MATRIX-FREE PRECONDITIONER FOR THE STEADY
ADVECTION-DIFFUSION EQUATION WITH SPECTRAL ELEMENT
DISCRETIZATION *
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Abstract. We introduce a preconditioning technique based on Domain Decomposition and the Fast Diago-
nalization Method which can be applied to tensor product based discretizations of the steady advection-diffusion
equation. The method is based on iterative substructuring with fast diagonalization to eliminate the interior de-
grees of freedom. We demonstrate the effectiveness of this preconditioner in numerical simulations using a spectral
element discretization.

1. Introduction. The interplay between inertial and viscous forces in a fluid dictates
the length scale where energy is transferred, thus determining the resolution required to cap-
ture flow information accurately. This resolution requirement poses great theoretical, experi-
mental and computational challenges as the advective nature of the flow begins to dominate
diffusive effects. In such flows, advection and diffusion occur on disparate scales, which
has motivated the development and use of splitting schefijesThe standard method for
performing steady and unsteady flow simulations with spectral elements is operator integra-
tion factor splitting (OIFS)]. They typically involve time integration, even in steady flow
simulations. These methods treat advection and diffusion separately; advection components
are tackled explicitly using a sequence of small time steps that satisfy the CFL condition,
and diffusive components are treated implicitly with larger time steps via a backward dif-
ferencing formula that couples the system. Such schemes have been successfully applied in
a variety of settings including massively parallel turbulence simulations which require long
time integration to obtain useful flow statistics.

This paper discusses a new approach for simulating steady flows by treating the advective
and diffusive components together. Our method builds on ideas from iterative substructuring
by exploiting fast diagonalization to eliminate degrees of freedom in elemental interiors. The
efficiency of this method is centered on two advances: the first is the use of an accurate
element-based high order matrix-free discretization to construct accurate discrete solutions
while minimizing memory requirements; the second is the use of fast iterative solvers via
effective preconditioners that take into account memory hierarchies and efficient cache use to
enable processor performance.

2. Spectral Element Discretization. The spectral element method is a Galerkin method
based on the method of weighed residuals, in which a weak form integral equation is solved.
When multiple elements are used, the integral equation is broken up into a summation of the
integrals on each element. The element-based integrals are then approximated by numeri
cal quadrature. In particular, the solution is represented by a basis of high order Legendre
polynomials at Gauss-Legendre-Lobatto quadrature nodes. The resulting system of linear
matrix equations numerically represents the original integral equation on each element. Rect-
angular elements allow each elemental system to be represented via tensor products of one-
dimensional operators. Inter-element coupling of these matrix equations ensures continuity
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along elemental boundaries. These inter-element couplings can be enforced by either con-
structing a fully coupled sparse linear system of equations, or by performing a gather-scatter
operation that sums the solution along element boundaries after element-based matrix-vector
products are performed. This gather-scatter operation coupled with the tensor product for-
mulation of elemental operators yields a matrix-free discretization, in which only matrices
associated with one-dimensional phenomena need to be stored.

Compared to low order methods, spectral methods require about half as many degrees
of freedom in each spatial dimension to accurately resolve a flow. The trade-off for this low
memory requirement is an increase in computational cost per degree of freedom. By using
the Spectral Element Method, we retain the accuracy of spectral methods and gain the flex-
ibility of a matrix-free discretization to invoke cache efficient element-based matrix-matrix
calculations §]. These element-based calculations provide improved parallelism over spec-
tral and low order methods via reduced global communication and small surface to volume
ratios on each element. Together, these computational efficiencies offset the added cost per
degree of freedom, thus making spectral elements a competitive choice for discretizing the
advection-diffusion equation.

3. Steady Advection-Diffusion Equation. The advection diffusion equation governs
many flows. This equation can be written as

—%u+4 (W-O)u= f (3.1)

whereu represents velocity, the vector field= (wy(x,y),wy(x,y))" represents advection or
wind speed at each point in the domain, andepresents body forces acting on the fluid.
Following the discretization strategy discussed in secBipaquation 8.1) is recast in the
weak form:

Findu € HE such that:

/Du-Dv+/(\Tv-Du)v:/ fv.  weHd. (3.2)
Q o 0

To discretize 8.2), we restrictu andv to finite dimensional subspaces by dividing the domain
Q into E non-overlapping subdomains (elemerfis} nglfze; each subdomain is then dis-
cretized using tensor products of Lagrangian interpolantd dagree Legendre polynomials
Tiy. Thus, on each element the solution is of the form

N+1N+1

u(x,y) = Zl Zl Ujj T, (X) T, (Y) (3.3)
I=1 |=

The coefficientsu;; correspond to the nodal values wfon the tensored Gauss-Legendre-
Lobatto (GLL) quadrature points defining a discrete solution on each element.

The mass matrix is defined to be the block diagonal matrix diag(Me) whereMe is
the local mass matrix on an element of sigex hy is represented via a tensor product of
one-dimensional operators

hedy - -
Me:XThyM®M. (3.4)

Due to the orthogonality of thp basis functiong; andmy j the mass matrix is diagonal.
The one-dimensional operath = diag(p;) i =1:N+1 wherep; is the GLL weight
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associated with thé" GLL quadrature nod&. Likewise, the advection-diffusion operater
is represented on each element through this basis, namely

Fe= (M@%A)—&—Wﬁ(l\?l@%f)) (3.5)
X
Re= (BA@@ M) +V\@e(&|5®|\7|)
y hy 2
Fe(W?) = F¢+Fy

The discrete two-dimensional diffusion operator is formed via tensor products of the one-
dimensional second derivative operafowith the one-dimensional mass matik Simi-
larly, the advection operator is formed via a tensor product of the one-dimensional deriva-
tive operatoD with the mass matri, then scaled by the wind speed at each node via the
(N+1)? x (N+1)? diagonal matrice¥ = diag(wx(&;,&;)) andw® = diag(wy(&;,&;)). The
one-dimensional spectral differentiation mattixs defined as

A dm -
Dij =5 g LiE{L.N+1F (3.6)

and the one-dimensional second derivative operatisrdefined in terms of the spectral dif-
ferentiation matrixD:

N+l o
Aj= Y DupkDj  i,i€{L,.,N+1}2 (3.7)
=]

With this discretization strategy we obtain the system of linear equations

FWu=Mf=b (3.8)

whereF (w) is the non-symmetric advection-diffusion operator, &ndhe diagonal mass
matrix. This system is solved using an iterative scheme, namely, preconditioned GMRES
[6]. In section5 we discuss the preconditioning methods used to expedite the convergence of
GMRES, but first we introduce a fast solver for tensor product based computations.

4. Fast Diagonalization Method (FDM) . The spectral element discretization enables
the advection-diffusion equation to be written as sums of tensor products on each element.
This form is particularly useful when performing matrix-vector products, and when solving
certain elemental systems of equations. The Fast Diagonalization Method (BDaIpjvs
for the solutions of systems in which the coefficient is of omfeand has a tensor product
structure inO(n%+1) operations, wherd represents the number of spatial dimensionsrand
represents the number of quadrature points used along each dimension on a single element.

The Fast Diagonalization Method cannot be used with non-constant coefficients as in
equation 8.5. However, by constructing a preconditioner for equati®®)(based on local
bi-constant winds, we can use FDM to solve a constant coefficient problem on each element.
In the remainder of the section, we demonstrate how the FDM is applied to the resulting
equations.

Consider equatiorB(5) in the special case whevd® = ¢, and\/\/ye = ¢y are both constant
on each element. This allows the advection-diffusion operator on each element to be written
as

Fe(cw,¢y) =M@ P+ Ry @M =: F®. (4.1)
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We use the fact tha is_diagonal to apply a transformation ES that will allow for fast
diagonalization. Namelys€ = MY/2EMY/2 such that

£

NM-Y2EM Y2 (4.2)
_ (M71/2® ,\’/‘lfl/Z)(M @B + |5y® M)(Mfl/Z ® Mfl/Z)

(I1® Mfl/Zlfxmfl/Z) + (Mfl/Zlfymfl/Z(@ )

(1®B)+ (Ax]1)

where bothA andB are diagonalizable. Thus=SAS 1, B=TVT 1 and

F=(SoT)Axl+1aV)(StaT? (4.3)
so that
Flo(seT)Aal+l1aV) (s taT™). (4.4)

Since the transformed matrix can be diagonalized, the action of the inverséafan be
inexpensively applied as

Fe il (M Y2eNM Y2)(seT)Ael+1oV) HSteT H(MY2eM2). (4.5)

This formulation only depends on the inverses of diagonal matrices, and of small matrices cor-
responding to one-dimensional phenomena. We exploit this in the application of our solvers
and preconditioners as discussed in the following sections.

5. Preconditioning Advection Diffusion Equations via Iterative Substructuring. Ap-
plying a preconditionePr that cheaply retains the spectral propertie§ 6f) one may sig-
nificantly reduce the number of iterations needed to sddv@).( To perform matrix-vector
products involvingf’,;l, splitting methods based on multigrid have been applied successfully
within a finite element framework]. However, we wish to maintain a matrix-free implemen-
tation based on local tensor products, so standard splitting techniguesfemot available.
To retain the accelerated convergence of the Krylov subspace methods obtained via splitting,
we instead our preconditioner using element-wise approximatioR$vef by approximating
the advection speed with a constant wimtlon each element. That iB; := F, whereF is
defined on each element ia. ().

Using this local wind approximation to formulae, we appIyPF‘1 by performing iter-
ative substructuring. The Fast Diagonalization Method is employed in element-wise solves
to obtain interior degrees of freedom, and elemental boundary conditions are determined by
an iterative Schur complement solve on the elemental interfaces. This procedure is similar
to the Additive Schwarz method used in solving the Poisson equation describ@d bt
with non-overlapping subdomains. By eliminating dense interior degrees of freedom via Fast
Diagonalization iterations on the interfaces are performed on a significantly smaller system.
Thus,P= = F provides an inexpensive preconditioner that approximates local flow structure.
We outline the use of substructuring methods for applicatidh-ef1 in section6.

In flows where the wind coefficient is bi-constantP= constitutes a direct solver to
equation 8.8) (but with an iteration needed to app‘r'gl on the union of element interfaces).
We demonstrate the convergence and accuracy of this method as a direct solver in examples
7.1and7.2 In more general flowsi?,;1 is used as a preconditioner within an iterative solution



PRECONDITIONERS FOR ADVECTION-DIFFUSION EQUATION 5

algorithm to solve equatior8(8). In such cases, the action Iafl is performed as mentioned
above at each step of the iterative scheme. Thus, the preconditioned iterative solver would
require an inner iteration for the preconditioner at the interface nodes4hand an outer
iteration for 3.8). In example7.3we demonstrate the use Iagfl as a preconditioner.

6. Domain Decomposition via lterative Substructuring. In this section we outline
the use of a matrix-free iterative substructuring method to perform the action of the precon-
ditioner P,;l. Substructuring methods solve a PDE on a set of non-overlapping sub-domains
by eliminating the interior degrees of freedom, solving for inter-element interfaces, and then
using back substitution to solve for the interior degrees of freedom. In large systems, the de-
grees of freedom on elemental interfaces are determined using iterative methods. The system
that governs the elemental interfaces may be poorly conditioned, and thus requires precondi-
tioning. We outline the domain decomposition method that we use in conjunction with the
Neumann-Neumann preconditioner for the interface solve.

Subdividing the domain int& spectral elements, with the elemental interfaces being
represented by a sEt and interior degrees of freedom represented byl§etsne obtains a
system of equations of the form

F”l (_) 0 E_]ﬁ U|1 b|1 _F_UB||1 t3|1

0 FRZ 0 ... F2 U2 b2 — Fug|2 b2
SRR Z S : =1 | 61
0 0 .. RAf FF UEe bie —Fus|ie bie

F|—1| F|—2| F|IF Fr ur br —FUB||' BF

Boundary conditions are implemented outside of the system operat@i)nify subtracting
Fug from the right hand side vectof.ug denotes the full advection-diffusion system matrix
applied to the Dirichlet boundary vectog. The goal now is to solve for interface valugs

in order to perform back substitution and solve fipron each sub-domain interior. To solve
for ur the system matrix ing.1) is split into a lower and upper part

| 0 0 0 0 ... 0 FE

0 | 0 0 0 R} 0 ... F2

: . . . | (6.2)

0 0 I 0 0 |:_II EE
REC RET LR Lo o 0 R

whereFy = 5, (F& — F& F¢ 'F2) represents the Schur complement of the system. By
multiplying both sides of§.1) with the inverse of the lower triangular matrix, one obtains the
system

F|:|I' 9 e O FI:;; U|1 p|l
0 R} © F2 U2 b2

: o = : (6.3)
0 O I:_|I|E F_E U|E E)|E

E
0 0 .. 0 F ur g
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with gr = 5, (bre — F& F¢~"bie). The interface variables are then obtained by solving

Four = gr- (6.4)

Writing Fp = 5 Fg allows for efficient tensor product based (see apperg)pcomputation of
the elemental matrix-vector products, which can be used to apply the matrix on each element
inside a GMRES solver. Onag- is obtained it is substituted back int6.8) to provide
elemental boundary conditions for the interior solves. The interior varialéeare then
obtained via element-wise fast diagonalization. We note It"-Tfa_tl in the Schur complement
operator is performed in the same manner.

To reduce the number of GMRES iterations required to s@v$ & Neumann-Neumann

preconditioner is employed. The Neumann-Neumann methodz@é@T (F_Oe)*1 D® as

a preconditioner for@.4). A simple two-domain case illustrates that with this choice, the
preconditioned system is approximately a scaled identity when the sub-domains are of similar
sizei.e.Fg ~ F¢

BB NR+R) =2+ R IR+ R IR =2+ R R+ (B R) 69

The matrice*® are chosen to provide an appropriate inverse scaling factor. The conver-
gence factor of the preconditioned system is bounde§§b§)‘t+ log(N))? [7] whereC grows
with the norm of the advection coefficiefftv||, N is the order of the spectral element basis
functions and H is the diameter of a typical elem@gat In the case of many domains, it is
essential to provide an additional coarse grid solve to eliminatetHé dependence. When

-1
applying the preconditioner it is not necessary to fd?éﬁ) on each element since

-1 -1
A9 V=0 1FY (?)v (6.6)
where
F_e F_e
- H 6.7)
rl rr

7. Results. We demonstrate the effectiveness of a constant coefficient approximation on
subdomains. First we use use fast diagonalization and domain decomposition as a solver for
two cases .1, 7.2) where the advection coefficient is constant in each direction. We then
demonstrate in section.3 how this method performs as a preconditioner for systems with
non-constant advection coefficients.

7.1. Example 1: Analytic solution with outflow boundary layer. We first introduce a
problem whose solution exhibits a dramatic change in the outflow boundaryat This
problem has an analytic solutiofi][ and Table7.1 shows that as the polynomial degree is
doubled the discretization error is reduced by two orders of magnitude. This reduction in
error confirms the expected exponential convergence to the solution. Additionally,7Table
lists the number of GMRES iterations required to solve&l)for the velocity at the elemental
interface nodes. A plot of the numerical solution and the velocity contours is given in Figure
7.1 By way of contrast, in Tabl@.2 we show algebraic convergence results for a second
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order finite element solution usirRg * as a solver. We mention that the number of iterations

for the finite element method is greater due to the increased number of interface nodes. This
substantiates a central efficiency of the spectral element method via the large volume to sur-
face ratio of nodes on each element. In the discretization corresponding to Figuhere

are roughly five times fewer interface nodes than there are interior nodes, this means the Fast
Diagonalization Method can efficiently eliminate a large portion of the degrees of freedom
directly, and we only need to obtain an iterative solution corresponding to a relatively small
number of degrees of freedom, thereby significantly reducing the number of operations to
obtain a solution.

TABLE 7.1 TABLE 7.2

Spectral convergence for example 1. Algebraic convergence for example 1.
Number of Number of
N [lu—unll2 Iterations E | [lu—up2 h Iterations
4 | 1.185x 101 26 4 4704 .25 50
8 | 1.199x 1073 39 8 .2605 125 67
16 | 1.308x10°° 61 16 .0757 | .0625 165
32 | 1.353x10° 132 32 .0137 | .03125 210

The iteration results in Tablead1 and 7.2 correspond to the number of iterates required to
obtain an interface solution t®&.{) using non-preconditioned GMRES. In addition to these
iterations, a solution on the element interiors is obtained via Fast Diagonalization. These re-
sults are preliminary since our Neumann-Neumann preconditioner for the Schur compliment
solve in €.4) is not yet in place. We expect the number of iterations to be reduced substan-
tially via this preconditioner. In particular, we hope to obtain a fixed iteration count via a
coarse grid multilevel Neumann-Neumann preconditioner.
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FIG. 7.1. Steady advection diffusion flow with bi-constant winds. We#t (0, 20) and outflow boundary layer
at y= 1, convergence results in Tablel Spectral element discretization with 4 elements in each dimension, and
polynomial degree 16 on each element.

7.2. Example 2: Moderate wind with internal boundary layer. In our second exam-
ple we demonstrate the effectiveness of our method at capturing the internal boundary layer
(see Figurer.2) that results from a jump discontinuity in the inflow region of the boundary.
In this flow the advection speed is significantly larger than in the previous example causing
the flow to exhibit sharp features as shown in Figuz Using iterative substructuring, GM-
RES converges within ¢ in 110 steps without Neumann-Neumann preconditioning. In
this example, the Schur complement solve involves a system with roughly five times fewer
unknowns than the global system.
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FiG. 7.2. Steady advection diffusion flow with bi-constant wimids: 200(—sin(11/6),cog pi/6)). Flow ex-
hibits an internal boundary layer Q,/1/200) and jump discontinuity in boundary at (0,-1). Spectral element dis-
cretization with 8 elements in each dimension, and polynomial degree 16 on each element. GMRES converges to
105 in 110 steps without preconditioning.

7.3. Example 3: Recirculating wind with characteristic boundary layers. To test
our preconditioner, we use a recirculating wiid= 200(y(1 —x?), —x(1—y?)). Discontinu-
ities at the corners of the nonzero boundary lead to boundary layers (see Fi§uieigure
7.3illustrates the convergence behavior of the preconditioned and non-preconditioned system
for solving 3.8). Flexible GMRES §] is used for the outer iteration, and non-preconditioned
GMRES is used to solve the Schur complement system inexactly inside the application of
the preconditioner. In Figuré.3we compare the number of iterations required for our pre-
conditioned system; it is prohibitively expensive to acquire an accurate solution using GM-
RES without preconditioning, whereas the preconditioned system, using Flexible GMRES
converges in 22 iterations. That is, we compute an inexact interface solgtiaith 1%
accuracy,||Four — gr|| < .1/|gr||, this requires approximately 30 inner GMRES iterations.
Because of this inexact inner step, we use Flexible GMRE®[ the outer iteration.

By employing a Neumann-Neumann preconditioner for the Schur complement solve, we
expect a reduced iteration count for the interface solve, and hope to be able to efficiently
obtain a more accurate solution at the interface to improve the iteration count for the Flexible
GMRES system. However these preliminary results are encouraging. The cost of the inexact
interface solve i©((N +1)(120E + N + 1)). Additionally each application d®=* requires
the Fast Diagonalization Method to be performed on element interiors the cost of this is
roughly the same as a matrix-vector multig(E(N + 1)?). The work per iteration will
change with the inclusion of a Neumann-Neumann interface preconditioner, the number of
operations required per application®f* will be O(2E(N + 1)? + (N +1)(4ME + N + 1))
whereM denotes the number of interface iterations (30 in this example without the Neumann-
Neumann operator), the additional factor of 2 in the first term corresponds the application of
the Neumann-Neumann preconditioner as prescribed in equétign (

8. Conclusion. We have developed a matrix-free solution method for tensor-product
based discretizations of the steady advection-diffusion equation with bi-constant wind speed.
This method is based on iterative substructuring, and uses Fast Diagonalization to eliminate
interior degrees of freedom on each element. We have also shown how to use this method as
a preconditioner for advection-diffusion systems with non-constant wind speeds. Preliminary
results are positive, and we expect improved iteration counts by incorporating a Neumann-
Neumann preconditioner into elemental interface solves.
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FiG. 7.3. Computed solution of steady advection diffusion flow with recirculating wind 200(y(1 —
x?),—x(1—y?)). A spectral element discretization with 12 elements in each dimension, and polynomial degree 4

on each element.(left) Comparison of preconditioned Flexible GMRES iterations and non-preconditioned GMRES
iterations for solving equatior3(8). (right)

Appendix: One Dimensional Matrix Decomposition for Matrix-Free Domain De-
composition. The tensor product basis of the spectral element method allows for efficient
one dimensional dense matrix-matrix products to replace large sparse matrix-vector prod-
ucts. This tensor product formulation also allows for the use of the Fast Diagonalization
Method, which is a key component of the element-based matrix-free preconditioning strategy
we advocate in this paper. Because it is common to use node orderings that enumerate interior
degrees of freedom and then boundary degrees of freedom we show the 1D building blocks
needed to formulate the 2D operators in terms of their interior and boundary couplings within
a lexigraphically ordered tensor product framework. Wélee the degree of the polynomial
basis for a given discretization.

We write If<N+1)X(N+1) as the full 1D advection-diffusion matrix, arﬁjNH)X(NH) as

the diagonal 1D mass matriy, 12, (.12 = F ® B+ B&F is the sparse 2D advection-
diffusion matrix on a single element. We can decompbsand B into their interior and
boundary couplings.

Fi = F(2:N,2:N) Interior-Interior

FLr =F(2:N,1:N+1) Interior-Boundary
Frs=F(1:N+1,2:N) Boundary-Interior
Fob = F(1,1) + A(1,N) + F(N,1) + F (N,N) Boundary-Boundary
Bi = B(2:N,2:N) Interior-Interior
Bbp = B(1:1,0,N+1:N+ 1) Boundary-Boundary
This decomposition allows to be written as- = F; + Frr + R + Fry with
Fi =Fi ®Bi +Bi oF
Frr = lf ®|§bp+ égb@ lfA+ Fob @ Bii + Bii @ Fop
Fr =FLrR®Bii +Bi ® FiLr
Fri = Kt ® Bjj + Bji ® Fre.
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