order scheme, with polynomial basis functions on each element ranging from degree 1

to 4. Due to orthogonality with the boundary modes, the choice (a,b) = (1,1), produces

system matrices with minimal fill-in, thus making this the standard choice.

The Spectral Element Method was designed to combine the accuracy of spec-

tral methods with the geometric flexibility of finite element methods [35] using a non-

hierarchical nodal basis through Lagrange polynomials based on zeros of Gauss-Legendre

polynomials. By construction, this forms an orthogonal basis containing N +1 polynomi-

als, all of degree N. As the degree N increases, all the members of the basis are changed,

thus making the basis non-hierarchical. The specifics of this basis are discussed in the

following section.

The linear systems resulting from high-order element-based discretizations have

sparse nonzero structure with dense sub-blocks and thus allow for advanced computa-

tional methods to be applied in order to improve efficiency of associated solvers. Often,

implementations of the spectral element method use a “matrix-free” formulation to al-

low matrix-vector operations to be formulated as cache efficient matrix-matrix computa-

tions on each element. That is, the global matrix is never fully constructed, and instead

all matrix operations use local, element-based computations, together with global map-

ping constructions to handle interelement couplings. In this chapter we introduce several

mathematical and computational properties of the spectral element method that are used

to construct efficient solvers.
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Figure 2.1: Illustration of a two dimensional spectral element discretization.

2.1 Basics

The spectral element method can be viewed as a global spectral method with mul-

tiple domains where the solution must match along adjacent domains. In Figure 2.1,

we illustrate how a computational domain Ω (left) is divided into multiple elements Ω1

through Ω4 (middle), and with Gauss-Legendre-Lobatto interpolation nodes placed on

each element (right). Spectral methods have small numerical dispersion and dissipation,

compared to low-order schemes typically used in finite element and finite differencing

methods. Figure 2.2 compares the amount of work (number of floating point operations)

required to maintain a 10% phase error in a one-dimensional advecting wave using three

different spatial discretizations. The figure shows that over long time periods, a higher

order discretization method will reduce the amount of work, while lower order methods

require significantly more grid points (and thus more work) to keep the wave in phase.

This means that for smooth enough problems high-order discretizations lead to more ac-

curate solutions and sharp estimates for critical parameters at less cost [30].

The computational grid of the spectral element method is the key to the method’s

convergence properties and its geometric flexibility. The grid is formed by dividing the

domain Ω with a set of non-overlapping elements Ωe, and placing an orthogonal nodal

13



spectral basis πN in each element defined on a set of Gauss-Legendre-Lobatto nodes

(ΞN+1 := ξ0,ξ1, ...ξN) which are the roots of the N + 1 degree Legendre polynomials

in equation (2.9) (see Figure 2.1). This allows functions defined on Ωe to be written in

terms of their spectral basis on each element

uN
e (ξ) =

N

∑
i=0

ui(ξi)πN
i (ξ). (2.6)

The basis has the form

π
N
i (ξ) =

−1
N(N +1)

(1−ξ2)LN
′(ξ)

(ξ−ξi)LN(ξi)
0≤ i≤ N, (2.7)

where LN(ξ) are the Nth order Legendre polynomials, which can be determined via the

three-term recursion relationship

L0(x) = 1 L1(x) = x, (2.8)

(k +1)Lk+1(x) = (2k +1)xLk(x)− kLk−1(x), k ≥ 1.

Similarly, derivatives of Legendre polynomials can be determined via the relationship

L0(x) = L′1(x) = 1, (2.9)

(2k +1)Lk(x) = L′k+1(x)−L′k−1(x), k ≥ 1.

We note that πN
i (ξi) = 1 and πN

i (ξ j) = 0 when i 6= j as shown in Figure 2.3. This forces

the weighting coefficients ui to be the value of uN
e at each of the nodal points. Figure 2.3

shows an example of the one-dimensional basis functions πN(x) for polynomial degree

six. In higher dimensions the basis is simply a tensor product of the one-dimensional

basis functions. So, for example, in two dimensions a function may be expressed as

uN
e (x,y) =

N

∑
i=0

N+1

∑
j=0

ui jπ
N
i (x)πN

j (y). (2.10)
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The two-dimensional extension of the orthogonal nodal basis shown in Figure 2.3 is dis-

played in Figure 2.4.

Figure 2.2: Comparison of computational work (FLOPS) needed to maintain 10% phase
error in 1D advection equation [30] p. 10.

Figure 2.3: 6th Order Lagrangian nodal basis functions π0−π6 (left to right) based on
the GLL points

Spectral elements provide two mechanisms for improving spatial accuracy. The

first is h-refinement, which means that the size of subdomains can be decreased, by in-

cluding more subdomains to the discretization; continuing this type of refinement process

leads to algebraic convergence (see Definition 1 below) to the solution. The second form

of improving spatial accuracy is by increasing the order of the polynomial basis on each

element. This is termed p-refinement. As one performs p-refinement to a discretization,

the discrete solution approaches the exact solution exponentially, giving rise to what is
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Figure 2.4: 6th Order Two Dimensional Lagrangian nodal basis functions πi⊗π j (ordered
left to right, bottom to top) based on the Gauss-Lobatto-Legendre points.

called exponential convergence (see Definition 2 below). In practice, both methods have

been used, [27], [36], [46]. Due to the low order (algebraic) and high order (exponen-

tial) convergence properties, spectral methods tend to require about half as many degrees

of freedom in each spatial dimension to equally resolve a flow compared to low order

methods [4]. In [22] Fischer et al. demonstrate that with a fixed number of degrees of

freedom, roughly half of the eigen-spectrum associated with a pure advection problem is

resolved by 64 8th order elements, whereas only ten percent of the associated eigenvalues

are represented by the same number of points with 512 linear elements.

If one considers a fixed desired accuracy, the trade off for the smaller memory foot-

print of higher order elements is an increase in computational cost per degree of freedom.
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Definition 1 Algebraic Convergence
For fixed polynomial degree and increasing number of elements, uN will algebraically

approach u, that is, as the number of elements are doubled, the error is reduced by a

constant factor α < 1.

Definition 2 Exponential Convergence
For fixed number of elements and increasing polynomial degree, N, if the function u ∈

Hs
0(Ω)×Hs−1(Ω) having smoothness s , then the error in the approximation uN will decay

exponentially. That is ‖u−uN‖ ≤Chmin(N,s)N−s‖u‖Hs
0(Ω). (see [12] p. 273).

This additional cost, however, may be mitigated by using a matrix-free discretization that

invokes cache efficient element-based matrix-matrix calculations [57]. In Table 2.1, re-

produced from [21], we see that matrix-matrix based calculations obtain speedup through

fewer memory accesses per operation. Memory access is a major computational bot-

tleneck since memory speed is significantly slower than processor speeds. High-order

element-based calculations provide improved parallelism over low-order element-based

methods by reducing global communication through a decrease in surface to volume ra-

tios on each element. These computational efficiencies offset the added cost per degree

of freedom, making spectral elements a competitive choice for discretizing the equations

that govern fluid motion.

Operations Memory Access Op:Memory Access

Vector-Vector ~x =~x+ c~y 2n 2n 1

Matrix-Vector ~x = A~y 2n2 n2 2

Sparse Matrix-Vector ~x = A~y 2mn mn 2

Matrix-Matrix C = AB 2n3 2n2 n

Table 2.1: Comparison of CPU and Memory access costs for Matrix and Vector Opera-
tions. Adapted from [21], page 14.
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The discrete elemental operators in two and three dimensions can be expressed

as tensor products of one-dimensional operators. We derive the operators correspond-

ing to the convection-diffusion and Navier-Stokes equations in their respective chapters.

Inter-element coupling of these matrices ensures continuity on the elemental boundaries.

Elemental couplings can be enforced by either assembling a coupled system of equations,

or by performing a gather-scatter operation on un-assembled vectors. This gather-scatter

operation, known as “direct stiffness summation”, appropriately sums the weighting co-

efficients at element interfaces. We outline the details of this procedure in section 2.3.

The tensor product representation of the elemental matrices together with direct stiffness

summation allows for an efficient matrix-free formulation, in which only matrices associ-

ated with one-dimensional phenomena need to be stored. Moreover, fast diagonalization,

discussed in section 3.3, enables the efficient application of the action of the inverse of

certain elemental operators in higher dimensions. In the remainder of this chapter we

discuss implementation strategies for our matrix-free formulation.

2.2 Tensor Products

The Spectral Element Method allows for efficient evaluation of various operations

with large-dimensional matrices in terms of one-dimensional Kronecker tensor products

(see Definition 3). When computing matrix-vector products one can reshape the vector as

a matrix in order to exploit the property

(An×n⊗Bn×n)~un2×1 = Bn×nUn×nAT
n×n, (2.11)

18



where Un×n is un2×1 reshaped as a matrix. This allows a matrix-vector product to be

reduced from an O(n4) calculation to an O(n3) calculation. That is, matrices of the form

C = A⊗B representing an operator on a discrete two-dimensional space can be applied

using matrix-matrix multiplication with one-dimensional operators A and B. We will

see in the following chapters that, in fact, all the matrices arising from the discrete fluid

models we will study are essentially of this form.

Definition 3 Kronecker Tensor Product
Given A of dimension k× l and B of dimension m×n, the Kronecker Tensor Product

A⊗B is the matrix of dimension km× ln given by

C :=



a11B a12B . . . a1lB

a21B a22B . . . a2lB

...
...

...

ak1B ak2B . . . aklB


. (2.12)

In general, tensor-based matrix-vector products involving a discretization with n

mesh points per spatial dimension, with d spatial dimensions require only O(nd+1) op-

erations. This evaluation method is routinely used inside iterative solvers to improve

efficiency.

Another important property of tensor products that we use is Fast Diagonalization

[32]. This procedure allows one to inexpensively apply the action of the inverse of sys-

tems defined on each element by diagonalizing corresponding one-dimensional operators.

We describe this method in section 3.3 in the context of convection-diffusion operators.
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2.3 Element Coupling

In the previous section we observed that when discretizing a continuous system us-

ing the spectral element method, one obtains a system of elemental equations that can

be coupled either through an assembly process, or through an appropriate gather-scatter

operation. In large-scale fluid applications, it is often not feasible to store the assembled

system matrix in memory. In this section we introduce the direct stiffness summation

process which is used to couple the matrix-free system. Direct stiffness summation, de-

noted as Σ′, is defined in [12] as “a non-invertible local-to-local transformation that sums

shared interface variables and then stores these values along the interfaces leaving inte-

rior nodes unchanged”. The operation can be performed in a variety of ways; many codes

use geometric information about element nodes to keep track of neighbors. We adopt a

geometry-free approach proposed in [12] that uses mappings between the coupled and

un-coupled degrees of freedom. These mappings are formed by representing degrees of

freedom in two formats: one is the coupled (global) format and the other is the un-coupled

(local) format. Figure 2.5 shows how the nodes would be indexed in each of these for-

mats. Once the data is written in these two formats, index maps are created for each. An

example of these maps for the indexing scheme presented in Figure 2.5 would be:

global_map(1,1:9)=(1, 2, 3, 4, 5, 6, 7, 8, 9)

global_map(2,1:9)=(3, 10, 11, 6, 12, 13, 9, 14, 15)

local_map(1,1:9)=(1, 2, 3, 4, 5, 6, 7, 8, 9)

local_map(2,1:9)=(10, 11, 12, 13, 14, 15, 16, 17, 18).
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Figure 2.5: (Top) Global and (Bottom) Local ordering of the degrees of freedom.

After these maps are formed, the direct stiffness summation operation can be per-

formed as a sequence of two loops. The first loop takes a vector stored in the local

format, maps the entries to the global format and sums interface nodes for each element.

The second loop takes the newly created global vector and maps the entries to the lo-

cal format over each element. The end result is that the elemental interface values are

all summed. Prior to the direct stiffness summation, each local vector contains only a

component of the global vector along the interface. After the summation, there is a lo-

cal vector whose entries contain the global value for all nodes lying on interfaces. This

procedure is geometry-free, meaning that only mappings of the nodes in the two indexing

schemes need to be created in order for this method to work.
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Program 1 Pseudo code for Direct Stiffness Summation Σ′

function dss(ul)

ug=0.0

!gather

do i=1,Num_El

n=pdeg(i)+1

n2=n*n

ug(global_map(i,n2))=ug(global_map(i,n2))+ul(local_map(i,n2))

end do

!scatter

do i=1,Num_El

n=pdeg(i)+1

n2=n*n

dss(local_map(i,n2))=ug(global_map(i,n2))

end do

end function dss

To provide insight to the mathematical structure of this coupling operation, Σ′ can

be viewed alternatively as a product of scatter Q and gather QT matrices (see equation

(2.13)). For the node structure in Figure 2.5 the scatter operation would be represented

via the matrix Q given in equation (2.13). The gather operation is simply the transpose of

this matrix QT . The direct stiffness summation procedure can be performed as Σ′ := QQT

to a vector in the local format. We can see in equation (2.13) how degrees of freedom

expressed in a local format, corresponding to the indexing scheme at the bottom section

in Figure 2.5, are mapped to values in the global format, corresponding to the indexing

scheme at the top in Figure 2.5, and then back to the local format. We see here also that

all interface values in the local format are stored twice. Moreover, one can see that the

vector ûL formed from applying Σ′ to uL sums the interface values. For example û9 and

û16 are the sum of u9 and u16.
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Each time Σ′ is applied to a vector, a weighting matrix, denoted as W , is applied

to average vector values at elemental interfaces. W stores the inverse of the number of

elements that contribute to a given node. This matrix is formed by performing Σ′ on a

unit vector in the local data format e = 1.0. This results in a vector y where yi contains

the number elements sharing node i. Thus the weighting matrix contains the inverse of y

along the diagonal, i.e. Wii := 1
yi

. In the following chapters, when using Σ′ we refer to the

weighted direct stiffness summation operator WΣ′.
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û 1
1
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2.4 Remarks on Implementation

We conclude this chapter by providing a brief description of the computational

framework we have constructed to perform our numerical experiments. We have de-

veloped a matrix-free implementation of the spectral element method within an object-

oriented Fortran 90 code. The fundamental object of this code is what we call a “matrix

object”. This object has constructors that allow for matrix-free application of system oper-

ators that arise in fluid simulations, such as discrete Poisson, convection-diffusion, Stokes

and linearized Navier-Stokes operators. Similarly, in this code, we have developed meth-

ods that apply inverse operations involved in solving these equations, such as Domain

Decomposition and Fast Diagonalization which are discussed in detail in sections 3.2 and

3.3. These operations are conveniently applied to vectors using the multiplication symbol

“∗” throughout all modules of the code. The definition of a matrix object contains phys-

ical specifications about the type of matrix, such as symmetric or non-symmetric, com-

munication maps for Σ′, boundary maps for Dirichlet boundaries, and one-dimensional

operators needed to apply Kronecker products. This allows for transparent application of

matrices defined on a given computational grid. Our computational framework could also

be extended to include interpolation operators to allow for mesh hierarchies and interfaces

with coarse grid operators.
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Chapter 3

Convection-Diffusion Equation

The interplay between inertial and viscous forces in a fluid flow dictates the length

scale where energy is transferred, thus determining the resolution required to capture flow

information accurately. This resolution requirement poses great theoretical, experimental

and computational challenges in situations where the convective nature of the flow domi-

nates diffusive effects. In such flows, convection and diffusion occur on disparate scales,

which has motivated the development and use of splitting schemes [12]. The standard

method for performing steady and unsteady flow simulations with spectral elements is

operator integration factor splitting (OIFS) [34]. This typically involves time integration,

even in steady flow simulations.

Using the standard approach, convection and diffusion are treated separately; con-

vection components are tackled explicitly using a sequence of small time steps that satisfy

the CFL condition, and diffusive components are treated implicitly with larger time steps

via a backward differencing formula that couples the convection terms to the diffusion

system. Such schemes have been successfully applied in a variety of settings ranging

from the study of blood flow [22] to forecasting climate change [54]. However, to simu-

late fast moving flows the discretization must be refined to capture sharp flow features ac-

curately, this in turn causes the time step of the semi-implicit methods to become acutely

small. This means that such methods can become prohibitively expensive when simulat-
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ing highly convective flows over long time periods.

An alternative approach to simulating convective flows is to perform implicit time

integration, or solve the steady state systems directly. Such methods, however, require fast

steady state solvers that are able to resolve the disparate convective and diffusive scales

efficiently. The steady convection-diffusion equation can be written as

− ε∇
2u+(~w ·∇)u = f (3.1)

where u represents velocity, the vector field ~w = (wx(x,y),wy(x,y))T represents convec-

tion or wind speed at each point in the domain, f represents body forces acting on the

fluid, and ε represents the kinematic viscosity. In addition to (3.1), we have the associated

boundary conditions

u = uD on ∂ΩD, ∇ui ·~n = 0 on ∂ΩN , (3.2)

where ~n is the outward facing normal on the boundary, and subscripts D and N de-

note Dirichlet (inflow) and Neumann (outflow) boundary regions respectively. To mea-

sure the relative contributions of convection and diffusion, equation (3.1) can be non-

dimensionalized by emphasizing the inertial terms through characteristic velocity and

length scales, W and L respectively. That is, points in Ω can be normalized by dividing

by L, the forcing term is normalized by taking f ∗ := f L/W 2, and the velocity u∗ and

wind w∗ are normalized by dividing by W . The velocity in the normalized domain can be

described by the equation

− 1
Pe

∇
∗2u∗+(~w∗ ·∇∗)u∗ = f ∗. (3.3)

The quantity Pe := WL
ε

is termed the Peclet number. This dimensionless number quan-
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tifies the contributions of convection and diffusion for a given flow. In diffusion dom-

inated flows, Pe ≤ 1, whereas in convection-dominated flows Pe� 1. We see in (4.3)

that as Pe→ ∞ the flow becomes dominated by convection and the diffusion term goes

away leading to a hyperbolic system. We observe that as Pe → 0, this form of the

convection-diffusion equation does not produce the Poisson equation. This is because

we non-dimensionalized the equation by emphasizing the inertial terms. A similar non-

dimensional form of the convection-diffusion equation can be written for slow moving

flows by accentuating the viscosity. In this form the forcing term is replaced with f ∗= f L
Wε

,

while the other quantities are normalized as above, leading to the dimensionless form

−∇
∗2u∗+Pe(~w∗ ·∇∗)u∗ = f ∗. (3.4)

In this form, as Pe→ 0 we are left with the Poisson equation to model the flow. We use

these two limiting situations to construct solvers and preconditioners that reflect the way

flow information is spread throughout the domain.

In this chapter, we introduce a new approach for simulating steady flows with spec-

tral elements by developing efficient solvers for the steady convection-diffusion system

(3.1). We emphasize the case where Pe is large, although these techniques also apply

to diffusion-dominated flows as well. Our method builds on ideas from iterative sub-

structuring by exploiting fast diagonalization to eliminate degrees of freedom in element

interiors. The efficiency of our solution method is centered on two advancements: the

first is the use of an accurate high order matrix-free discretization to construct accurate

discrete solutions while minimizing memory requirements; the second is the use of fast

iterative solvers, that are accelerated by domain decomposition based preconditioners that
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take advantage of the local tensor product structure by exploiting Fast Diagonalization to

take into account memory hierarchies and efficient cache use to improve processor per-

formance.

3.1 Spectral Element Method applied to the convection-diffusion equa-

tion

The spectral element method is a Galerkin method derived from the method of

weighed residuals, in which a weak form equation is solved. When multiple elements

are used, the associated integral is divided into a sum of integrals on individual elements.

The element-based integrals are then approximated by numerical quadrature. In the orig-

inal formulation of the spectral element method, Patera used interpolation points based

at nodes of Chebyshev polynomials to take advantage of fast transforms [44]. However,

this required analytical construction, and was found to be difficult to implement. Since

then interpolation points based on roots of Legendre polynomials have been the standard

choice. For the discrete convection-diffusion equation in particular, velocities are rep-

resented through a basis of high-order Legendre polynomials at Gauss-Legendre-Lobatto

nodes. The resulting system of linear matrix equations numerically represents the original

integral equation on each element. Rectangular elements allow each elemental system to

be represented via tensor products of one-dimensional operators. Inter-element coupling

of these matrix equations ensures continuity along elemental boundaries. These inter-

element couplings can be enforced by either constructing a fully coupled sparse linear

system of equations, or by performing a gather-scatter operation that sums the solution
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along element boundaries after element-based matrix-vector products are performed. As

described in Chapter 2, this gather-scatter operation coupled with the tensor product for-

mulation of elemental operators yields a matrix-free discretization, in which only matrices

associated with one-dimensional phenomena need to be stored.

Following the spectral element discretization strategy, we recast (3.1) in the weak

form:

Find u ∈ X such that:

ε

Z
Ω

∇u ·∇v+
Z

Ω

(~w ·∇u)v =
Z

Ω

f v ∀v ∈ X0, (3.5)

where the velocity solution and test spaces are defined as

X :=
{
~u ∈ H1(Ω)2|~u =~uD on ∂ΩD

}
(3.6)

X0 :=
{
~u ∈ H1(Ω)2|~u =~0 on ∂ΩD

}
, (3.7)

which are based on L2(Ω) - the space of all square integrable functions on Ω. H1(Ω) is

the space of all functions in L2(Ω) with first derivatives also in L2(Ω).

Existence and uniqueness of a corresponding weak solution can be demonstrated

by establishing the coercivity (see definition 6) and continuity (see definition 7) of the

bilinear form

a(u,v) := ε

Z
Ω

∇u ·∇v+
Z

Ω

(~w ·∇u)v. (3.8)

For Dirichlet problems, coercivity can be established by observing that the convection

term is skew-self-adjoint so a(~u,~u) = ε‖∇~u‖2 for all admissible ~u, and continuity is veri-

fied over X0 using

|a(u,v)| ≤ ε

∣∣∣∣Z
Ω

∇u ·∇v
∣∣∣∣+ ∣∣∣∣Z

Ω

(~w ·∇u)v
∣∣∣∣, (3.9)
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and bounding the terms using the Cauchy-Schwarz inequality. We refer the reader to [19]

for details.

Next, we restrict u and v to a finite-dimensional subspace XN to obtain the discrete

weak form: Find u ∈ XN such that:

ε

Z
Ω

∇u ·∇v+
Z

Ω

(~w ·∇u)v =
Z

Ω

f v ∀v ∈ XN
0 . (3.10)

By splitting the solution u = u0 + uD where u0 = 0 on ∂ΩD and uD is a known function

in XN satisfying the Dirichlet boundary condition at nodes on the Dirichlet boundary, we

can incorporate the Dirichlet boundary conditions in the right hand side, to yield:

Find u ∈ XN
0 such that:

ε

Z
Ω

∇u0 ·∇v+
Z

Ω

(~w ·∇u0)v =
Z

Ω

fDv ∀v ∈ XN
0 . (3.11)

Using the spectral element method, the basis for XN is constructed by dividing

the domain Ω into E non-overlapping sub-domains (elements) Ω = ∪E
e=1Ωe; each sub-

domain is then discretized using tensor products of Lagrangian interpolants on N degree

Legendre polynomials πN . The corresponding approximation space for the velocity and

test functions is defined as

XN = X ∩P2
N,E(Ω)XN

0 = X0∩P2
N,E(Ω) (3.12)

where

P2
N,E(Ω) = {v(xe(r))|Ωe ∈ PN(r1)⊗PN(r2), e = 1, ...,E} (3.13)

and PN(r) is the space of Lagrangian interpolants of degree less than or equal to N defined

on the Gauss-Legendre-Lobatto points on the reference domain [−1,1]. Thus, on each
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element the solution is of the form

u(x,y) =
N

∑
i=0

N

∑
j=0

ui jπN,i(x)πN, j(y). (3.14)

The coefficients ui j correspond to the nodal values of u on the tensored Gauss-Legendre-

Lobatto (GLL) points (defined in section 2.1). We write the solution as u = u0 +uD where

u0 = 0 on ∂ΩD and uD = u on ∂ΩD. Thus we can obtain the coefficients corresponding to

u0 by solving the linear system of equations

Me
Σ
′Fe(~we)︸ ︷︷ ︸
F

ue = Me
Σ
′(Me f e−Fe(~w)ue

D)︸ ︷︷ ︸
b

. (3.15)

Here, a mask matrix Me sets ue to zero at all Dirichlet boundary nodes. Thus, after

obtaining ue on each element, this solution can be combined with uD to form the discrete

solution satisfying (3.1) and (3.2).

As we discussed in the previous chapter, inter-element connections are handled via

direct stiffness summation Σ′. We note that this discrete system matrix is represented

element-wise since Σ′ is applied to sum all elemental contributions. Thus this is a matrix-

free formulation in the sense that no global matrix is assembled. The discrete system is

written in terms of element-defined operators such that on each element several discrete

operators are applied. Namely, the discrete system involves a discrete representation of

the identity in L2(Ω), the mass matrix, to discretize the right hand side and a discrete

convection-diffusion operator for the left hand side of (3.11).

The mass matrix is defined to be the block diagonal matrix M = diag(Me) where

Me is the local mass matrix on an element of size hx×hy. Me is represented via a tensor

product of one-dimensional operators, M̂, namely

Me =
hxhy

4
M̂⊗ M̂. (3.16)
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Due to the orthogonality of the basis functions πN,i and πN, j the mass matrix is a diagonal

matrix. The one-dimensional operator M̂ = diag(ρi) i = 1, ...,N +1 where ρi is the GLL

weight associated with the ith GLL quadrature node ξi. The convection-diffusion operator

Fe is represented on each element through this basis as

Fe
x = ε(M̂⊗

hy

hx
Â)︸ ︷︷ ︸

Diffusion in x

+W e
x (M̂⊗

hy

2
Ĉ)︸ ︷︷ ︸

Convection in x

Fe
y = ε(

hx

hy
Â⊗ M̂)︸ ︷︷ ︸

Diffusion in y

+W e
y (

hx

2
Ĉ⊗ M̂)︸ ︷︷ ︸

Convection in y

Fe(we) = Fe
x +Fe

y

(3.17)

In (3.17), the discrete two-dimensional diffusion operator is formed via tensor products

of the one-dimensional second derivative operator Â with the one-dimensional mass ma-

trix M̂. Similarly, the discrete convection operator is formed via a tensor product of

the weak one-dimensional derivative operator Ĉ = M̂D̂ with the mass matrix M̂, then

scaled by the wind speed at each node via the (N + 1)2× (N + 1)2 diagonal matrices

W e
x = diag(wx(ξi,ξ j)) and W e

y = diag(wy(ξi,ξ j)).

The one-dimensional second derivative operator Â is given by

Âi j =
N+1

∑
k=1

D̂kiρkD̂k j i, j ∈ {1, ..,N +1}2, (3.18)

where D̂ is the one-dimensional spectral differentiation operator

D̂i j =
dπ j

dr
|r=ξi i, j ∈ {1, ..,N +1}2. (3.19)

The global system matrices can defined by combining the elemental matrices Me

and Fe across multiple elements via the connectivity matrix Q defined in section 2.3; that

is F(w) = MeQT FeQM is the global non-symmetric convection-diffusion operator, and

M = MQT MeQM the global diagonal mass matrix.
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The system in (3.15) can be solved using an iterative scheme, such as precondi-

tioned GMRES [47]. In the case of constant wind, fast direct solvers in conjunction with

domain decomposition with iteration for subsidiary problems are available as a more ef-

ficient solver. In the next section, we explain how to solve constant coefficient problems

by this technique. In section 3.5 we discuss how this domain decomposition scheme can

be used as a preconditioner to accelerate convergence of non-constant wind convection-

diffusion problems.

3.2 Domain Decomposition via Iterative Substructuring

In this section we outline the use of a matrix-free domain decomposition method

based on iterative substructuring to solve the discrete convection-diffusion problem for

constant coefficient convection-diffusion problems. Because we will use the system

operator for constant coefficient problems later on, we denote the constant coefficient

convection-diffusion operator by F̄ . The solution method obtains the discrete solution

on a set of non-overlapping subdomains by first solving for unknowns on inter-element

interfaces, and then performing back substitution to compute the interior degrees of free-

dom. For large systems, the solution on elemental interfaces are obtained by an iterative

method. The system that governs the elemental interfaces may be poorly conditioned, and

thus requires preconditioning. We describe here a domain decomposition method that we

use in conjunction with a Robin-Robin preconditioner for the interface solve. In addi-

tion we present a generalization of the Fast Diagonalization Method for obtaining interior

degrees of freedom.
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As discussed in the previous section, the domain is subdivided into E spectral ele-

ments, with the elemental interfaces being represented by a set Γ, and interior degrees of

freedom represented by sets Ie. The resulting system of equations has the form

F̄1
II 0 . . . 0 F̄1

IΓ

0 F̄2
II 0 . . . F̄2

IΓ

... . . . . . . . . . ...

0 0 . . . F̄E
II F̄E

IΓ

F̄1
ΓI F̄2

ΓI . . . F̄E
IΓ

F̄ΓΓ





uI1

uI2

...

uIE

uΓ


=



bI1− F̄uB|I1

bI2− F̄uB|I2

...

bIE − F̄uB|IE

bΓ− F̄uB|Γ


=



b̂I1

b̂I2

...

b̂IE

b̂Γ


. (3.20)

Note that the unknowns here are ordered by block in a specific way: those associated with

the interiors of an individual element are listed first, followed in the end by those lying

on element interfaces. As we mentioned in the last section, Dirichlet boundary conditions

are implemented outside of the system operator in (3.20), by subtracting F̄uB from the

right hand side vector. F̄uB denotes the full convection-diffusion system matrix applied

to the Dirichlet boundary vector uB.

The goal is to solve for interface values uΓ and then to perform back substitution

and solve for uIe on each sub-domain interior. To solve for uΓ, the system matrix in (3.20)

is formally factored as the product of lower and upper block matrices

I 0 . . . 0 0

0 I 0 . . . 0

... . . . . . . . . . ...

0 . . . 0 I 0

F̄1
ΓI F̄1

II
−1 F̄2

ΓI F̄2
II
−1

. . . F̄E
ΓI F̄E

II
−1 I





F̄1
II 0 . . . 0 F̄1

IΓ

0 F̄2
II 0 . . . F̄2

IΓ

... . . . . . . . . . ...

0 0 . . . F̄E
II F̄E

IΓ

0 0 . . . 0 F̄S


(3.21)

where F̄S = ∑
E
e=1(F̄

e
ΓΓ
− F̄e

ΓI F̄e
II
−1 F̄e

IΓ
) represents the Schur complement of the system.
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By multiplying both sides of (3.20) with the inverse of the lower triangular matrix, one

obtains the system

F̄1
II 0 . . . 0 F̄1

IΓ

0 F̄2
II 0 . . . F̄2

IΓ

... . . . . . . . . . ...

0 0 . . . F̄E
II F̄E

IΓ

0 0 . . . 0 F̄S





uI1

uI2

...

uIE

uΓ


=



b̂I1

b̂I2

...

b̂IE

gΓ


(3.22)

with gΓ = ∑
E
e=1(b̂Γe− F̄e

ΓI F̄e
II
−1 b̂Ie). The interface variables are then obtained by solving

F̄SuΓ = gΓ, (3.23)

and interior variables are obtained by solving

F̄e
IIuIe = b̂Ie− F̄e

IΓue
Γ (3.24)

on each element. This involves a three-step procedure:

• Perform E subdomain solves to apply the action of F̄e
II giving gΓ,

• Perform interface solve for F̄SuΓ = gΓ,

• Perform E additional subdomain solves to apply the action of F̄e
II yielding uI .

The Schur complement operator can be constructed element-by-element by writing F̄S =

∑ F̄e
S . This allows for efficient tensor-product based (see appendix (A-1)) computation

of the elemental matrix-vector products, which can be used to apply the matrix on each

element inside an iterative solver. Once uΓ is obtained it is substituted back into (3.22)

to provide elemental boundary conditions for the interior solves. The interior variables
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uIe are then obtained via element-wise fast diagonalization (FDM), which we discuss

in section 3.3. We note that the action of F̄e
II
−1 is also required for the matrix-vector

products by the Schur complement operator, and in forming gΓ. Each of these are also

applied via FDM.

3.2.1 Interface Preconditioners

Non-overlapping domain decomposition methods are known to be effective for el-

liptic problems [45], [52], [55]. For such problems, the Neumann-Neumann precondi-

tioner was developed to accelerate convergence of the Schur complement interface solve.

This technique uses a pseudo-inverse of the locally defined Schur complement operator,

with Neumann boundary conditions applied to elemental interfaces.

The preconditioning matrix derived using Neumann-Neumann conditions is given

by
E

∑
e=1

D(e)RT
e (F̄e

S )−1 ReD(e), (3.25)

where F̄e
S is a modified Schur complement operator on the eth element, the matrices De

are chosen to provide an appropriate inverse scaling factor, and Re restricts a vector to the

eth element. The number of iterations required for the preconditioned system to converge

is bounded by C
H (1 + log(N))2 ([55] p. 321) where C grows with the size of the Peclet

number, N is the order of the spectral element basis functions, and H is the diameter

of a typical element Ωe. A simple two-domain case illustrates that with this choice, the

preconditioned system is approximately a scaled identity when the subdomains are of
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similar size i.e. F̄1
S ≈ F̄2

S

( F̄1
S
−1

+ F̄2
S
−1

)(F̄1
S + F̄2

S ) = 2I + F̄2
S
−1

F̄1
S + F̄1

S
−1

F̄2
S = 2I + F̄2

S
−1

F̄1
S + ( F̄2

S
−1

F̄1
S ).
−1
(3.26)

When applying the preconditioner, it is not necessary to form F̄(e)
S

−1
on each element

because F̄ can be factored as

F̄e =

 I 0

F̄e
ΓI F̄e

II
−1 I


 F̄e

II 0

0 F̄e
S


 I F̄e

II
−1 F̄e

IΓ

0 I

 . (3.27)

This means that the inverse of F̄ can be viewed as

F̄e−1 =

 I − F̄e
II
−1 F̄e

IΓ

0 I


 F̄e

II
−1 0

0 F̄e
S
−1


 I 0

−F̄e
ΓI F̄e

II
−1 I

 . (3.28)

More importantly, we see that the action of the inverse of F̄e
S can be applied to a vector by

applying the inverse of F̄e to the vector restricted to the elemental boundary, namely

F̄(e)
S

−1
v = (0 I) F̄(e)

NN
−1
(

0
I

)
v (3.29)

where

F̄(e)
NN =

 F̄e
II F̄e

IΓ

F̄e
ΓI F̄e

ΓΓ

 . (3.30)

When constructing F̄(e)
NN , Neumann boundary conditions are applied at elemental

boundaries. This choice of boundary conditions produces a preconditioning operator cor-

responding to the bilinear form

ae(u,v) =
Z

Ωe

(ε∇u ·∇v+(~w ·∇u)v), (3.31)
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which can be derived from the element-based Neumann problem

− ε∇
2u+(~w ·∇)u = f in Ωe, (3.32)

−ε
∂u
∂n

= 0 on Γe. (3.33)

However, as convection becomes dominant, these Neumann element interface con-

ditions (3.33) become unstable [45], causing the bilinear form (3.31) to lose coercivity,

and rendering the Neumann-Neumann method ineffective. Achdou et al. [1] extended

the popular Neumann-Neumann preconditioner to non-symmetric convection-diffusion

systems by choosing interface boundary conditions that reflect the movement of the flow

across element boundaries. In particular the Neumann-Neumann preconditioner is mod-

ified using Robin boundary conditions instead of Neumann conditions at inflow bound-

aries where ~w ·n < 0, Neumann boundary conditions are still imposed at outflows where

~w ·n > 0. This strategy is known as a Robin-Robin preconditioner. This choice of bound-

ary conditions makes the preconditioning operator positive definite (see [1] & [55]) by

defining the coercive bilinear form

ae(u,v) =
Z

Ωe

(ε∇u ·∇v+(~w ·∇u)v)−
Z

Γi

~w ·~nuv, (3.34)

which corresponds to the element-based Robin problem

− ε∇
2u+(~w ·∇)u = f in Ωe, (3.35)

−ε
∂u
∂n

+~w ·~nu = 0 on Γe. (3.36)

The difference between Neumann-Neumann and Robin-Robin preconditioners is the ad-

ditional ~w ·~nu term at the element interfaces. This allows the flow to move between
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elements, and ensures the preconditioned system matrix is positive semi-definite, as de-

scribed in [1] and [55]. The two preconditioners are equivalent when ~w = 0.

The preconditioning matrix derived using these Robin conditions is defined just as

for the Neumann-Neumann system,

E

∑
e=1

D(e)RT
e (F̄e

S )−1 ReD(e). (3.37)

We can also apply the action of the inverse of F̄e
S to a vector by applying the inverse

of F̄e to the vector restricted to the elemental boundary, namely

F̄(e)
S

−1
v = (0 I) F̄(e)

RR
−1
(

0
I

)
v (3.38)

where the Neumann-Neumann operator FNN is replaced by the Robin-Robin operator

F̄(e)
RR =

 F̄e
II F̄e

IΓ

F̄e
ΓI F̄e

ΓΓ

 (3.39)

which keeps the preconditioning matrix positive definite by applying Robin Boundary

conditions at element inflows, and Neumann boundary conditions where the flow is or-

thogonal to the element boundary as well as along outflow boundaries. In practice, the

elemental boundary conditions are determined by considering the sign of the convection

term at each element boundary. This involves modifying the one-dimensional convection-

diffusion operators F̂x and F̂y from equation (3.17) by a single entry corresponding to the

inflow condition

F̂xRR(1,1) = F̂x(1,1)+wxM̂(1,1) if wx > 0

F̂xRR(N +1,N +1) = F̂x(N +1,N +1)−wxM̂(N +1,N +1) if wx < 0

F̂yRR(1,1) = F̂y(1,1)+wyM̂(1,1) if wy > 0

F̂yRR(N +1,N +1) = F̂y(N +1,N +1)−wyM̂(N +1,N +1) if wy < 0.

40



In section 3.4 we provide empirical results comparing the Neumann-Neumann and

Robin-Robin preconditioning schemes using our solution method. In the next section we

introduce the fast diagonalization method, which we use to eliminate interior degrees of

freedom.

3.3 Fast Diagonalization Method (FDM)

The Fast Diagonalization Method (FDM) was originally constructed to solve prob-

lems arising from tensor-product based finite difference discretizations of symmetric con-

stant coefficient partial differential equations. We define the FDM as a generalization of

the method described in [32], and apply it to non-symmetric convection-diffusion sys-

tems with constant wind ~w. We then examine the use of FDM applied to (3.15) on a

single element.

The spectral element discretization enables the convection-diffusion equation to be

written as sums of tensor products on each element. This form is particularly useful

when performing matrix-vector products, and when solving certain elemental systems of

equations. The FDM allows for the solutions of systems in which the coefficient is of

order nd and has a tensor product structure in O(nd+1) operations, where d represents the

number of spatial dimensions and n represents the number of grid points used along each

dimension on a single element.

Consider equation (3.17) in the special case where W e
x = cx and W e

y = cy are both

constant on each element. In this special case, the convection-diffusion operator on each
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element can be be written as

Fe(cx,cy) = M̂⊗ F̂x + F̂y⊗ M̂ =: F̄e. (3.40)

We use the fact that M̂ is diagonal to apply a transformation to F̄e that will allow for fast

diagonalization. That is, we can write F̄e = M̃1/2F̃eM̃1/2 where

F̃e = M̃−1/2F̄eM̃−1/2 (3.41)

= (M̂−1/2⊗ M̂−1/2)(M̂⊗ F̂x + F̂y⊗ M̂)(M̂−1/2⊗ M̂−1/2)

= (I⊗ M̂−1/2F̂xM̂−1/2)+(M̂−1/2F̂yM̂−1/2⊗ I)

= (I⊗B)+(A⊗ I).

Assuming both A and B are diagonalizable, we have A = SΛyS−1, B = T ΛxT−1. This

gives

F̃e = (S⊗T )(Λy⊗ I + I⊗Λx)(S−1⊗T−1) (3.42)

so that

F̃e−1 = (S⊗T )(Λy⊗ I + I⊗Λx)−1(S−1⊗T−1). (3.43)

That is, the transformed matrix F̃ can be diagonalized cheaply and the action of the inverse

of F̄e can also be inexpensively applied as

F̄e−1 = (M̂−1/2⊗ M̂−1/2)(S⊗T )(Λy⊗ I + I⊗Λx)−1(S−1⊗T−1)(M̂−1/2⊗ M̂−1/2).

(3.44)

This formulation only depends on the inverses of diagonal matrices, and of small matrices

corresponding to one-dimensional phenomena. We exploit this in the application of our

solvers and preconditioners as discussed in the following sections.
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We use this method to apply the action of F̄e
II
−1 for each element in the domain

decomposition method described section 3.2. In flows where the wind coefficient ~w is

constant, F̄−1 constitutes a direct solver to equation (3.15), in practice however, an itera-

tion is needed to obtain the solution to the Schur complement system (3.23) on the union

of element interfaces. We demonstrate the use of this methodology for solving constant

coefficient problems in two examples in the next section. We then describe in section 3.5

how this method can be used to accelerate convergence of GMRES for computing solu-

tions of more general flows. Included in this discussion is the impact and convergence

properties of the inner iteration for the Schur complement system (3.23).

We also mention here that it is possible to extend the Fast Diagonalization Method

to convection-diffusion systems with separable winds i.e. ~w =(w(x),w(y))= (I⊗ŵx, ŵy⊗

I) on each element. The diagonalization method above remains the same except the one-

dimensional matrices that are diagonalized are slightly modified. Namely,

B = M̂−1/2(ε
hy

hx
Â+

hy

2
ŵxĈ)M̂−1/2 (3.45)

and

A = M̂−1/2(ε
hx

hy
Â+

hx

2
ŵyĈ)M̂−1/2. (3.46)

This diagonalization extension may be useful in some certain flow models, and perhaps

allow for more accurate local flow approximations on each element, as an extension to the

constant wind approximation we develop later. This is an area we will explore in future

research.
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3.4 Solution of Problems with Constant Wind

In this section we demonstrate the effectiveness of our solvers applied to problems

with constant coefficients.

3.4.1 Analytical solution with outflow boundary layer

We first consider a problem whose solution exhibits dramatic change near the out-

flow boundary y = 1. This problem has an analytical solution

u(x,y) = x

(
1− e(y−1)/ε

1− e−2/ε

)
. (3.47)

Our focus here is on the iterations for the interface solution to (3.23). In addition

to these interface iterations, a solution on the element interiors is obtained via Fast Diag-

onalization. We show a plot of the computed solution, and contours in Figure 3.1 using

a spectral element discretization with 2 elements in each dimension, and polynomial de-

gree 16 on each element. There are roughly five times fewer interface nodes than there are

interior nodes in this particular discretization. One may choose to think of this solution

method as a direct method where an iterative method is used to obtain a small number of

degrees of freedom at element interfaces. This means the Fast Diagonalization Method is

efficiently eliminating a large portion of the degrees of freedom directly. This reduction

in the size of the iterative system coupled with the low number of iterations required to

obtain an interface solution significantly reduces the number of operations to obtain an

accurate solution.

Tables 3.1 and 3.2 contain several items of data associated with the experiments

for problem 3.4.1. In Table 3.1 we demonstrate the exponential convergence (see Def-
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Figure 3.1: Computed solution and contours of steady convection diffusion flow cor-
responding to example 3.4.1 with constant wind ~w = (0,1) and moderate convection
Pe = 40.

inition 2) for this example problem with moderate convection Pe = 40. We use a fixed

number of elements E=2× 2 as the polynomial degree is varied from N=4 through 32.

In the second column of the table, we see that the solution converges exponentially as N

is increased. The tables compare convergence results for the iterative solvers used to ob-

tain the interface solution using varied preconditioning strategies. The last three columns

correspond to the number of interface iterations required for GMRES without precondi-

tioning (None), GMRES with Neumann-Neumann preconditioning (N-N), GMRES with

Robin-Robin preconditioning (R-R), and the upper bound on the number of iterations for

(N-N) and (R-R) preconditioned GMRES to converge without the scaling constant. The

performance of each iterative method depends on the increased grid resolution, and the

preconditioned methods compares well with theory. We note that for this test problem

with moderate convection and few sub-domains, (N-N) and (R-R) converge in roughly

the same number of steps.

In Table 3.2 we demonstrate the algebraic convergence (see Definition 2) for this
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N ‖u−uN‖2 None N-N R-R 1
h (1+ log(N))2

4 5.535×10−2 3 3 3 5.6

8 2.505×10−3 7 7 7 9.4

16 2.423×10−7 15 11 14 14.2

32 7.931×10−13 30 16 18 19.9

Table 3.1: Convergence results for example 3.4.1 with a moderate convection Pe = 40, as
polynomial degree is varied on a fixed 2×2 element grid.

example problem using with the same Peclet number Pe = 40. We fix polynomial de-

gree at N=2, and increase the number of elements from E=4 (as a 2×2 grid) to E=1024

(32×32 grid). In the second column, we see that the solution converges algebraically as E

is increased. These numbers also compare well with the expected cubic convergence rate

for quadratic elements (N = 2). As in the previous table, we also compare convergence

results for the iterative solvers used to obtain the interface solution. The last four columns

correspond to the number of interface iterations required for GMRES without precondi-

tioning (None), GMRES with Neumann-Neumann preconditioning (N-N), GMRES with

Robin-Robin preconditioning (R-R), and the upper bound on the number of iterations for

(N-N) (R-R) preconditioned GMRES to converge without the scaling constant. Each it-

erative method depends on the increased grid resolution. However, unlike the previous

case with few sub-domains the Neumann-Neumann method appears to be negatively in-

fluenced by convection. The performance of the Robin-Robin method compares well with

theory and beats the other two methods, especially as E becomes large.

We note that in both Tables 3.1 and 3.2, the Robin-Robin preconditioner provides

marginal improvement for coarse grid simulations, whereas in the finer resolution simu-

lations Robin-Robin provides significant savings. Next we examine how changes in the
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E ‖u−uN‖2 13h3 None N-N R-R 1
h (1+ log(N))2

16 8.594×10−2 2.031×10−1 13 13 12 11.5

64 2.593×10−2 2.523×10−2 49 47 25 22.9

256 3.558×10−3 3.174×10−3 108 88 45 45.9

1024 3.610×10−4 3.967×10−4 312 180 85 91.7

Table 3.2: Convergence results for example 3.4.1 with moderate convection Pe=40, as the
number of quadratic (N=2) elements are varied.

Peclet number affects the convergence of this method.

For this study, we compare the number of iterations needed to obtain the interface

solution as the Peclet number is increased. We use a fixed grid with polynomial degree

N=8, and the number of elements at E = 256 (16× 16 element grid) to perform these

experiments. Table 3.5 we compare convergence results for the iterative solvers used to

obtain the interface solution. The first column lists the Peclet number and the last three

columns correspond to the number of interface iterations required for GMRES without

preconditioning (None), GMRES with Neumann-Neumann preconditioning (N-N), GM-

RES with Robin-Robin preconditioning (R-R). We see that the Neumann-Neumann pre-

conditioner (N-N) is in-effective, taking more steps than with no preconditioner (None),

while the Robin-Robin preconditioner (R-R) is virtually unaffected by changes in the

Peclet number. Indeed, as the Peclet number is increased through the first several cases the

Robin-Robin preconditioner actually improves. For higher Peclet numbers, these Robin-

Robin iterations increase mildly with the Peclet number. It is evident from this study that

the Robin-Robin preconditioner is effective for high Peclet number flows. In the next

example we perform a similar analysis using a flow that is not aligned with the grid, but

rather moves at an angle to see how such a flow effects the convergence of this scheme.
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Pe None N-N R-R

125 85 92 35

250 79 98 30

500 81 119 25

1000 103 164 27

2000 160 > 200 38

5000 > 200 > 200 74

Table 3.3: Comparison of iteration counts for example 3.4.1 with increasingly convection-
dominated flows. N=8, E=256 using 16×16 element grid.

3.4.2 Oblique wind with internal and outflow boundary layers

In our second example we demonstrate the effectiveness as the convection becomes

increasingly dominant. We use a flow that exhibits an internal boundary layer that results

from a jump discontinuity in the inflow region of the boundary at (0,−1) (see Figure

3.2). Dirichlet boundary conditions are imposed along each boundary as seen in Figure

3.2. Along the back boundary the velocity is set to zero causing a characteristic boundary

layer proportional to ε. The internal boundary layer is proportional to
√

ε. The wind field

in this test case is constant ~w = (−sin(π/6),cos(π/6)), but unlike the previous example,

the wind is not aligned with the grid.

In the left and right Tables in 3.4.2 we report several items of data associated with

the experiments for problem 3.4.2. In the left table 3.4.2 we use a fixed number of ele-

ments E=4 as a 2×2 element grid and vary the degree of the polynomial basis from N=4

through 32, whereas in the right table we fix polynomial degree at N=2, and increase the

number of elements from E=4 (as a 2×2 grid) to E=1024 (32×32 grid).

The tables compare convergence results for the iterative solvers used to obtain the

interface solution using varied preconditioning strategies. The last three columns corre-
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Figure 3.2: Velocity (left) and contours (right) of a convection-dominated steady
convection-diffusion flow, Pe = 250, corresponding to example 3.4.2.

spond to the number of interface iterations required for GMRES without preconditioning

(None), GMRES with Neumann-Neumann preconditioning (N-N), GMRES with Robin-

Robin preconditioning (R-R). In the right table we see that (N-N) and (R-R) converge in

roughly the same number of steps when few subdomains are used, although the Robin-

Robin method is superior. Additionally we observe that as the number of elements in-

crease in the right table, the Robin-Robin preconditioner fairs far better than no precon-

ditioner and Neumann-Neumann preconditioning. In the next study, we consider higher

Peclet number flows, and see that indeed the Robin-Robin method requires far fewer iter-

ations than these other two methods for convective flows.

N None N-N R-R

4 13 13 13

8 25 25 18

16 36 28 20

32 50 29 21

E None N-N R-R

16 29 33 21

64 40 63 26

256 69 117 46

1024 132 > 200 87

Table 3.4: Convergence results for example 3.4.2 with moderate convection Pe=40, as
polynomial degree is varied on a fixed 2× 2 element grid (right), and as the number of
quadratic (N=2) elements are varied on element grids ranging from 4×4 to 32×32.
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In Table 3.5 we describe how the number of iterations of the Schur compliment

system depends on the size of the Peclet number. For these calculations, we use a fixed

grid with polynomial degree N = 8, and 256 elements (16 in each direction). We can see

that the Robin-Robin (R-R) preconditioner performs significantly better than no precondi-

tioner (None) and the Neumann-Neumann preconditioner (N-N). Comparing the iteration

counts in the last row in the two tables, one can see that for highly convective flows,

Pe ∝ O(1000), flow resolution becomes an important factor in the iteration counts. In the

left table, the spacing between the grid points near the characteristic boundary condition

is O(10−2) where the width of the boundary layer ranges from O(10−3)−O(10−4). The

spacing near the characteristic boundary condition for the refined grid O(10−3), and thus

provides more accurate view of how the preconditioner performs for resolved flows. In-

deed, the only flow that is fully resolved in this study is for Pe = 125 in the right table.

Thus the observed dependence on the Peclet number for highly convective flows may

actually be attributed to an under-resolved flow.

Pe None N-N R-R

125 93 104 38

250 75 98 32

500 64 115 27

1000 69 150 30

2000 99 > 200 41

5000 > 200 > 200 94

Table 3.5: Comparison of iteration counts for example 3.4.2 with increasingly convection-
dominated flows. N=8, E=256 using 16×16 element grid.

In each of these studies the number of iterations is comparable to those in the pre-

vious test case. We conclude that Robin-Robin preconditioner performs well for both
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grid-aligned and non-grid aligned flows. In cases where the Peclet number is small, this

technique behaves like the Neumann-Neumann preconditioner which is often used to pre-

condition the discrete Poisson equation [52]. We observed that when using the Robin-

Robin preconditioner, the number of iterations required for F̄−1
S had little dependence on

the mesh size as well as the Peclet number.

As a final note for this section we point out that for constant-wind problems this

solution strategy based on iterative substructuring is significantly cheaper than naively

applying GMRES directly to (3.15). This domain decomposition strategy allows one to

solve highly convective systems where GMRES would fail to converge. This is accom-

plished, in part, by eliminating interior degrees of freedom using FDM, thereby reducing

memory overhead in high resolution cases by nearly an order of magnitude. For example

in the simulation above using N = 8 and E = 16×16, there are roughly eight times fewer

degrees of freedom along elemental interfaces than in the complete system. In three di-

mensions with large N, savings in memory would be even greater. For non-symmetric

systems solved using GMRES this is very important since one must hold all computed

iterates in memory to obtain an orthogonal search direction at each iterate.

3.5 Non-Constant Wind Systems

When the wind vector ~w is not constant in each component, then the domain de-

composition solution technique described in the previous two sections does not directly

apply. In this section we present a way to use our domain decomposition solver as a pre-

conditioner to accelerate the convergence of GMRES or FGMRES for solving discrete
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convection-diffusion systems (3.15) arising from non-constant winds.

In the case of non-constant wind, the matrix F(~w) from equation (3.17) cannot

be written in the tensor product form (3.40) where Fast Diagonalization can be applied

element-wise. However, if we approximate F(~w) on each element in a certain way, we

can construct an element-based matrix of this form. In particular, we consider the ap-

proximation to F(~w) where the wind vector ~w is taken as a constant on each element. To

determine this constant, we take the average of ~w in each component to construct a new

piecewise constant wind vector approximation w̄. Using this vector we can construct a

constant-wind approximation to F(~w), which we call F̄ .

The idea of this approximation is to incorporate the average wind component in

each element in order provide a rough model for flow in each element. In essence, this

approximation follows the average flow in each element. Elman and Chernesky [15] show

that applying block Gauss-Seidel line relaxation to node orderings that follow the flow re-

sult in rapid convergence in one-dimensional convection-diffusion systems. Furthermore,

Elman et al. proposed using multiple Gauss-Seidel “sweeps” to follow the flow in each

direction in order to reduce the number of iterations for multi-dimensional convection-

diffusion systems [19]. We take a similar point of view here using F̄ to precondition the

non-constant wind system, (3.15), we hope to expedite the convergence of GMRES.

In order to apply the preconditioner F̄ for multiple elements, we follow the domain

decomposition strategy developed in section 3.2. The only difference is that F̄ is now an

approximation to F based on average elemental wind speeds. Because of this, we note that

it is not necessary to resolve the F̄S interface solution to high precision, since these values

are not likely to reflect the values of the non-constant wind solution accurately. Instead,
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we seek a rough estimate of the interface values that we can obtain from a few iterations

of the Schur complement solve for (3.23). That is, we apply F̄−1
S inexactly through a few

steps of GMRES. It is also important to point out that the iteration used to solve the Schur

complement problem in F̄ makes F̄ a non-linear operator. This non-linear preconditioning

operator causes trouble with traditional GMRES methods that require the preconditioner

to be the same at each step. An alternative GMRES method, called Flexible GMRES

(FGMRES) was developed by Saad in [47]. This method allows for arbitrary changes in

the preconditioner at each step of the iteration. Thus FGMRES can be used to solve the

preconditioned system

Me
Σ
′Fe(~w)︸ ︷︷ ︸
F

F̄−1F̄ue = Me
Σ
′(Me f e−Fe(~w)ue

b)︸ ︷︷ ︸
b

. (3.48)

In summary, to solve convection-diffusion problems with non-constant wind we use

Flexible GMRES (FGMRES). At each step of FGMRES, a preconditioner, F̄ , based on an

element-wise average wind is used. In addition, during each FGMRES iteration we allow

for the possibility of using an inexact inner iteration for the interface nodes associated with

(3.23). This inner iteration is coupled with FDM to obtain interior degrees of freedom on

each element. We demonstrate the use of this solution method for non-constant wind

convection-diffusion problems in the following example.

3.5.1 Double Glazing Problem

We examine our non-constant wind solver by applying it to a flow that has a recircu-

lating wind ~w = (2y(1− x2),−2x(1− y2)) and discontinuities in parts of the boundaries,

which lead to boundary layers. This example is known as the double-glazing problem,
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and serves as a simple model of the spread of heat in a box with a hot wall (Figure 3.3).

Figure 3.3: Top view of solution for example 3.5.1 with Pe = 2000.

The left pane of Figure 3.4 shows the computed solution for an example flow with

Pe = 400 using FGMRES, and the right pane shows an approximate solution obtained

by replacing the coefficient matrix with the preconditioning matrix F̄ . In the approximate

solution we point out the constant wind approximation produces an error in regions where

the convection field (shown in Figure 3.5) changes direction, such as at the corners and

around the internal boundary layer.

Since our preconditioner is based on a local wind approximation, we reiterate that it

may not be necessary to apply the preconditioner’s interface solve exactly to obtain good

results. We compare the F̄ preconditioning method to GMRES without preconditioning

and using a block Jacobi preconditioned GMRES. To construct the block Jacobi precon-

ditioner we use the diagonal of F̄ . So on each element the interior nodes are obtained

by solving a system using the diagonal of F̄e
II , and the boundary nodes are obtained by
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Figure 3.4: Comparison of exact solution (left) and inexact solution (right) obtained by
applying F̄−1 as an inexact solver for example 3.5.1 with Pe = 400.

Figure 3.5: Wind field for example 3.5.1 with element overlay.

solving a system using the diagonal of F̄e
BB.

Figure 3.6 shows the number of FGMRES iterations required to solve (3.48) to

a tolerance of 10−12. The top two curves show that non-preconditioned GMRES and

block Jacobi preconditioned GMRES are ineffective at solving this system as both fail to

reduce the residual after 400 iterations. Next, we study the effect of inexactly applying

F−1
S using an inner iteration with unpreconditioned GMRES. The latter four curves show

the results of using various approximations of F̄ to precondition the system. These curves

show the influence of accuracy of the Schur complement solve F̄−1
S on the performance
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Figure 3.6: Comparison of preconditioned Flexible GMRES iterations with varied inner
iteration counts, Block Jacobi iterations and non-preconditioned GMRES iterations for
solving equation (3.15).

of the outer FGMRES iteration. The red curve shows us that applying F̄−1
S with 1 step

of GMRES to obtain an approximate solution of the interface allows the outer FGMRES

to converge in 370 steps. In the opposite extreme, the blue curve shows that computing

an inexact interface solution uΓ by performing 8 GMRES iterations in the inner iteration

allows the outer iterations via FGMRES to converge in 22 steps. It is evident from Figure

3.6 that only a few inner iterations for the preconditioner are required in order for the

outer iteration to converge quickly.

Note that the results from the previous paragraph come from using unprecondi-

tioned GMRES for the Schur complement problem, we saw in the previous section that

Robin-Robin preconditioning improves the performance for constant coefficient prob-
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lems. However, here the conclusion is somewhat different. In Figure 3.6 we observed

that using a few steps of unpreconditioned GMRES for the inner iteration allowed the

outer iteration to converge rapidly. The left pane of Figure 3.7 shows the residual during

the first 40 steps of the interface solve using GMRES without preconditioning (red) and

GMRES with Robin-Robin preconditioning. We see that both solvers reduce the residual

by nearly one order of magnitude in the first 10 steps before stagnating. The Robin-Robin

preconditioned solver further reduces the residual around the 25th iteration, while the

non-preconditioned system shows no improvement. Achdou et al. point out in [1] that in

convection-dominated flows, the continuous Robin-Robin preconditioned system opera-

tor is close to an idempotent (or periodic) operator of order S/2 where S is the number

of elements. They argue that this causes GMRES to stagnate for S/2 steps before con-

verging asymptotically 1. However, the right pane of Figure 3.7 shows that the residual

of the outer FGMRES iteration is essentially unaffected by the difference these two inner

iteration residuals. The red curve represents the residual of the outer FGMRES iteration

using unpreconditioned GMRES for the inner iteration. In comparison, the blue curve

represents the residual of the outer FGMRES iteration when the Robin-Robin precondi-

tioner is applied to the inner GMRES iteration. Although the Robin-Robin system (blue

curve) converges slightly faster (by 3 iterations), it requires an extra matrix-vector prod-

uct at each inner iteration, thus in this example it is roughly 40 times more expensive to

use Robin-Robin preconditioning instead of using no preconditioner to obtain an inexact

interface solution.
1Elman and Chernesky [15] report a similar convergence delay when applying block Gauss-Seidel line

relaxation to node orderings that do not follow the flow in 1D convection-diffusion simulations.
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Figure 3.7: Comparison of residuals for interface iterations obtained by GMRES with-
out preconditioning and with Robin-Robin preconditioning (left). Affect on FGMRES
residuals with inexact F̄−1 using no interface preconditioner and Robin Robin (right).

Next we look at how the number of FGMRES iterations are influenced by mesh

refinement. In Tables 3.6 and 3.7 we show the dependence of FGMRES iterations as the

mesh is refined using both h-refinement and p-refinement. We use a stopping tolerance

for FGMRES set at 10−12, and for the F̄−1
S interface solve we stop the iterations when

the residual is less than 10−1. We see that outer iterations for both p-refinement (left

table middle column) and h-refinement (right table middle column) are roughly constant,

whereas the inner iterations (right columns) require show a mild dependence on the mesh

size. Finally, we consider the dependence of the Peclet number on our solution method.

Number of FGMRES Number of
N Outer Iterations Inner Iterations

4 40 5

8 51 5

16 44 13

32 48 20

Table 3.6: Iteration counts for example
3.5.1 as polynomial degree is increased
with Pe = 400 and E = 16.

Number of FGMRES Number of
E Outer Iterations Inner Iterations

16 40 5

64 25 12

256 17 19

1024 28 20

Table 3.7: Iteration counts for example
3.5.1 as the number of elements are in-
creased with Pe = 400 and N = 4.
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Number of FGMRES Number of
Pe Outer Iterations Inner Iterations

125 14 20

250 16 16

500 19 18

1000 24 18

2000 34 16

5000 67 13

Table 3.8: Iteration counts for example 3.5.1 as the Peclet number is increased on a fixed
grid with N = 8 and E = 256.

In Table 3.8 we show how the number of FGMRES iterations are affected as the Peclet is

increased from 125 up to 5000. In this study we use a grid where N = 8 and E = 256 on a

16×16 element grid. We use the same stopping criteria as in the mesh refinement study

above. We see that outer iterations (middle column) are mildly dependent on the Peclet

number whereas the inner iterations (right columns) appear independent of the Peclet

number.

3.6 Summary

We have introduced two solution strategies for convection-diffusion systems. The

first strategy applies to problems with constant wind coefficients. This method uses

an extension to the Fast Diagonalization Method that we developed in order to solve

convection-diffusion problems with constant wind coefficients on single domains. We

coupled this result with Robin-Robin preconditioned Domain Decomposition to develop a

matrix-free solution method for tensor-product based discretizations of the steady convection-

diffusion equation with constant wind on each element.
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This method uses iterative substructuring to resolve elemental interface values, to-

gether with Fast Diagonalization to eliminate interior degrees of freedom on each element

via a direct solve. We demonstrated that this solution method has a weak dependence on

Peclet number, and mild dependence on mesh refinement for both h-refinement and p-

refinement.

We then developed a solver for non-constant winds by demonstrating how the

domain decomposition method we developed for constant-winds can be used as a pre-

conditioner for general convection-diffusion systems when combined with Flexible GM-

RES. This non-constant wind solution strategy showed significant improvement over non-

preconditioned GMRES and the traditional Block-Jacobi preconditioning technique. Us-

ing F̄ as a preconditioner allowed FGMRES to obtain convergence rates independent of

the mesh size, and mildly dependent of changes in convection strength.
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Chapter 4

Navier-Stokes Equations

In this chapter, we build on the results obtained in Chapter 3 for the convection-

diffusion equation to construct an efficient solution strategy for the steady Navier-Stokes

equations. The Navier-Stokes equations describe the motion of incompressible Newto-

nian fluids such as water, oil or blood. The steady Navier-Stokes equations can be written

as

−ν∇2~u+(~u ·∇)~u+∇p = f in Ω,

∇ ·~u = 0 in Ω,

(4.1)

where u is the velocity, p is the pressure and ν is the kinematic viscosity of the fluid. In

addition to (4.1) , we impose the following boundary conditions

u = ub on ∂ΩD, ∇ui ·~n = 0 on ∂ΩN , (4.2)

where ~n is the outward facing normal on the boundary, and subscripts D and N denote

Dirichlet (wall and inflow) and Neumann (outflow) boundary regions respectively. As

in the convection-diffusion equation, we can measure the relative contributions of con-

vection and diffusion by normalizing equation (4.1) by characteristic velocity and length

scales, U and L respectively. Thus, points in Ω can be normalized by dividing by L,

similarly, the velocity u∗ := u/U , pressure p∗ := p/U2, and forces f ∗ := f L/U2 in the

normalized domain can be described by the equation

− 1
Re∇2u∗+(~u∗ ·∇)u∗+∇p∗ = f ∗ in Ω∗

∇ ·~u∗ = 0 in Ω∗.

(4.3)
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The quantity Re := UL
ν

is termed the Reynolds number. This dimensionless number quan-

tifies the contributions of convection and diffusion for a given flow. In diffusion domi-

nated flows, Re≤ 1, whereas in convection dominated flows Re� 1.

For smaller Re, steady flow states may exist, but as Re becomes larger, flows evolve

to turbulent states, often undergoing transitions to time-periodic states, and fully unsteady

states before eventually becoming turbulent. Determining the critical Reynolds numbers

where these changes occur, and understanding how a given solution becomes unstable

allows one to characterize the behavior of the flow as well as provide insight into how

physical parameters affect flow states. Analytical methods such as global stability anal-

ysis [30], transient growth analysis [49], [56] and nonlinear stability analysis [8] rely on

steady-state solutions to determine the behavior of flows near transitions. Thus, solvers

aimed at accurately and efficiently computing steady flow states are of particular relevance

to advancing our understanding of both steady and unsteady flows.

Unlike the convection-diffusion equation, the Navier-Stokes equations are nonlin-

ear, since the convection term (~u ·∇) depends on the flow velocity ~u instead of a pre-

scribed wind ~w. So, in order to solve the Navier-Stokes equations, a nonlinear solver

must be used. We use the Picard nonlinear iteration scheme [41] in order to accomplish

this. This technique produces a system of linearized equations that must be solved at each

step. The efficiency of the nonlinear solution method depends greatly on the cost of the

subsidiary linear solves. Our goal is to reduce the cost of these subsidiary linear system

solves via preconditioning. To do this, we combine the preconditioner developed in the

previous chapter with a block preconditioner developed by Elman et al. in [17].

The remainder of this chapter is organized as follows. In section 4.1 we use the
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Spectral Element Method to derive the discrete form of the Navier-Stokes equations.

There, we also construct one-dimensional operators used in applying the corresponding

matrix-free system. Section 4.2 outlines the Picard and Newton iteration methods used to

solve nonlinear systems of equations. We explain how each method linearizes the Navier-

Stokes equations to produce the block linear systems we focus on solving. In section 4.3

we provide a brief overview of a block preconditioner developed in [17] for accelerating

the convergence of Krylov subspace methods used to solve the linearized Navier-Stokes

equations. We also explain how the convection-diffusion preconditioner developed in the

previous chapter can be used inside this block preconditioning framework. Finally in

section 4.4 we study how the number of linear iterations at each nonlinear iteration is

influenced by changes in the mesh and Reynolds number. We also provide analysis that

demonstrates the discrete solution obtained from this solver converges exponentially as

the degree of the polynomial basis is refined on a given element discretization.

4.1 Spectral Element Method applied to the Navier-Stokes Equa-

tions

In Chapter 2 we introduced the spectral element method as a Galerkin method de-

rived from the method of weighed residuals. Here we explain how the spectral element

method is applied to the steady Navier-Stokes equations. We start by constructing the

weak formulation of the steady Navier-Stokes equations
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Find u,v ∈ X and p,q ∈ Y such that

ν
R

Ω
∇~u : ∇~v+

R
Ω
(~u ·∇~u) ·~v−

R
Ω

p(∇ ·~v) =
R

Ω
f ·~v ∀ ~v ∈ X0

−
R

Ω
q(∇ ·~u) = 0 ∀ q ∈ Y

(4.4)

where the test and trial spaces are defined as

X = {~u ∈ H1(Ω)2|~u = ~w on ∂ΩD},

X0 = {~v ∈ H1(Ω)2|~v = 0 on ∂ΩD},

Y = L2(Ω).

L2(Ω) is the space of all square-integrable functions on Ω, H1(Ω) is the space of all

functions in L2(Ω) with first derivatives also in L2(Ω), ∇~u : ∇~v := ∇ux ·∇vx + ∇uy ·∇vy

denotes the component-wise scalar product, and the component-wise inner product
R

Ω
~u ·~v

is defined in Definition 4.

Existence and uniqueness of a corresponding weak solution can be demonstrated

by establishing the coercivity (see definition 6) and continuity (see definition 7) of the

bilinear form

a~z = ν

Z
Ω

∇~u : ∇~v+ c(~z;~u,~v) (4.5)

where the convection term is written as a trilinear form c : X0×X0×X0→ R defined as

c(~z;~u,~v) :=
Z

Ω

(~z ·∇~u) ·~v. Coercivity can be established by observing that this convection

term is skew-symmetric so c(~z;~u,~u) = 0, and thus a~z(~u,~u) = ν‖∇~u‖2 for all admissible~u.

Continuity holds if ν is not too small, however, demonstrating this result is more involved

and we refer the reader to [19] and [23] for details.

Next, we restrict u,v, p and q to compatible finite dimensional velocity and pressure

subspaces, XN and Y N . This yields the form
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Definition 4 L2(Ω) component-wise inner product
Let L2(Ω) be the space of all square-integrable scalar-valued functions on Ω with asso-

ciated scalar inner product (·, ·)∗. The component-wise inner product of the vector fields

~u = (ux,uy),~v = (vx,vy), denoted (~u,~v) :=
R

Ω
~u ·~v = (ux,vx)∗+(uy,vy)∗ (see [19] p. 36).

Definition 5 L2(Ω) norm
Let L2(Ω) be the set of all square-integrable scalar-valued functions over Ω with asso-

ciated component-wise inner product (·, ·). The L2 norm of the vector field ~u = (ux,uy),

denoted ‖~u‖= (~u,~u)1/2 (see [19] p. 36).

Definition 6 Coercivity
A bilinear form a(·, ·) is coercive with respect to the norm ‖ · ‖V in a space V if there is a

positive constant c such that a(u,u)≥ c‖u‖2
V ∀u ∈V (see [19] p. 121).

Definition 7 Continuity
A bilinear form a(·, ·) is continuous with respect to the norm ‖ · ‖W in a space W if there

is a positive constant C such that a(u,v)≤ c‖u‖W‖v‖W ∀u,v ∈W (see [19] p. 121).
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Find u ∈ XN , p ∈ Y N such that:

ν
R

Ω
∇~u : ∇~v+

R
Ω
(~u ·∇~u) ·~v−

R
Ω

p(∇ ·~v) =
R

Ω
f ·~v ∀~v ∈ XN

0

−
R

Ω
q(∇ ·~u) = 0 ∀ q ∈ Y N

The bases for XN and Y N are constructed by dividing the domain Ω into E non-

overlapping sub-domains (elements) Ω = ∪E
e=1Ωe; each sub-domain is then discretized

using tensor products of Lagrangian interpolants on degree N Legendre polynomials πN .

The simplest choice would be to choose the same polynomial basis for both fields. How-

ever, this approach, known as the PN −PN method, does not satisfy the Inf-Sup stability

condition (see Definition 8), and thus pressure solution exhibits spurious modes that must

be filtered in order to obtain meaningful physical solutions. In [33] Maday et al. in-

troduce a stable PN −PN−2 discretization by choosing the interpolant space based on a

staggered mesh. Using this PN−PN−2 stable discretization, the approximation spaces for

the velocity and pressure basis functions are defined as

XN = X ∩P2
N,E(Ω)

XN
0 = X0∩P2

N,E(Ω)

Y N = Y ∩P2
N−2,E(Ω).

(4.6)

Here, the interpolation spaces are defined as

P2
N,E(Ω) = {v(xe(r))|Ωe ∈ PN(r1)⊗PN(r2), e = 1, ...,E} , (4.8)

where PN(r) is the space of Lagrangian interpolants of degree less than or equal to N

defined on the Gauss-Legendre-Lobatto (GLL) points in the reference domain [−1,1] of

the velocity space. Similarly, on the pressure space, the basis PN−2(r) is the space of

Lagrangian interpolants of degree less than or equal to N defined on the Gauss-Legendre
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Definition 8 Inf-sup stability condition
The spectral element spaces XN , Y N satisfy the Inf-sup stability condition if there exists a

positive constant γ independent of N and E such that, for all~v ∈ XN
0 and q ∈ Y N ,

inf
q6=constant

sup
~v6=~0

|(q,∇ ·~v)|0,Ω

‖~v‖1,Ω‖~q‖
≥ γ. (4.7)

where ‖~v‖1,Ω = (
R

Ω
~v ·~v+∇~v : ∇~v)1/2, and ‖q‖= ‖q− 1

Ω

R
Ω

q‖ is the quotient space norm

(see [19] p. 224 & p. 228).

(GL) points in the reference domain (−1,1). An example of this staggered mesh is illus-

trated in Figure 4.1,

Figure 4.1: Nodes of the staggered Spectral Element Discretization for Navier-Stokes
with 4 elements. Velocities are defined on 7 GLL points (red) per element and pressure is
defined on 5 GL points (blue) per element.

Thus, on each element the discrete weak solution can be written as a linear combi-
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nation of Legendre basis function on each element

ue(x,y) = ∑
N
i=0 ∑

N
j=0 ui jπN,i(x)πN, j(y)

pe(x,y) = ∑
N−1
i=1 ∑

N−1
j=1 pi jπN−2,i(x)πN−2, j(y).

(4.9)

The coefficients ui j and pi j correspond to the nodal values of u and p on the tensored GLL

and GL points respectively. To accommodate Dirichlet boundary conditions, we write the

velocity solution as u = u0 + uD where u0 = 0 on ∂ΩD and uD = u on ∂ΩD. Thus we

can obtain the coefficients corresponding to u0 and p by solving the nonlinear system of

equations defined locally on each element

Me
Σ
′Fe(~u)︸ ︷︷ ︸
F

ue−Me
Σ
′DT e︸ ︷︷ ︸

DT

pe = Me
Σ
′(Me f e−Fe(~u)ue

D)︸ ︷︷ ︸
b

− De︸︷︷︸
D

ue = 0.

(4.10)

As in the previous chapter, a mask matrix Me sets ue to zero at all Dirichlet boundary

nodes. Thus, after obtaining ue on each element, this solution can be combined with uD

to form the discrete solution satisfying (3.1) and (3.2).

Inter-element connections are handled via the direct stiffness summation operator

Σ′ defined in section 2.3. We note that this discrete system matrix is represented element-

wise since Σ′ is applied in order to sum elemental contributions. This again constitutes

a matrix-free formulation where the discrete system can be written in terms of operators

defined on each element. Namely, the discrete system involves a discrete identity, or

mass matrix, on the right hand side, and the left hand block system involves a discrete

convection-diffusion block, as well as discrete gradient and divergence blocks. Because

we use PN −PN−2 elements, the discrete divergence and gradient operators D and DT

must also interpolate vectors between the velocity and pressure grids [20]. The elemental
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operators for the convection-diffusion components were developed in the previous chapter

in section 3.1. To formulate the discrete divergence and gradient operators, we use the

definitions of u and p in (4.9) and note thatZ
Ωe

q(∇ ·~u) =
hy

2

Z 1

−1
πN−2,k

∂πN,i

∂x
+

hx

2

Z 1

−1
πN−2,k

∂πN,i

∂y
. (4.11)

To obtain a discrete operator we apply Gauss-Legendre quadrature and which produces

the discrete form

De
i j =

2

∑
d=1

N

∑
i, j=1

πN−2,i(ηi)πN−2, j(η j)
∂πN

∂xd
(ηi,η j)σiσ j, (4.12)

were σi denotes the Gauss-Legendre quadrature weight associated with the ith Gauss-

Legendre quadrature node ηi. Since the velocities and pressure are defined on different

grids, the velocity derivatives must be interpolated from Gauss-Legendre points to Gauss-

Legendre-Lobatto points. We define the discrete interpolated divergence operator De and

discrete interpolated gradient operator DT e as

De = Dx
e +Dy

e =
hy

2
Ĩ⊗ D̃+

hx

2
D̃⊗ Ĩ, (4.13)

DT e
= DT

x
e
+DT

y
e
=

hy

2
ĨT ⊗ D̃T +

hx

2
D̃T ⊗ ĨT , (4.14)

where the one-dimensional weighted interpolation matrix Ĩ, with dimension as dimen-

sion (N− 1)× (N + 1), is constructed to map Gauss-Legendre-Lobatto nodes to Gauss-

Legendre points

Ĩi j = σiπN, j(ηi). (4.15)

Similarly, the weighted one-dimensional derivative matrix D̃ interpolated onto the Gauss-

Legendre points is defined as

D̃i j = σi
dπN, j

dr

∣∣∣
r = ηi

. (4.16)
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With this discretization strategy we obtain the discrete form of the steady Navier-Stokes

equations  F(u) −DT

−D 0


 u

p

=

 M f

0

 . (4.17)

4.2 Nonlinear Iteration Methods

The steady Navier-Stokes equations form a nonlinear system of equations. This

nonlinear system can be solved using Picard iteration. Picard’s method has a large domain

of convergence and converges linearly [19], [41]. In this section we give an overview of

the Picard iteration method, and explain how to formulate the linearized Navier-Stokes

equations at each nonlinear iteration.

To determine the root of a function g(x) via Picard iteration, a sequence of iterates

are obtained by solving the linear system

Axk+1 = Gxk (4.18)

where g(x) = Ax−Gx with G being nonlinear and A being nonsingular. Each iterate xk+1

can be equivalently be described as an update, δxk, to a previous iterate, xk, by seeing that

xk+1 = A−1Gxk = xk−A−1(A−G)xk = xk−A−1Hxk = xk−δxk. (4.19)

Thus at each nonlinear iteration, the update δxk can be obtained by solving the linear

system

Aδxk = Hxk. (4.20)

In the context of the Navier-Stokes equations, the initial guess x0 is a vector storing

an initial velocity field u0 and an initial pressure p0. The goal of the nonlinear iteration is
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to obtain the solution through a series of updates δuk,δpk such that u = uk +δuk, p = pk +

δpk satisfy (4.1). Inserting u and p of this form into the steady Navier-Stokes equations

produces the system of equations
−∇2(uk +δuk)+((uk +δuk) ·∇)(uk +δuk)+∇(pk +δpk) = f

−∇ · (uk +δuk) = 0
. (4.21)

The update terms are moved to the left-hand side, and the quadratic term (δuk ·∇)δuk is

omitted along with the linear term (δuk ·∇)uk, which gives rise to the linear system −∇2 +uk ·∇ ∇

−∇ 0


︸ ︷︷ ︸

A

 δuk

δpk


︸ ︷︷ ︸

δxk

=

 f − (−∇2 +(uk ·∇) −∇pk)

∇ 0


︸ ︷︷ ︸

H

 uk

pk


︸ ︷︷ ︸

xk

.(4.22)

Applying the spectral element method, produces the discrete linear block system F(uk) −DT

−D 0


 δuk

δpk

=

 f − (F(uk)+DT pk)

DT uk

 . (4.23)

Similarly, the steady Navier-Stokes equations can be solved using Newton’s method.

Newton’s method has a narrower domain of convergence compared to Picard’s method,

but, Newton’s method converges quadratically, as opposed to Picard’s method which con-

verge linearly.

Newton’s method for finding a root x∗ of a function g(x) is given by the iteration

xk+1 = xk−
g(xk)
g′(xk)

. (4.24)

Setting δxk =− g(xk)
g′(xk)

one can view Newton iteration as a series of updates, xk+1 = xk +δxk

to an initial guess x0. Thus, one obtains an update, δxk, at each step by solving

g′(xk)δxk =−g(xk). (4.25)
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In the context of the Navier Stokes equations, the initial guess x0 is a vector storing an

initial velocity field u0 and an initial pressure p0. The goal of the non-linear iteration is to

obtain the solution through a series of updates δuk,δpk such that u = uk + δuk, p = pk +

δpk satisfy (4.1). Inserting u and p of this form into the steady Navier-Stokes equations

produces the system of equations
−∇2(uk +δuk)+((uk +δuk) ·∇)(uk +δuk)+∇(pk +δpk) = f

−∇ · (uk +δuk) = 0
. (4.26)

Moving the update terms to the left hand side and omitting the quadratic term (δuk ·∇)δuk,

one obtains the linear system of equations in the form of the Newton update system (4.25), (−∇2 +uk ·∇)+((·) ·∇)uk ∇

−∇ 0


︸ ︷︷ ︸

g′(xk)

 δuk

δpk


︸ ︷︷ ︸

δxk

=

 f +∇2uk− (uk ·∇)uk−∇pk

∇ ·uk


︸ ︷︷ ︸

g(xk)

.(4.27)

The corresponding discrete linear system is of the form F(uk)+C(·)uk −DT

−D 0


 δuk

δpk

=

 f − (F(uk)+DT pk)

Duk

 . (4.28)

The pure convection term C(·)uk is derived from the trilinear form introduced in section

4.1. The element-based tensor product form of C is

Ce
x = W e

x (M̂⊗
hy

2
Ĉ)︸ ︷︷ ︸

Convection in x

Ce
y = W e

y (
hx

2
Ĉ⊗ M̂)︸ ︷︷ ︸

Convection in y

Ce(we) = Ce
x +Ce

y

(4.29)
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where the convection coefficient W is taken as the iterate δuk. The operator F is defined

element-wise in equation (3.17) where the wind vector field is replaced by the previous

iterate uk.

In order to apply Newton’s method one must solve for a sequence of updates to an

initial guess, where each update satisfies equation (4.28). Because of the small domain

of convergence of Newton’s Method, the initial iterate needs to be reasonably close to

the solution in order for the method to converge. In practice, this initial iterate may be

obtained via a few iterations of Picard’s method.

To perform the nonlinear iteration in our simulations we start by choosing an initial

point (u0, p0)T = (~0,~0). After each step of the nonlinear iteration, we determine if the

nonlinear iteration has converged to the steady solution by checking to see if the kth iterate

(u(k), p(k))T satisfies the criterion

∥∥∥∥∥
 M f − (F(uk)uk−DT pk)

Duk


︸ ︷︷ ︸

n(k)

∥∥∥∥∥< 10−5︸︷︷︸
τ

∥∥∥∥∥
 M f

0


∥∥∥∥∥. (4.30)

If it does, this means that the nonlinear the vector Euclidean residual norm at step k,

denoted nk has a relative error less than τ = 10−5, and we stop the nonlinear iteration

process. If the nonlinear iteration has not converged, we formulate the linear system

for step k + 1, and solve for the next correction term (δuk+1,δpk+1). Each linear solve

is performed using Flexible GMRES (FGMRES) as in example 3.5.1 of the previous

chapter. This choice of linear solver accommodates the block preconditioner we apply

via inner iterations. FGMRES is given an initial iterate (~0,~0), and we iterate until the
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linear residual at step m, r(m), satisfies

‖r(m)‖< 10−1
τ‖n(k)‖. (4.31)

In the next section we discuss a block preconditioning strategy we use to accelerate the

convergence of FGMRES at each nonlinear iteration.

4.3 Block Preconditioner for Linearized Navier-Stokes

In this section, we introduce the block preconditioner design of Elman et al. out-

lined in [19], and follow their argument throughout this analysis. We discuss how the

convection-diffusion preconditioner developed in the previous chapter can be used in this

setting, and introduce the “Least-Squares Commutator” as a subsidiary component of this

block preconditioning strategy.

4.3.1 Eigenvalue Structure of Block System

The number of iterations required for GMRES to converge depends on properties

of the linear system operator such as its eigenvalues. Consider first a block-diagonal

preconditioner

P =

 F 0

0 PS

 , (4.32)

where PS is an approximation to the Schur complement S := DF−1DT of the linearized

Navier-Stokes operator in equation (4.23) to be determined. We are interested in the
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eigenvalues of the preconditioned system F −DT

−D 0


 F 0

0 PS


−1

, (4.33)

or equivalently, the eigenvalues of the generalized problem F −DT

−D 0


 u

p

= λ

 F 0

0 PS


 u

p

 . (4.34)

We consider separately the two possibilities λ = 1 and λ 6= 1. The eigenvalue λ = 1 has

algebraic and geometric multiplicity nu− np corresponding to the eigenvectors (u,0)T

where −Du = 0. For the second possibility, λ 6= 1, we explore this scenario by block

elimination. Starting with the first block, we solve for u:

Fu−DT p = λFu, (4.35)

u = F−1(λFu+DT p), (4.36)

u = λu+F−1DT p, (4.37)

(1−λ)u = F−1DT p, (4.38)

u = −(1/λ−1)F−1DT p. (4.39)

Eliminating u from the second block of the system gives us

−Du = λPS p, (4.40)

(1/(λ−1)DF−1DT p = λPS p, (4.41)

DF−1DT p = λ(λ−1)PS p. (4.42)

We define the eigenvalue µ = λ(λ−1), to satisfy the relationship

DF−1DT p = µPS p. (4.43)
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The optimal choice for PS is DF−1DT , which is the Schur Compliment of the linearized

Navier-Stokes equations. In this case, µ = 1 causing the preconditioned linear system

4.33 to have a total of three distinct eigenvalues

λ1 = 1, λ2,3 =
1±
√

5
2

. (4.44)

Using the Schur compliment for the PS block would allow preconditioned GMRES to

solve the linear system from Picard iteration (4.23) in three iterations [38]. This pre-

conditioner exhibits ideal convergence, but the application of the preconditioner is pro-

hibitively expensive since it requires computing the action of the inverse of the dense

matrix DF−1DT , as well as F .

From the analysis of this diagonal block preconditioner we see that developing an

effective preconditioner for the block linear systems arising from linearization requires

a cheap approximation to the actions of (DF−1DT )−1 and F−1. We also see that these

approximations should result in the preconditioned system (4.34) having eigenvalues λ

tightly clustered around 1 and 1±
√

5
2 .

To obtain a good approximation to the Schur compliment, consider the dependence

of λ on µ, namely,

λ→ 1±
√

1+4µ
2

. (4.45)

In the example above, we saw that choosing Ps = S results in the optimal choice of pre-

conditioner which led to µ = 1. This observation motivates the construction of a precon-

ditioning operator PS that approximates the Schur compliment in order to keep µ close to

1, while at the same time allowing for inexpensive application of P−1
S .

Before introducing the preconditioner PS, we point out that in [18] Elman and Sil-
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vester show that when using a diagonal block preconditioner of the form (4.32), if the

eigenvalues, µ, of the approximate Schur complement system in (4.43) are kept in a small

region in the complex plane near (1,0), then the eigenvalues λ of the preconditioned lin-

ear system 4.34 will be constrained inside two small groups on each side of the imaginary

axis, centered along the line R(λ) = 1/2. In [16] and [18], Elman et al. consider the block

preconditioner

P =

 F −DT

0 −PS

 , (4.46)

which can be viewed as an approximation to the upper block of the LU factorization of

the linear operator in 4.23, that is, F −DT

−D 0

=

 I 0

−DF−1 I


 F −DT

0 −S

 . (4.47)

Elman and Silvester [18] explain that the eigenvalues λ∗ of the upper triangular block

preconditioned system F −DT

−D 0


 u

p

= λ
∗

 F −DT

0 −PS


 u

p

 , (4.48)

again correspond to λ∗ = 1 and the eigenvalues of (4.43), but the eigenvalues correspond-

ing to µ now lie in just one side of the imaginary axis, thereby reducing the number of

iterations by approximately one-half. That is, using the upper triangular block system

(4.46) as a preconditioner instead of the block diagonal (4.33) leads to convergence of the

linear solver in roughly half the number of steps as with the block diagonal preconditioner

is applied. Moreover, the extra work to apply (4.46) is minimal.
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Our goal now is to develop cheap approximations to F−1 and (DF−1DT )−1 that

retain their spectral properties. We demonstrated in Chapter 3 that F̄−1 based on element-

wise average wind approximations can be used effectively as a preconditioner for F . This

suggests using F̄ in place of F in (4.46). For the block PS, we use the least squares

commutator developed in [17] based on an approximate commutator. The details of this

construction are discussed in the next subsection.

4.3.2 Least Squares Commutator Approximation

The least squares commutator preconditioner (LSC) was developed by Elman, Howle,

Shadid, Shuttleworth and Tuminaro in [17]. They approximate the Schur complement by

solving a particular least-squares problem that minimizes an algebraic commutator based

on the gradient of convection-diffusion operators defined on the velocity and pressure

spaces.

To begin, consider the linear convection-diffusion operator Lv =−ν∇2 +~w ·∇, de-

rived as the upper left block in the linear system arising from the Picard method in the

previous section. Assume that a similar operator Lp can be defined on the pressure space,

that is, Lp = (−ν∇2 +~w ·∇)p and then consider the commutator of these operators with

respect to the gradient,

ε = Lv∇−∇Lp. (4.49)

It is clear that for smooth ~w in Lv and Lp, ε is small in the interior of Ω. The corresponding

discrete commutator is defined as

εh = (M−1F)(M−1DT )− (M−1DT )(M−1
p Fp), (4.50)
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where Mp and Fp are the mass matrix and convection-diffusion matrix defined on the

discrete pressure space. If εh is small, meaning the two discrete operators nearly commute

with respect to the gradient, then an approximation to S = DF−1DT can be obtained by

pre-multiplying εh by DF−1M and post-multiplying εh by F−1
p Mp. That is, if εh is small

DF−1DT = (DF−1M)(M−1F)(M−1DT )≈ DM−1DT FpMp. (4.51)

The idea is to construct Fp such that εh is small. This is done by minimizing an

associated L2 norm of the discrete commutator in the least squares sense. That is, we

want to make the quantity

sup
p6=0

||[εh]p||M
||p||M

, where ||v||M = (Mv,v)1/2, (4.52)

small. To minimize this norm, the jth column of Fp is chosen to solve the least squares

problem

min
∣∣∣∣[M−1FM−1DT ] j−M−1DT M−1

p [Fp] j
∣∣∣∣

M . (4.53)

The associated normal equations

M−1
p DM−1DT [Fp] j = [M−1

p DM−1FM−1DT ] j (4.54)

are solved to provide the definition for Fp,

Fp = Mp(DM−1DT )−1(DM−1FM−1DT ). (4.55)
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Inserting this choice of Fp into equation 4.51 and simplifying the right hand side gives us

DF−1DT ≈ DM−1DT F−1
p Mp

= DM−1DT [Mp(DM−1DT )−1(DM−1FM−1DT )]−1Mp

= DM−1DT [(DM−1DT )−1(DM−1FM−1DT )]−1M−1
p Mp

= (DM−1DT )(DM−1FM−1DT )−1(DM−1DT ). (4.56)

This leads to a computationally efficient approximation of DF−1DT . We use this in the

block preconditioner from the previous section, thus defining

PS := (DM−1DT )(DM−1FM−1DT )−1(DM−1DT ). (4.57)

The inverse of PS can be applied inexpensively as

P−1
S = (DM−1DT )−1(DM−1FM−1DT )(DM−1DT )−1, (4.58)

which requires two solves involving the consistent Poisson operator DM−1DT . This op-

erator is symmetric positive definite, and the inverse can be applied via the Conjugate

Gradient method.

We conclude this section by writing the final form of the block preconditioner we

use to accelerate the convergence of the linearized Navier-Stokes systems at each step of

nonlinear the Picard iterations, namely,

P =

 F̄ −DT

0 −PS

 (4.59)

where F̄ is defined in Chapter 3 by using the average velocity on each element, DT is the

interpolated discrete gradient defined in equation (4.10) and PS is defined above. In the
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next section we demonstrate the effectiveness of this preconditioner through several test

cases.

4.4 Computational Results and Analysis

In this section we use three sample flows to test our solution method. We start our

analysis by considering the effect of inexactly applying the action of the inverse of the

block F̄ for the preconditioner of (4.46).

After determining a strategy for applying this block inexactly, we test this idea on

three sample flow problems. The first problem is known as the lid-driven cavity; we use

this problem to examine how the number of linear iterations are influenced by changes

in the mesh size and the Reynolds number. We then apply our solution technique to the

Kovasznay flow, which has an analytical solution that we use to demonstrate the accuracy

of the solution technique. In our discussion of Kovasznay flow, we also discuss how to

change tolerances inside the nonlinear and linear solvers to allow for more accurate so-

lutions. Finally, we apply our solution method to a problem that models the flow over a

step. This test case demonstrates how our method can be applied to problems with mixed

boundary conditions. Throughout this section, we report the number of FGMRES itera-

tions taken at the final nonlinear iteration as this number is characteristic of the number

of linear iterations taken at each nonlinear step.
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4.4.1 Lid-Driven Cavity

The lid-driven cavity is commonly used as a benchmark problem to test models

of incompressible flow and solvers for the associated problems. The flow exhibits re-

circulations that occur on disparate scales, thus posing a significant challenge to both

nonlinear solvers and subsidiary linear solvers. We consider a square computational do-

main Ω = [−1,1]2, where no-slip (zero-velocity) conditions are set along the sides and

along the bottom. Along the top of the domain a lid moves left to right driving the flow

inside the cavity. For this boundary, we impose what is called the “regularized cavity”

boundary condition ux = 1−x2 at y = 1. In two dimensions, steady flow states are known

to exist for Reynolds number approaching 8000 [6], in three dimensional cubes, the flow

becomes unsteady at Reynolds number much less than 1000 [50]. Figure 4.2 shows the

streamlines and pressure of an example flow when Re = 2000, and Figure 4.3 shows a

plot of the velocity profiles of ux (left) and uy (right) along the center of the cavity. In

this flow, there are four regions of recirculating fluid. In the primary chamber near the

center of the cavity, the fluid moves the fastest, whereas in the bottom corner regions two

smaller eddies form moving much slower and counter to the primary flow. The smallest

eddy occurs in the top left corner, and this eddy is present only in higher Reynolds number

flows.

We study the convergence of FGMRES using the block triangular preconditioner

from the previous section by first considering an “exact” version of the Least-Squares
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Figure 4.2: Streamline plot (left) and pressure plot (right) of Lid-Driven Cavity with
Re = 2000.

Figure 4.3: Lid-Driven Cavity velocity profiles along centerlines ux (left) uy (right) corre-
sponding to Re = 2000.

Commutator (LSC) preconditioner

PEXACT =

 F −DT

0 −PS

 . (4.60)

We do this to elucidate two items, first, we would like to see how the “exact” LSC accel-

erates the convergence of FGMRES for solving the linearized Navier-Stokes equations.

The second item we would like to understand is how well F̄ preconditions the linearized

convection-diffusion systems arising from Picard iteration.

83



Flexible GMRES is used to solve the block linear system. To apply the precondi-

tioner, PEXACT , we must apply the action of F−1. This is done by applying Flexible GM-

RES once again, using F̄ as the preconditioner for this subsidiary convection-diffusion

system. We use a fixed mesh with N = 4 and E = 64, and compare the number of it-

erations required for the block linear system (4.23) to converge with three choices of

Reynolds number, Re = 10,100,1000. Convergence results are shown in Table 4.1 we

report the following quantities:

• Block FGMRES steps: Average number of iterations required to solve the block

system (4.23) with preconditioner (4.60) to a tolerance of 10−6.

• F−1 steps: Average number of iterations for solving systems with coefficient matrix

F needed to apply the action of the inverse of (4.60) to a tolerance of 106. This solve

is preconditioned by applying F̄−1 inexactly.

• F̄−1
S steps: Fixed number of steps taken to inexactly apply F̄−1

S in order to obtain an

approximate interface solution for F̄ , which is used to precondition the upper left

coefficient matrix F in (4.60).

• P−1
S steps: Average number of steps required for the consistent Poisson solves

within the PS solve. There are two such solves per step, we use a stopping tol-

erance of 10−2.

From Table 4.1 we see that the number of FGMRES iterations appear to vary only

slightly as the Reynolds number is increased. This means that the “exact” preconditioner

is doing a good job of preconditioning the block system. We also see that F̄ appears to
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keep the number of convection-diffusion iterations relatively low. However, these itera-

tions do grow as Re is increased. This means that either more elements are needed for F̄

to be a good approximation of F , and/or the interface solution obtained from the inexact

F̄−1
S solve may not be accurate enough to provide a good approximation of F along el-

emental interface, especially for higher Re. To apply the consistent Poisson operators in

the Schur complement approximation, P−1
S , we use the Conjugate Gradient method with

a stopping tolerance of 10−2. We found that making this tolerance smaller had no effect

on the number of FGMRES iterations. In [20] Fischer introduced several preconditioning

techniques based on domain decomposition for the consistent Poisson operator arising

from operator-splitting methods. We expect to be able to reduce the number of iterations

in the consistent Poisson solves by employing these techniques.

Re Block FGMRES F−1 F̄−1
S P−1

S
steps steps steps steps

10 24 6 10 79

100 35 12 10 97

1000 52 80 10 82

Table 4.1: Convergence results for example 4.4.1 using PEXACT preconditioner for in-
creasing Reynolds number.

Using this exact preconditioner is infeasible since it requires several nested GM-

RES iterations at each application. To improve the efficiency of this preconditioner, we

eliminate the outer FGMRES iterations for F by replacing F directly with F̄ . Thus we

consider the inexact least squares commutator block preconditioner

PINEXACT−LSC =

 F̄ −DT

0 −PS

 . (4.61)
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Our goal is to be able to apply F̄ inexactly and keep the number of Block FGMRES

iterations low as the grid is refined and as Re is increased. As we pointed out earlier,

using 10 steps to obtain an approximate interface solution resulted in inner iteration counts

(middle column above) that were influenced by the Reynolds number. This motivates our

next study, where we investigate the dependence of the stopping tolerance of the Schur

complement problem F̄−1
S on the number of outer FGMRES iterations.

In this study we use the “Inexact LSC” preconditioner, where the F block is re-

placed by F̄ . We perform two sets of simulations on the same grid where N = 4 and

E = 16× 16. We consider a flow with Re = 100 and then with Re = 1000. For each

Re, we perform four test runs by setting the tolerance for the F̄−1
S solve to 10−1, 10−2,

10−4 and 10−8 respectively. We then compare how the number of FGMRES iterations are

affected by the change in this interface tolerance. Figure 4.4 contains the linear system

residual at each step of FGMRES during the second Picard iteration for each of these test

runs. The left pane corresponds to Re = 100 and the right pane corresponds to Re = 1000.

From these figures we see that the accuracy of F̄−1
S has little bearing on the overall per-

formance of FGMRES. This means that F̄−1
S can be solved inexactly at each step of the

block linear solve without affecting the convergence of FGMRES.

Next we show how the preconditioner from equation (4.59) affects the outer FGM-

RES iterations when each block is applied with a relative error of 10−2. Table 4.2 contains

the convergence results of this preconditioner as the number of elements and the degree

of the polynomial basis are increased. In the left table we use a fixed polynomial basis

of degree 4 and refine the element grid from 4× 4 to 32× 32. We list the number of

nonlinear Picard iterations, the number of block FGMRES iterations (FGMRES column)
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Figure 4.4: Comparison of linear residuals for Re = 100 (left) and Re = 1000 (right) using
FGMRES based on solving F̄−1

S to a tolerance of 10−1 (blue), 10−2 (red), 10−4 (beneath
black) and 10−8 (black).

and the number of iterations needed to apply the subsidiary components of the block pre-

conditioner. We observe a mild dependence on the number of elements. In the right table,

we repeat this experiment with a fixed element grid with four elements in each direc-

tion as the polynomial basis is increased from 2 to 16. Here we observe the number of

Picard iterations and block FGMRES steps are essentially the same as in the left table.

The subsidiary convection-diffusion interface solve takes fewer steps due to the fewer

subdomains, and the consistent Poisson solves appear to be affected more by changes in

polynomial degree than in the number of elements.

E Picard FGMRES F̄−1
S P−1

S
steps steps steps steps

16 16 20 14 8

64 12 26 32 22

256 9 37 94 45

1024 8 55 200 87

N Picard FGMRES F̄−1
S P−1

S
steps steps steps steps

2 16 20 14 8

4 9 32 16 60

8 8 38 24 139

16 8 54 33 200

Table 4.2: Convergence results for example 4.4.1 with Re = 100 using block precondi-
tioner with F̄−1

S and P−1
S , each applied with a relative tolerance of 10−2. E is varied as

N = 4 is fixed (left). N is varied as E = 16 on a fixed 4×4 element grid (right).
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We now consider how increasing the Reynolds number affects the convergence of

our solution method. For this study, we use a fixed grid with N = 8 and E = 256 with

16 elements in each direction and vary the Reynolds number from 10 to 5000. We see in

table 4.3 that the number of FGMRES iterations are mildly dependent on the Reynolds

number.

Re Picard FGMRES F̄−1
S P−1

S
steps steps steps steps

10 5 30 186 200

100 7 42 141 200

500 9 57 130 200

1000 11 96 119 200

2000 15 194 145 200

5000 20 240 107 200

Table 4.3: Convergence results for example 4.4.1 using block preconditioner with F̄−1
S

and P−1
S , each applied with a relative tolerance of 10−2 as Re is increased on a fixed grid

N = 8 and E = 256.

4.4.2 Kovasznay Flow

In this section we demonstrate how our solution method can be used to perform

high-accuracy simulations by modifying the tolerances of the nonlinear and linear itera-

tion schemes. We use a sample flow with an analytical solution, and illustrate how our

numerical solutions convergence exponentially to the exact solution as the degree N of

the polynomial basis is increased.

To perform high accuracy simulations, the nonlinear residual tolerance τ from equa-

tion (4.30) is chosen to be one order of magnitude less than the expected L2 error of the

discrete solution. Once τ is chosen, the stopping criteria for the linear system is auto-
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matically adjusted to 10−1τ‖n(k)‖ where ‖n(k)‖ is the nonlinear residual at step k. These

changes in nonlinear and linear tolerances allow the error from the linear and nonlinear

iterations to be less than the discretization error, thus allowing for accurate steady solu-

tions to be obtained at each refinement level. For example, in the test case below when

N = 8 the discretization error is O(10−9) so the nonlinear residual tolerance τ is set to

10−10.

We use a sample flow problem with an analytical solution developed by Kovasznay

in [31]. This flow exhibits behavior similar to that of a fluid moving behind a periodic

array of cylinders. In contrast to Poiseuille flow where the convection term has no effect

on the flow, this solution incorporates the full nonlinear effects of the convection term,

and thus provides a good test for numerical convergence of our scheme. We construct a

test domain Ω = [−.5,1.5]× [−.5,1] and prescribe Dirichlet boundary conditions along

each boundary corresponding to the analytical solution which is given as

u = 1− eλxcos2πy,

v = λ

2π
eλxsin2πy,

p = 1
2(1− e2λx),

λ := Re
2 −

√
Re2

4 +4π2.

(4.62)

The left pane of Figure 4.5 shows the streamlines of the computed Kovasznay flow

solution with Re = 40. The right pane shows the relative L2 error of the computed so-

lution as the degree of the polynomial basis is varied from N = 4 to N = 12. The blue

dots represent the relative error in the horizontal velocity ‖ux−uN
x ‖

‖ux‖ , whereas the red dots

show the relative error in the vertical velocity
‖uy−uN

y ‖
‖uy‖ . These values depict exponential

convergence as the polynomial degree is increased.
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Figure 4.5: Streamline plot of Kovasznay Flow with Re = 40 (left). Spectral element
convergence for Re = 40, with increasing N and fixed element grid E = 4× 6. Red
denotes error in uy blue denotes error in ux. (right).

In Table 4.4 we show the convergence results of our solution method along with

the associated relative error. This table lists the number of nonlinear Picard iterations

required for the nonlinear system to converge. Since the tolerance is increased as the

mesh is refined, the number of Picard iterations goes up with N. We also list the number

of subsidiary linear solve iterations (FGMRES column). The convergence of FGMRES is

accelerated via the block preconditioner (4.59). The interface solution for F̄−1
S is solved

to a tolerance of 10−1 using GMRES with Robin-Robin preconditioning. The consistent

Poisson operator in PS is applied inexactly with a tolerance of 10−2. We found that using

a smaller tolerance for the consistent Poisson solves had no effect on the outer FGMRES

iterations. We see that the number of FGMRES iterations generally decreases as the

degree of the polynomial basis is refined. These results indicate that our solution method

based on nonlinear iteration and subsidiary linear solvers performs well for high-accuracy

simulations.
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Polynomial ‖u−uN‖
‖u‖

‖v−vN‖
‖v‖ Picard FGMRES F̄−1

S P−1
S

degree N steps steps steps steps

4 6.8×10−4 2.2×10−3 12 42 4 27

5 2.6×10−5 8.0×10−5 12 39 4 35

6 3.6×10−6 2.0×10−5 15 35 3 22

7 2.5×10−8 3.1×10−7 18 32 3 25

8 1.1×10−9 1.8×10−8 23 27 4 28

9 5.1×10−11 8.8×10−10 27 26 5 45

10 2.0×10−12 4.2×10−11 29 24 6 74

11 8.1×10−14 1.8×10−12 30 24 5 58

12 3.1×10−15 7.0×10−14 36 24 10 72

Table 4.4: Convergence results for example 4.4.2 using an F̄ based LSC block precondi-
tioner for increasing grid resolution with Re=40, E=24 on a 4×6 element grid.

4.4.3 Flow over a step

In our final flow simulation, we test our scheme on a problem with mixed boundary

conditions. We construct a rectangular domain Ω = [−1,7]× [−1,1]. A step is configured

along the bottom half of the left boundary by imposing a zero Dirichlet boundary con-

dition. Along the top half of the left boundary we impose a parabolic inflow condition.

More precisely, at x =−1, the velocity in the x-direction is defined by
ux = −y(y−1) 0 < y≤ 1

ux = 0 −1≤ y≤ 0
. (4.63)

Additionally, we prescribe natural outflow condition at x = 5,
ν

∂ux
∂x − p = 0

∂uy
∂x = 0

, (4.64)

by using Neumann boundary conditions. This Neumann boundary condition automati-

cally sets the average outflow pressure to zero.
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The left pane of Figure 4.6 shows the streamlines of an example flow with Re = 200.

We see that there is a region of recirculation behind the wall whereas the rest of the

flow moves through the domain in a nearly parabolic profile. The right pane shows the

corresponding pressure solution. We note that a singularity exists in the pressure solution

at the point (−1,0) where the flow intersects the step.

Figure 4.6: Streamline plot (left) and pressure plot (right) of flow over a step with Re =
200.

As the computational domain is extended in the stream-wise direction, the flow

takes on a parabolic profile mimicking the flow between two plates. From this observation

one can compute the expected asymptotic outflow condition using the conservation of

mass. In particular, we know that in a Poiseuille flow the solution in the stream-wise

direction is of the form

ux =−c(y−1)(y+1), (4.65)

so given the inflow condition (4.63), we can compute the flow rate per unit width along

the inflow as Z 1

0
−y(y−1)dy =

1
6
, (4.66)
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and the flow rate per unit width along the outflow in the asymptotic limit as

Z 1

−1
−c(y−1)(y+1)dy =

4
3

c, (4.67)

so if the channel is long enough these rates should match, in which case c = 1
8 . We

compare the profile of the computed velocity at the outflow and the asymptotic velocity at

the outflow in Figure 4.7. The left pane shows that indeed the computed solution follows

a parabolic profile that nearly matches the asymptotic stream-wise velocity, the difference

between the two curves is plotted in the right pane. We find that for Reynolds number

greater than 200 the difference between the computed outflow stream-wise velocity and

the aysmptotic stream-wise velocity is greater than 10−4, while for smaller values the

down-stream velocity is less affected by the step, and the residual is less than 10−5.

Figure 4.7: Comparison of computed outflow velocity ux (red) and asymptotic outflow
condition (blue) (left) and their difference (right), Re=200.

We examine the number of linear system iterations (4.23) required at each nonlinear

Picard step as the Reynolds number varies between 10, 100 and 200. In Table 4.5 we see

there is a mild dependence of the number of FGMRES iterations as the Reynolds number

is increased. There is also a slight increase in FGMRES iterations as the degree of the
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polynomial basis is increased. In this study, we apply F̄−1
S and P−1

S to an accuracy of

10−6. We use Robin-Robin preconditioned GMRES to apply F̄−1
S and the Conjugate

Gradient method to apply the inverse Poisson operator in P−1
S . The iterations reported in

Table 4.6 correspond to the analog of this study where the degree of the polynomial basis

is fixed at N = 4 while the number of elements are varied. In the second table, we see that

the number of FGMRES iterations are essentially unaffected by changes to the number of

elements, however, the number of iterations required to apply F̄−1
S increase with increased

resolution. We also notice that there is little dependence on the Reynolds number. In

both tables, we observe that the number of steps required to apply F̄−1
S decreases as the

Reynolds number is increased, we attribute this to the effectiveness of the Robin-Robin

preconditioner.

Re N Picard FGMRES F̄−1
S P−1

S
steps steps steps steps

10 4 4 14 22 66

100 4 6 22 16 27

200 4 7 33 14 20

10 8 4 22 34 59

100 8 5 31 25 39

200 8 7 31 23 39

10 16 4 42 42 106

100 16 5 57 38 200

200 16 6 69 34 72

Table 4.5: Convergence results for example 4.4.3 using an F̄ based LSC block precon-
ditioner for increasing Reynolds number using a fixed element grid E=16 8×2 elements
with N varying.
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Re E Picard FGMRES F̄−1
S P−1

S
steps steps steps steps

10 16 4 14 22 66

100 16 6 22 16 27

200 16 7 33 14 20

10 64 4 16 56 47

100 64 5 22 34 24

200 64 7 28 32 28

10 256 4 28 109 124

100 256 5 31 94 48

200 256 6 34 86 38

Table 4.6: Convergence results for example 4.4.3 using an F̄ based LSC block precondi-
tioner for increasing Reynolds number, as the number of elements increase. N=4 is fixed
while element grids vary from 8×2 to 16×4 and 32×8

4.5 Summary

We have adapted the least squares commutator method developed for Finite Ele-

ment and Finite Difference Methods to a Spectral Element framework using Fast Diag-

onalization and inexact inner iteration for preconditioning the linearized Navier-Stokes

equations. The solution technique we developed in this chapter can be categorized as a

variant of the Newton-Krylov-Schur methods described in [19], [26], and [55]. Picard it-

eration is used to solve the nonlinear Navier-Stokes equations. At each nonlinear step we

solve the discrete linearized Navier-Stokes equations. As in the previous chapter, we ap-

plied a variant of GMRES, called Flexible GMRES (FGMRES) [47] to allow for changes

in the preconditioner during each linear iteration. This allowed us to precondition the lin-

ear equation using the upper triangular block preconditioner proposed in [17]. To apply

the preconditioner we used the domain decomposition solver developed in the previous

chapter for the subsidiary linearized convection-diffusion component, and we used the
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Conjugate Gradient method for the consistent Poisson operators within the “least-squares

commutator”.

We have demonstrated that our solution strategy is effective and robust for simulat-

ing a variety of fluid systems. We applied our method to accurately and efficiently solve

flow problems including those involving recirculation and mixed boundary conditions.

We illustrated that this solution technique can be used to provide accurate steady-state

solutions that exhibit exponential convergence as the mesh is refined in N. Furthermore,

we showed that when applying the convection-diffusion preconditioner inexactly within

the block preconditioner, the number of FGMRES iterations become mildly dependent of

the mesh and the Reynolds number.
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Chapter 5

Summary and Conclusions

In this thesis we outlined the need for efficient solution methods for discrete systems

that arise from high order discretization of steady state problems involving convection

and diffusion. We approached this problem by developing a new set of preconditioning

techniques that take advantage of flow properties and discretization structure.

We discussed how the spectral element method can be used to construct accurate

solutions and efficient matrix-free solvers that can exploit cache-based matrix-matrix rou-

tines. In chapter 3 we formed a new convection-diffusion solver by adapting the Fast

Diagonalization method to solve problems with constant convection coefficients. This

method was used in conjunction with matrix-free domain decomposition methods to allow

for efficient convection-diffusion solves using multi-element discretizations. We applied

this technology to solve convection-diffusion problems with constant winds, and then ex-

tended its use by applying it as a preconditioner for non-constant coefficient convection-

diffusion problems. This was accomplished by using average convection speeds on each

element, and using Flexible GMRES for a solver. This method enabled us to efficiently

solve non-constant coefficient problems at increased grid resolution for flows character-

ized by a wide range of Peclet number Pe = 40−5000.

After developing this technology for convection-diffusion systems, we introduced

a method for obtaining steady-state solutions for the incompressible Navier-Stokes equa-
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tions. This involved a nonlinear iteration method that required solving the linearized

Navier-Stokes equations at each step. We explained how the techniques developed in

chapter 3 for the convection-diffusion equation could be employed inside the “least squares

commutator” block preconditioner to accelerate the convergence of the linearized Navier-

Stokes equations. We pointed out that this extends the application of the least squares

commutator to a matrix-free spectral element framework. We demonstrated that this

method provides an efficient means of computing steady state flow solutions. We tested

this method on a variety of flows including flows exhibiting recirculation, singularities and

mixed boundary conditions. In our simulations we examined the influence of the mesh

size and Reynolds number. We performed analysis on grids ranging from 172−1292 and

Re ranging from 10−5000 and found iteration counts to be mildly dependent on the mesh

size and the Reynolds number.

5.1 Applications and Future Directions

To our knowledge this is the first attempt to develop efficient solvers for high-order

based discretizations of non-symmetric problems arising from fluid models without ap-

plying temporal-based splitting techniques. We mentioned at several points throughout

this thesis that steady flow solvers have direct application in implicit time-integration

schemes as well as stability analysis techniques. We have not applied our technique to

these problems in this thesis; however, we believe our method will be able to acceler-

ate implicit time stepping methods as well as eigensolvers based on high order element

based discretizations. We hope that in doing so this technique will offer an alternative to
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CFL-constrained semi-implicit time integration methods commonly used in these areas.

Our solution algorithms have been tested for two-dimensional flows. However, this

method holds promise for three dimensional problems as well since the computational

kernel is built around fast diagonalization. Fast diagonalization scales as O(nd+1), where

n is the number of grid points in a single dimension and d is the spatial dimension. This

means that where we have a calculation O(n3) in two dimensions, it would be replaced

with a three-dimensional calculation O(n4). This is significantly better than competing

methods based on LU factorizations, which require calculations O(n6).

The matrix-free nature of our algorithms has certain advantages when implemented

on parallel architectures. In essence a second level of Σ′ would need to be applied to

couple the solution between nodes shared on different processors. Mappings such as those

described in chapter 2 can be constructed between processors to allow for a geometry-free

approach [12]. Additionally the memory footprint of our method is minimal since only

one-dimensional operators are stored. It is our intention to extend this method to run on

parallel platforms with many processors in future studies.
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Chapter

Appendix A: Spectral Element Method

A-1 Tensor-Based Nodal Ordering for Domain Decomposition

In Chapters 2 and 3 we explained how the tensor product basis of the spectral el-

ement method allows for efficient matrix-vector products and Fast Diagonalization. In

Domain Decomposition Methods, however, it is common to use node orderings that enu-

merate interior degrees of freedom and then boundary degrees of freedom. In this section

we provide the one-dimensional building blocks needed to formulate the two-dimensional

operators in terms of their interior and boundary couplings within a lexigraphically or-

dered tensor product framework. We let N be the degree of the polynomial basis for a

given discretization.

We write F̂(N+1)×(N+1) as the full 1D advection-diffusion (or diffusion) matrix, and

M̂(N+1)×(N+1) as the diagonal 1D mass matrix. F(N+1)2×(N+1)2 = F̂ ⊗ M̂ + M̂⊗ F̂ is the

sparse 2D advection-diffusion matrix on a single element. We can decompose F̂ and M̂

into their interior and boundary couplings.

F̂ii = F̂(2 : N,2 : N) Interior-Interior

F̂ib = F̂(2 : N,1 : N +1) Interior-Boundary

F̂bi = F̂(1 : N +1,2 : N) Boundary-Interior

F̂bb = F̂(1,1)+ F̂(1,N)+ F̂(N,1)+ F̂(N,N) Boundary-Boundary

B̂ii = B̂(2 : N,2 : N) Interior-Interior
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B̂bb = B̂(1 : 1,~0,N +1 : N +1) Boundary-Boundary

This decomposition allows F to be written as F = FII +FΓΓ +FIΓ +FΓI with

FII = F̂ii⊗ B̂ii + B̂ii⊗ F̂ii

FΓΓ = F̂⊗ B̂bb + B̂bb⊗ F̂ + F̂bb⊗ B̂ii + B̂ii⊗ F̂bb

FIΓ = F̂ib⊗ B̂ii + B̂ii⊗ F̂ib

FΓI = F̂bi⊗ B̂ii + B̂ii⊗ F̂bi.
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