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The goal of this research is to construct an Adaptive Spectral Element Method to solve non-linear PDE’s. 

We aim to create an efficient method for solving large scale PDE's on complex domains. We use adaptivity to maintain a high working accuracy for long time periods without wasting computational resources. Spectral Element Methods are 
computationally efficient for higher dimensional problems due to their tensor product formulation of the system operators.

After discretizing in space and time, we are left with a matrix equation. In 
1D, the matrices are block diagonal, with each block corresponding to a 
single element. The block size is (p+1)^2, where p is the polynomial degree 
of the approximation on that element. In higher dimensions, the system 
matrices are formed by applying kronecker tensor products of the 1D 
operators. Thus
There is very little storage overhead for the higher dimensional systems. 
Moreover, the kronecker tensor formulation reduces the order of operations 
from O(n^(d+2)) to O(n^(d+1)) for a d-dimensional calculation with n grid 
points.
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We determine a global ordering of each node of the discretization, this 
ordering determines the structure of the coupled system operators. 
However, because we are using iterative solvers, we never need to construct 
the global system. Instead, we compute the contribution of each element to 
the solution, and then use a weighted sum to obtain the global solution, 
taking into account where the same node is used on two elements. For 
example the global solution at node 7 in the global ordering is obtained by 
adding the solution at node 7 from element 1 and node 1 from element 2, 
and then dividing by 2. The name of this weighted summation operation is 
referred to as Direct-Stiffness-Summation (DSS). In order to parallelize the 
SEM, each processor is assigned a group of elements whose solution it will 
compute. Each time a solution on those elements is computed, a parallel DSS 
is used to determine the nodal values at (non-local) element Boundaries. For 
example if element 1 and element 2 are on separate processors, each time a 
solution is computed on both of them, the solution at node 7 on processor 1 
is summed with the solution at node 1 on processor 2. The result is then 
divided by two and stored on both processors as the value of the solution at 
that node. In order to determine the dependencies between processors for 
complicated geometries, a parallel bin sort is used. This past summer we 
implemented this parallel DSS technique using MPI.

Solution to 1D Viscous Burgers’ Equation using P-Adaptivity

Slope of solution at x=0, within 
99.85% of the analytical value at 
max slope.

We have implemented error estimators that 
determine when to increase or decrease the 
polynomial degree on each element in order to 
obtain an accurate solution without wasting 
computational resources in well behaved areas of 
the solution. 
To the right, we show the computational work 
required to integrate a linear advection equation 5 
periods while maintaining a phase shift error <.1 
(Karniadakis).
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The Spectral Element Method approximates the solution to the PDE by 
partitioning the domain into elements, and on each element, solving an 
integral equation. In order to solve the equation, one constructs a weighted 
sum of polynomial basis functions. In particular, SEM uses the Gauss-
Lobatto-Legendre quadrature rules in order to obtain an exact solution for 
integrands of order 2P+1 or less, when using Legendre polynomials of 
degree P.  This gives SEM an exponential convergence property that 
methods such as Finite Element, or Finite Difference methods don’t have. As 
we increase the polynomial degree in the SEM, we exponentially approach 
the solution to the integral equation. In low order methods, where only the 
number of elements is increased, one obtains only algebraic convergence to 
the solution.

Linear advection of a 2D Gaussian wave for one time peroid.

We have implemented 2D Advection Diffusion Equation, including non-linear advection. This 
code allows for periodic, and Dirichlet Boundary conditions. We have designed our code in an 
object oriented fashion to allow us to add new capabilities.  Future Research plans include 
implementing the Navier-Stokes Equations, curved elements, adaptivity in higher 
dimensions, and Preconditioned Iterative Schemes. 

References

[1] Anil Deane. Spectral and spectral-element methods: Lecture notes in high performance computational physics. NASA 
Contractor Report 203877, 1997. 
[2] P.F. Fischer. An overlapping schwarz method for spectral element solution of the incompressible navier-stokes 
equations. Journal of Computational Physics, 1997
[3] S.J. Sherwin G.E. Karniadakis. Spectral/hp Element Methods for CFD. Numerical Mathematics and Scientific 
Computation. Oxford University Press, Oxford, 1999.
[4] Rainald Löhner. An adaptive finite element scheme for transient problems in cfd. Computational Methods in Applied 
Mechanics and Engineering, 61:323338, 1987. 
[5] P. Aaron Lott. Project website. http://www.lcv.umd.edu/ ~palott/research/graduate/663/.
[6] E.H. Mund M.O. Deville, P.F. Fischer. High-Order Methods for Incompressible Fluid Flows. Cambridge Monographs on 
Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2002.

 
. 


