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Abstract

In this report, we discuss the theory, design and implementation of an Adaptive Spectral Element
Method using p-type refinement. We solve the 1D and 2D viscous Burgers’ Equations. Finally,
we compare our 1D results against analytical and numerical solutions to validate our code, show
preliminary 2D results for 2D Viscous Burgers’ Equation, and validation of our 2D linear advection
scheme.

5



1 Motivation/Scientific Context

To model the dynamics of the Earth’s Mantle we treat it as a highly viscous, incompressible
Boussinesq fluid [4]. It is important to study the affects of flows over long time periods to bet-
ter constrain the parameter space of the model. There is seismic and geochemical evidence of
chemical/structural phase transition at depths of 410 km and 670 km. There are viscosity changes
of several orders of magnitude. To handle these sharp interfaces one needs a refinement method to
efficiently study the flow in this region.
The Governing Equations are:

1
ρ

∇p = ν∇2u−gα∆T (Momentum Equation) (1)

∂T
∂t

+u·∇T = κ∇2T +
J

ρCp
(Thermal Energy Equation) (2)

∇ ·u = 0 (Incompressibility Equation) (3)

u Velocity
T Temp
p Pressure
ν Viscosity
κ Thermal diffusivity
α Thermal expansion coefficient
ρ Density

Cp Heat capacity at constant pressure
J Rate of internal pressure per unit volume
g Gravity

In the Momentum equationdu
dt = 0 because we have an infinite Prandtl number,Pr = ν

κ . Note,
these are the Incompressible Steady Stokes Equations with the source term∆T coming from by
the unsteady, advection diffusion equation at each time step.
For this project we want to implement an p-adaptive Spectral Element scheme to solve the Advec-
tion Diffusion equations in 1D and 2D, with advection velocity~c and viscosityν. This code will
provide a testbed for the refinement methods to be used to investigate mantle flows.

1D
∂u
∂t

=−(~c
∂u
∂x

)−ν
∂2u
∂x2 in Ω ∈ R t ≥ 0 (4)

2D
∂u
∂t

=−~c·∇u−ν∆u in Ω ∈ R2 t ≥ 0 (5)

Note~c = u yields the viscous Burgers’ Equations.

2 Spatial Discretization-Spectral Element Method

To solve these equations efficiently while maintaining a high working accuracy over long time
periods, we choose the Spectral Element Method (SEM) for our spatial discretization. We see
from figure (2) that high order methods require much less work to maintain a desired working
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accuracy over long time scales as opposed to lower order methods such as Finite Differencing,
or Finite Element. This is due to the exponential convergence property of SEM, compared to the
algebraic convergence of low order schemes. In this section we discuss the background of SEM,
and its convergence properties.

Figure 1: Computational Work (FLOPS) required to integrate a linear advection equation for 5
periods while maintaining a cumulative phase error ofε = 10%.[5]

2.1 Constructing SEM - Method of Weighted Residuals

Suppose we have a linear differential equation in the domainΩ

L(u) = 0. (6)

We assumeu(x, t) can be accurately represented as

uδ(x, t) = u0(x, t)+
N

∑
i=1

ũi(t)φi(x) (7)

whereφi(x) are trial functions, ˜ui(t) are unknowns, N refers to the number of degrees of freedom,
andu0(x, t) is chosen to satisfy initial and boundary conditions.
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Using the method of weighted residuals, we substitute7 into 6 to produce the non-zero residual R
such that:

L(uδ) = R(uδ) (8)

In order to solve for ˜ui(t) we restrict R to satisfy

(v j(x),R)Ω = 0 j = 1, ...Ndo f (9)

wherev j(x) are test functions. The problem now reduces to a system of ODE’s in ˜ui(t).
By choosing the test functionv j(x) = φ j(x) one obtains a Galerkin (modal) method, and by

choosingv j(x) = δ(x−x j) (dirac delta) one obtains a Collocation (nodal) method. This technique
is used to construct the spectral element discretization of a PDE. For SEM the trial functionsφi(x)
are to be Chebyshev polynomialsTn(x), Legendre polynomialsLn(x), or some member of the

Jacobi polynomialsPα,β
n . [5]

2.2 Elements

In the previous section we defined a global method for solving PDE’s. However, due to having one
computational domain some complexities arise. Complex geometries and Boundary conditions
can be difficult to accomadate, and global transforms require a lot of communication overhead. To
counter these difficulties the computational domain is partitioned into a collection of subdomains
or “elements”Ωe.

These elements are similar to the elements of a Finite Element grid. However, instead of having
low order basis functions on these subdomains, we retain the high order approximation of spectral
methods by using spectral basis functionsφi(x) on each element.The Spectral Element Method
combines the flexibility of the Finite Element Method with the accuracy/convergence properties of
Spectral Methods. For this project, we use Gauss-Legendre-Lobatto polynomials as our local basis
functions. We can now write our solution in terms of local and global modes,

ue
N(x) =

N

∑
i=0

ũi(t)φi(x) =
Nel

∑
e=1

P

∑
p=0

πe
p(ξ)ũe

p. (10)

φi(x) are global modes, whereasπe
i (ξ) denotes theith degree GLL polynomial scaled to the size of

the local elementΩe, and zero on all other elements. Thus this is a “local” calculation, except on
element boundaries.

2.3 Properties of SEM

2.3.1 Convergence

At the beginning of the section we mentioned that SEM has an exponential convergence property
which yields an advantage over low order schemes for computing flows over long time periods.

Definition 1 (Algebraic Convergence)For fixed polynomial degree and increasing number of el-
ements, un(x, t) will algebraically approach u(x, t), that is, as we double the number of elements,

we get roughly12 the error.
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Figure 2: 1D GLL grid NEl=2 P=5 Figure 3: 2D GLL grid. NEl=16, Px=5, Py=5

Figure 4: GLL Polynomials of degree 1 through 4

Definition 2 (Exponential Convergence)For fixed number of elements and increasing polyno-
mial degree, un(x, t) will exponentially approach u(x, t), that is, as we double Polynomial degree
on each element we get roughly 2 orders of magnitude error reduction.

2.3.2 Tensor Products

The Spectral Element Method scales well to higher dimensions. One of the key reasons for this,
besides locality, is the tensor product formulation of spectral elements in higher dimensions. [8]
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In 2D we can write our solution

uM,N(x,y) =
M

∑
i=0

N

∑
j=0

ui j πM,i(x)πN, j(y). (11)

Definition 3 (Kronecker Tensor Product) If Ak×l and Bm×n the Kronecker Tensor Product Ckm×ln =
A⊗B is given by

C :=


a11B a12B . . . a1l B
a21B a22B . . . a2l B

...
...

...
ak1B ak2B . . . aklB

 . (12)

Thus, if we want to perform a linear operation onu, for example a derivative, it can be written as
a tensor product of two matrices timesu. Supposewpq represents

∂u
∂x

(ξM,p,ξN,q) =
M

∑
i=0

N

∑
j=0

ui j π′M,i(ξM,p)πN, j(ξN,q) =
M

∑
i=0

uiqπ′M,i(ξM,p)

In matrix-vector format this is written as

w = Dxu :=


D̂x

D̂x
...

D̂x




u00

u10
...

uMN

 (13)

whereD̂x is the one dimensional derivative matrix.Dx andDy can be expressed asDx = I⊗ D̂x and
Dy = D̂y⊗ I .

Now we see how tensor products turn up in spectral element methods, but the reward of using
them is in this property.

(A⊗B)~u = BUAT (14)

where U is the properly reshaped version of~u. Thus, calculations of the form

(A⊗ I)(I ⊗B)~u (15)

which would beO(n4) for square A and B using straight forward matrix vector multiplication, is
reduced to aO(n3) calculation. In general, matrix vector operations involving a discretization with
n mesh points per spatial dimension, withd spatial dimensions results inO(nd+1) operations.

10



2.4 1D Viscous Burgers’ Equation Discretization

Starting with the PDE

ut +uux = νuxx, in Ω = [a,b]

we assume the solution

u(x, t)≈ u0(x, t)+
N

∑
i=1

ũi(t)φi(x), (16)

and use the method of weighted residuals to obtain

R(u) = (uN)t +uN(uN)x−ν(uN)xx.

Next we set the inner product(v j(x),R)Ω = 0, which gives us the integral equation

Z
Ω

vN(x)(uN)tdx+
Z

Ω
vN(x)uN(uN)xdx−ν

Z
Ω

vN(x)(uN)xxdx= 0.

Now we partitionΩ = [a,b] into Nel elementsΩe each with step sizehe, and break up the integral
into the sum of the integrals over each element.

Nel

∑
e=1

[
Z

Ωe

vN(x)(uN)tdx+
Z

Ωe

vN(x)uN(uN)xdx−ν
Z

Ωe

vN(x)(uN)xxdx] = 0

The important thing to realize is thatπi(x) is a P degree Legendre Polynomial, and if we use
the P+ 1 scaled Gauss-Legendre-Lobatto points in each elementΩe to perform the numerical
quadrature, we get an exact quadrature on each element for polynomial degrees up to2P+1.
After scaling, and applying GLL quadrature rules, we get the system

Mut(t)+C(u)u(t)+νAu(t) = 0. (17)

WhereM is a block diagonal matrix with elementsMe
P defined as

Me
P,i j =

he

2
diag(ρi) (18)

{ρi}P
i=0 are the GLL quadrature weights.C is the block diagonal matrix with elementsCe

P(u)
defined as

Ce
P,i j (u) = ρiuiD

(1)
P,i j (19)

whereDP,i j are the nodal values of the first derivative of the GLL interpolation polynomial.A is
the block diagonal matrix with elementsAe

P defined as

Ae
P,i j =

2
he

P

∑
m=0

ρiD
(1)
P,miD

(1)
P,m j (20)
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Figure 5: Mass Figure 6: Convection Figure 7: Diffussion

2.5 2D Viscous Burgers’ Equation

Going through the same procedure with the 2D viscous Burgers’ equation

∂u
∂t

+u·∇u =−ν∆u in Ω ∈ R2 t ≥ 0 (21)

One obtains the same form of the matrix system [2]. The 2D SEM discretization for burgers’
equation on elemente, usingN degree GLL basis functions becomes

Meu̇e+Ce(ue)ue =−νAeue (22)

Using the Kronecker tensor product, we write the element matrices as

Me =
Le

1Le
2

4
(M̂⊗ M̂) M̂ = diag(ρi) i = 0, ...N, (23)

Ce(ue)ue =
Le

2

2
UeM̂D̂UeM̂T +

Le
1

2
UeM̂Ue(M̂D̂)T , (24)

and

Aeue =
Le

2

Le
1
ÂUM̂T +

Le
1

Le
2
M̂UÂT . (25)

WhereLe
i is the length in thexi direction for elemente, D̂i j is the 1D differentiation matrix on the

GLL grid, and

Âi j =
N

∑
l=0

D̂li ρl D̂l j i , j ∈ 0,1, ...,N2 (26)
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Thus our entire system can be evaluated using only 1D operators. We leave this spatial dis-
cretization in this form, because in practice we perform a scatter operation on the global solution
ug to obtain the local contributionue on each element. We then solve forut+1

e on each element, and
then perform a gather operation to obtain the global solutionug. Direct solvers become impractical
for d > 2, because of the global system size we discuss this in detail in section3.

Time discretization for convective flows are based on operator splitting schemes [8] [3]. In
such schemes the diffusion equation is solved using an implicit method independent of the pure
convection problem, which is solved using an explicit scheme that satisfies CFL constraint. Vis-
cous flows, however, can be solved using an implicit scheme coupled with an extrapolation of the
convective term. Both schemes lead toO(∆t3) accuracy so not to loose the accuracy gained by this
high order spatial discretization. In section5 we discuss each of these time discretization schemes.

3 Computation Localization

When we began this project, we formed the global 1D system matrices, and then iterated over
time. However, as we moved into 2D these system matrices have size(P+1)2NxNy, which, even
for coarse meshes are quite large. Thus, we investigated methods for solving local systems.

3.1 Static Condensation

Earlier we gave an illustration of the coupling between elements. By re-ordering the mapping
between local and global indices we could effectively decouple the interiors and only solve the
coupled system on elemental boundaries. This could all be done with local element matrices of
size(P+1)2.
When solving the local system, elemental matricesLe can be split into blocks containing, boundary
and interior contributions. [5]

Le =
[

Le
b Le

bi
(Le

bi)
T Le

i

]
. (27)

Here,Le
b denotes the parts ofLe formed by boundary-boundary connections,Le

bi denotes the parts
of Le formed by boundary-interior connections, andLe

i denotes the parts ofLe formed by interior-
interior connections. Figure??shows how the laplacian operator is decoupled using this ordering.
The local to global ordering of nodal values for this method is done my first numbering all boundary
nodes, then the boundary-interior nodes, and finally the interior nodes. The advantage of this
reordering is that it eliminates communication once the boundary information has been solved
at each time step, however, obtaining the solution of the boundary information requires one to
compute the Schur compliment

[Lb−LbiL
−1
i LT

bi (28)

This turned us away from using this method, and instead using element-wise operations, in
combination with the direct stiffness summation of the local and global solution vectors.

3.2 Element-wise operations

Instead of using static condensation, one can perform operations on local elements and then clev-
erly add the proper amount to the global solution U without the cost of static condensation. To
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Figure 8: Coupled Diffusion Operator Figure 9: Uncoupled Diffusion Operator

do so, a weighting matrix,We, is formed for each element to determine the contribution of the
local solution to the global solution. At the beginning of each local solution step, a local element
solution vectorue is obtained from the global solution vectorug. ue is then acted on my the local
matrix operators defined in the previous sections, in order to obtainue at the next time step. Once
all the local matrix operations are completed onue, it is multiplied by the weighting matrixWe,
and that result is then placed intout+1

g . After all local matrix operation are calculated, boundary
conditions on the boundary nodes ofug are then enforced. [8]

The weighting matrixWe is formed by performing direct stiffness summation∑′ on a unit
vectoreL of the same length asue. This results in a vectorwL which is one where there are no other
elements contributing toug onu′esglobal indices, andr if there arer local elements contributing to
the corresponding global index. Thus,

We = diag(
1

wL
). (29)

Definition 4 (Direct Stiffness Summation∑′) A noninvertable local-to-local transformation that
sums shared interface variables and then sends them to their original locations leaving interior
nodes unchanged.

Direct stiffness summation is achieved via the mapping between the local and global node ordering.
The map corresponding to figure10, would be implemented as

map(1,1:9)=(1, 2, 3, 4, 5, 6, 7, 8, 9)

map(2,1:9)=(7, 8, 9, 10, 11, 12, 13, 14,15)

Where the first subscript of map denotes the global index for a particular element. Thus the opera-
tion of formingWe for elements 1 and 2 could be constructed as follows

14



Figure 10: (Top) Global ordering and (Bottom) local ordering

allocate(w_L(size(u_g))

w_L=0.0

do i=1,2

n=El(i)%pdeg+1

n2=n*n

allocate(e_L(n2))

e_L=1.0

w_L(map(i,1:n2))=w_L(map(i,1:n2))+e_L

deallocate(e)

end do

... Inside the time stepping routine for element i

n=El(i)%pdeg+1

n2=n*n

allocate(W(n2,n2))

allocate(r(n2))

W=0.0

r=w_L(vmap2d(i,1:n2))

do j=1,n2

W(j,j)=1.0/r(j)

end do

Advantages for this method include high efficiency for large polynomial degrees, since local cal-
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culations can be performed on each element then summed. Also by implementing∑′ using the
local to global mapping, the operation is independent of the meshes actual geometry, thus allowing
for problems defined on complicated domains.

3.3 Local Data Structures

In either case, these problems scale well to higher dimensions because the global Matrix operators
can be written as tensor products.

We construct the local operators for all possible polynomial degree (run time parameter), and
store them in an easily accessible data structure. These include, M,A,C, Derivative, Interpolants
from Pn → Pn−1 and vice versa. These structures are accessible through a global data module to
all subroutines that need access to these operators.

Figure 11: Data structure for hat matrices. Stored as a(Pmax+1)2xPmax column matrix. The black
in a given column denotes non-zero entries for a givenP. HerePmax= 6 thus the 6th column of the
matrix which is of size 72x1 is full.

4 P-type Refinement

With the local matrices stored for all values of P, and the ability to perform local operations and
build the global solution, it is now trivial to compute the derivative of the local solution and perform
error analysis with it.

For example, if the slope of our solution at a local element is greater than some user defined
value, then we increase the polynomial degree of that element by one. We perform this analysis
on each element, interpolate up if needed, and then construct a new local to global mapping with
respect to the new local refinements. See figure12.

Various other error estimators can be contrived depending on the nature of the flow. Higher
order local elements, combined with smaller local times steps could be used to achieve proper
global accuracy in difficult regions, or perhaps be used to enhance the local accuracy in regions of
interest.[6]

We currently have the error estimator above implemented in the 1D portion of the code, time
has not permitted us to deal with error estimation in 2D. However, implementing various error
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Figure 12: Three solutions to burgers’ equation at different times. We illustrate that starting with
N=32 and P=4, and refining with‖due

dx ‖> 8, we can resolve the shock atx = 0.

estimators to handle various mantle gradients will be a large part of the work stemming from this
code, and we have structured the code with with dynamic memory allocation to be able to handle
changes in local polynomial degree throughout the 2D code as well.
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5 Time Discretization

In order to obtain a stable solution in time, one considers the eigenvalues of the operators acting
on u, and makes certain that the time marching scheme is stable in this region. In our system,C
andA act onu. [8] [3]

Figure 13: Eigenvalues of the Diffusion and Convection operators [3]

As illustrated in figure13, spectral methods yield eigenvalues,λ, of the diffusion matrix that are
real and negative. The maximum eigenvalue isO(N4) whereN is the maximum polynomial degree.
For Spectral Elements, empirical tests showλ≈O(neN3) wherene is the number of elements. Also
illustrated in figure13, are the eigenvalues,λ, of the convection operator, which have an imaginary
part and a negative real part, the largest eigenvalue isO(N2).

Thus, we want a time discretization which is stable on the negative real axis and the imaginary
axis. For viscous dominated flows, one does not need to be as concerned with stability along
the imaginary axis included in the time scheme. This is because the affect of C is small, and high
order extrapolation of the convection term can be performed at low cost. For convection dominated
flows, however, one must choose a scheme which is stable along the imaginary axis to integrate the
convection term. We discuss anO(∆t3) time marching scheme for both viscous, and convection
dominated in the following sections.

5.1 Crank-Nicholson for 1D Flows

For 1D flows we can afford to use a reduced time step from the convection term to advance the
entire solution in time. We choose to use the Crank-Nicholson scheme which is unconditionally
stable for our flow (see figure14).
The time discretization can be written as

(
1
∆t

M + .5[C(un)+νA])un+1 = (
1
∆t

M− .5[C(un)+νA])un (30)

In higher dimensions however we must use either extrapolation or a Runge-Kutta solver to deal
with the convection term because it is too expensive for the less restrictive diffusion part of the
problem to run at the convective time step these issues are addressed in section the following
sections.
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Figure 14: Stability regions for Adams Moulton Schemes. Crank Nicholson is AM2.

5.2 BDF3/EX3 for Viscous Flows

For viscous flows, we achieve 3rd order accuracy, and a stable solution in time using the Backward
Difference Formula 3 scheme coupled with a third order extrapolation of the Convection term at
each iteration.

(
11
6∆t

M +νA)vn+1
i =

M
∆t

(3vn
i −

3
2

vn−1
i +

1
3

vn−2
i )−Cvn+1

i (31)

where we use 3rd order extrapolation

Cvn+1
i = 3Cvn

i −3Cvn−1
i +Cvn−2

i +O(∆t3) (32)

to obtainC(vn+1
i ) at each time step. [8]

We show results of this time marching scheme for a viscous an inviscid flow in section6.2.

5.3 OIFS for Convective Flows

For SEM a harsh condition is placed on∆t in order to satisfy the CFL criteria [8]. For basis
functions of degreeN−1,

∆t ≤ 6.5
ν

π2

N4 (33)

However, we do not have to integrate our entire system at this time step, since the convection
term is the dominant limiting factor [8]. For convection dominate flows, we use an explicit Runge-
Kutta 4 scheme who’s stability region is given in figure16 to solve the convection part of the flow
ûn−2, ûn−1, ûn. These are then used on the right hand side of the BDF3 scheme where we solve the
diffusion system forun+1 . Thus the OIFS method can be written as

19



Figure 15: Stability region arrows denote stability outside the corresponding curve for the Back-
ward Difference time marching scheme. [3]

Start withun−2,un−1,un, solve the IVP

{
M d

dsû j(s) =−ReC(û j(s))û j(s), s∈ (0, jγ∆s]û j(tn+1− j = un+1− j
j (34)

with time steps∆sj = ∆/γ where gamma is chosen such that∆s satisfies the CFL condition. Each
iteration of the RK4 scheme yields ˆun+1

1 , ûn+1
2 , ûn+1

3 respectively.
After ûn+1

1 , ûn+1
2 , ûn+1

3 are obtained, we use the BDF3 scheme to advance the diffusion contribu-
tions of the system.

(
11
6∆t

M +νA)un+1
i =

M
∆t

(3ûn+1
1 − 3

2
ûn+1

2 +
1
3

ûn+1
3 ) (35)

un−2,un−1, andun are then updated for the next RK4 solve.

6 Validation/Results

6.1 1D Burgers’ Equation

To test our 1D code, we use the test case performed by [8]. Where we start with the initial boundary
problem

∂u
∂t

+u
∂u
∂x

= ν
∂2

∂x2 (36)

u(t,−1) = u(t,1) = 0 (37)

20



Figure 16: Stability region arrows denote stability inside the corresponding curve for Runge Kutta
time marching scheme. [3]

with initial conditions

u(0,x) = u0(x) :=−sin(πx) (38)

Figure 17: Initial values for 1D test problem
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We note that for smallν, a discontinuity will develop atx = 0, whereas, for largeν this wave will
simply diffuse over time.
The solution to the corresponding system has analytical solution that can be written

u(t,x) = 4πν ∑∞
n=1nane−νn2π2tsin(nπx)

a0 +2∑∞
n=1nane−νn2π2tcos(nπx)

(39)

wherean are given by

an = (−1)nIn(
1

2πν
) (40)

with In(z) denoting the modified Bessel function of the first kind and order n. We note that we
are using this test case, not because the analytical solution is easy to compare with, in fact, we
will show in many cases it is not, but rather we it because there are published results, from similar
numerical results for us to compare against.

6.1.1 Analytical Comparisons with Diffusive Flows

For the analytical test cases below, we used a 16 element grid with polynomial degree 4. For time
marching we used the unconditionally stable Crank-Nicholson (AM2) scheme (see figure14), with
a CFL number of .001. We can afford to run with this restricted time step 1D allowing us to use
Crank-Nicholson.
For small values oft andν equation39 is difficult to evaluate because for large values ofz, In(z)
behaves asymptotically asez(2πz)

−1
2 , independent of the value ofn [8]. We illustrate this in figures

33 and29, by usingMathematicato evaluateu(x, t) for small ν, andt. We take the 10th partial
sums ofu, which give differences of machine precision for the 50th partial sums.

In order to validate our code against the the analytical solution, we used large viscosity values,
.1, .5, and 1. We attempted to run at smaller viscosities, but, in order for the analytical solution
to become evaluatable, the system would have already become quite diffusive. We note in the
resulting plots, that forν = .1, the evaluation of the analytical solution is not stable for smallt,
thus the discrepancy. Figures31 through33 illustrate that the evaluation of the analytical solution
becomes more accurate whenν or t are increased.

We note that forν = 1 there is very little error for smallt thus we feel confident that our code
is performing as it should in the early stages forν = .1 andν = .5. The dots represents values from
our code, the solid lines represent the analytical evaluation of the solution.

6.1.2 Numerical Comparisons with Advective Flows

For the advective test case we choseν = 10−2/π and compared the results against Dr. Paul Fis-
cher’s spectral element code, which was used to produce the figures for this problem in [8]. We
ran both codes with 32 elements and polynomial degree 8. We can see from figure18, our codes
perform match.

We also considered how our adaptive scheme performs when using a 32 element grid with
initial polynomial degree 4, and refining up to degree 16, several solution curves for this run are
in figure12. We compared the slope of the solution atx = 0, obtaining a maximum amplitude of
152.2265 att = .5100, with the analytical value being 152.0051 at t=.5105. Thus we are pleased
with the results of our 1D SEM scheme.

22



Figure 18: Comparison of Published code (blue) and Our code (red) at time of peak shock. [8]

6.2 2D Burgers’ Equation

In order to validate our code we need to have the BDF3/RK4 scheme working properly for advec-
tion diffusion flows. We currently have ran, but not tested our BDF3/EX3 code for a diffusive case,
we show in this section our validation of the RK4 scheme used for constant advection only flows.

Currently, our RK4 method will only work with flows with constant rate, we are currently
working on expanding it to have advection~c dependent on time, space, andu. Once this is done
we will couple it with with BDF3 and test BDF3/RK4 against BDF3/EX3 on our viscous flow case
to see that the BDF3/EX3, is performing as it should.

6.2.1 Viscous Burgers’ BDF3/EX3

We illustrate the result of our 2D viscous burgers’ equation with a diffusive flow. With initial
condition

u(x,y,0) = .014(x2+y2) on[−1,1]2 (41)
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Figure 19: Comparison of results between our code and actual maximum amplitude of slope. We
have a value of 152.2265 at t=.5100 analytical value is 152.0051 at t=.5105 (* in the figure). The
compares very well with other published numerical methods.[8]

and use periodic boundary conditions. We choose our number of elements in both directions to be
4 and use polynomial degree 8. Our viscosity is chosen to beν = .01 we take a time step of.0031.
Figure35shows 6 timesteps for this run.

6.2.2 Pure Advection RK4

For this case, we start with the same initial conditions as before, except our viscosityν = 0, thus
we have a purely advective flow, and our advective term~c = (−.05,−.05). We see from figure21
that after one spatial period the error is less than 10−3. Further work needs to be done to show
convergence as the polynomial degree, and number of elements are increased. Several plots of the
solution for the first period of advection are in figure36.

7 Future Directions

The purpose of this project was to solve the 1D, and 2D viscous burgers’ equation using an adaptive
Spectral Element Method so that we can investigate the use of P refinement in the mantle convec-
tion equations, as well as other Navier-Stokes type flows. We hope to soon add 2D adaptivity to
this code.
We also plan to implement the full unsteady incompressible Navier Stokes equations. This will

24



Figure 20: Initial conditions for 2D test cases.

involve adding a pressure term to the Burgers’ equation, and an incompressibility constraint, thus
far have formed the pressure grid, and interpolation operators that go between the pressure space
and the velocity space.
Another feature soon to be implemented is parallelism on at least 2 high performance computing
architectures. This will be done as summer work at NASA Goddard under supervision of Dr. Tom
Clune and Dr. Anil Deane.
We will also implement a Preconditioned Conjugate Gradient scheme to solve local element sys-
tems. PCG is ideal for SEM because both M and A are symmetric positive definite, and diagonally
dominant, leading to fast convergence. One set of preconditioners that are of particular interest are
the KLESW preconditioners, which have yet to be tested with a Spectral Element Discretization.

8 Conclusions/Summary

We have created a 1D and 2D test bed to begin working on testing adaptive schemes for High Order
Spectral Element Methods on advection diffusion equations, for both convection dominated and
viscous dominated flows. We have taken into consideration computational localization, to provide
for a smooth transition into developing a parallel version of the code.

During the course of this project, we have learned invaluable lessons in writing a large piece of
code that are often not as prevalent in smaller projects. Such as forming a large interwoven frame-

25



Figure 21: Plot of|u(x,y,0)−u(x,y, t)|< 3×10−3 at one periodt = 40 for 2D advective test case.

work, debugging, validating code, and passing over the numerous conceptual, and technological
hurdles that one must pass over in order to produce a working code.
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Figure 22: Numerical and Analytical Solutions at
t = 2.55237,ν = .1

Figure 23: Numerical and Analytical evalutations
of ‖du

dx‖ atx = 0, fromt = 0 to t = 2.55237,ν = .1

Figure 24: Numerical and Analytical Solutions at
t = 1.531422,ν = .5

Figure 25: Numerical and Analytical evalutations
of ‖du

dx‖ atx= 0, fromt = 0 tot = 1.531422,ν = .5

Figure 26: Numerical and Analytical Solution at
t = 0.510474,ν = 1

Figure 27: Numerical and Analytical evalutations
of ‖du

dx‖ atx= 0, fromt = 0 to t = 1.531422,ν = 1
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Figure 28:t = 0, ν = .1, First order errors Figure 29:t = 0, ν = .5, 3×10−2 error

Figure 30: Comparison between the analytical solution at timet = 0 and the initial solution

Figure 31: t = .2, ν = .1, solution beginning to
stabilize

Figure 32: t = .5, ν = .1, solution finally taking
proper form

Figure 33:t = 0, ν = 1, 6×10−3 errors

Figure 34: Illustration of largert andν affecting the ability to evaluate the analytical solution
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Figure 35: Illustration of Viscous 2D Burgers’ Equation test case, at times 4.948, 9.6048,
14.8748,19.8348,24.7948, and 29.7548. Left to right top to bottom. Flow moves to the positivex
andy directions sinceu(x,y,0) > 0
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Figure 36: 2D Pure advection test case. Front, top and side views of the flow att = 0,10,20,30,40
time advancing top to bottom.
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