AMSC 662: Performance Analysis of the 1GHz Motorola G4
RISC processor versus the 1.13 GHz P3 and 2.4 GHz P4 Intel
CISC processors

P. Aaron Lott
University of Maryland
Department of Applied Math &
Scientific Computation
AMSC 662

Nov. 6, 2003

Motivation

PowerPC Chips use a RISC based architecture, and traditionally
design chips with larger/more cache than Intel’'s CISC based pro-

CeSSors.

The Motorola 745x chipset series supposedly can perform 2 single
precision floating point operations per clock cycle, or one double
precision operation per clock cycles whereas on an Intel it takes
two clock cycles for such operations.

We would like a tool to measure the performance of basic opera-
tions to gain insight about how to optimize their code for a specific

chip.

Code Design

Generalized the “combine” functions from the notes to allow for
abstract data types, user defined or built in i.e. float, char, int,
double.

Computes summation or product of vector elements. User defined
vector length.
Documentation for adding and testing other functions.

Character or string search, Matrix, matrix-vector multiply

Any function that requires large amounts of clock cycles

Uses #ifdef statements to define what code is run depending on
architecture and user preferences.

Outputs data to MATLAB vector format for plotting/analysis pur-
poses.

Code Specifics

X86 cycle counters are read via the inline assembly code dis-
cussed in class.

PowerPC cycle counters are read via CHUD (Computer Hardware
Understanding Development) Tools.

Implementing Own Scheme

To implement your own routine you will need to first define the
function to receive values void miyinc(vecptr v, DATATYPE
dest). (you may want to use one of the combine functions as a
template).

Then call the function from the catlombine.c function. You'll
be able to insert your code beneath the code for combine6aaa for
example.

You will also want to create a variable for your count. Depending
on the architecture you wish to test.

Finally include your file in the include.h file directly beneath the
combine6aa.c. Setup the parameters.h and Makefile

Makefile, include file, parameters file

Makefile - Choose Optimization Flag

parameters.h - Define DATATYPE, VECLENGTH, type of test
l.e. X86, CHUD, Timing

Includefiles.h - Include any new function you wish to call.

System Requirements

For Intel: Known to work on Linux systems with GCC compiler

For PPC: Known to work on G3 and G4 systems running OS X
and GCC compiler. Needs the CHUD Toolkit.

Should work on G5 OS X systems as well.

Output

The output is in MATLAB vector format and plotting scripts are
avallable to visualize the results.

The “cycles” vector lists the number of clock cycles it took to
perform the operations defined in catbmbine.c.

On the G4, there is an additional vector, “instructions”, that lists
the number of instructions needed to perform the same operations.

Variations in CPE due to various optimizations and goc optimization flags

Bl int sum no opt
B int =um <02

[floatsum no opt
[floatsum -02
B douwble sum no opt
B dowble sum -02

=]
2

combing 1,2.3,4.4p,5 8,

Figure 1. Performance Results from G4 Runs with 10000 elements. Cycles per element.

MONSster

Running with the CHUDON flag will allow the remote access of
the MONster program to read the registers being updated during

your code.

Run your code and MONster will write the results from your run
In the Results window with Labels corresponding to the the name
of the function being tested. MONSster will output the results to a
text file if you wish.

Trigger
) single
Sample Time:
PMI Trigger:
PMI Every:
Control

Samples:

) Timer () CPU PMI

0000 events

el: | User

Performance Mark: r.:5. ped

System Modeling

Proces

Memory Contre

| Hide MONster Config: Mo A

Draw Chart

_ ps @ ms

MOMNster

."Resﬁ'fts Sampling .Slhor.tcﬁts

[§

| CPU(s)

'zl Mirror Proc r Settings

0 - Nothing

0 - Nothing

0 - Nothing

Threshold Value: 0 'f' Branch Folding

Mo Shortcut Selected

Mark Processes...

Figure 2: MONSster Sampling Screen

- sults Sampllng' Shortcuts Cha'zsu

3 Pl=Timebaze Pl=pric 2 Pl=pmec =
1: 1000 MHz PPC7455 (745 5) 3 Thl: (cpu 2-Instr @-Nothing:
(tb1) M1 - Tim < i TI,IT.F.,ET’_'E 9. hf 586,318
p PMC 1 | Coelar i Tbl: (cpu C £-Instr @-MNo
. es: 044,807 486,319
Thi: {cpu C Z2-Instr @-Nothing:
: 43€,6835 41z 168,336
Tbl: (cp C Z2-Instr @-Nolhing:
2 1 22 1 £ 146,311
(Th1: Z-Instr A-Nnthing:
Uninorth 1.5 UMD eS: 114,338
{mlcl) MC-PMC 1: [Thl: C 2-Instr @-Nothing:
(m1c2) MC-PMC 2: yeles [Zbi 2, 3at :
1e3) MC-PMC 3. e - - L-'—mstr“ = W-Nothing:
(mlc4) MC-PMC 4: 1 - MaxBus Cycles [- ; .:c;f""’” — RS e é-Nothing:
CS Performance Counters c ag* 315 _ROR 787 76,3560
(oscl) 05-"MC 1 (- Nothing - . (cpu C Z-Instr @-Nothing:
5c2) 0S-PMC 2 0 - Nothing . 284,393 264,65 82,833
S-PMC3 0 - Nothin
c4) 0S-PMC 4 0 - Nothing
teut Se c

Run 00: Combinebaaa, Single Sample Made, Elapsed tire:
i’ Chirne when sanoling is corplete |3 Fn hen sampling Is
; Hide MOMster Config: N ¢ C g Y 5 i Nu Shuiteu

Draw Chart

macbeth® ./project
racbethi

Figure 3: MONSster Results Screen

Downloads

All the code, including the C combine routines, performance rou-
tines as well as the MATLAB plotting routines, makefiles, and

pre-compiled binaries for both x86-Linux and OS X-G4 platforms

IS available on my project web site at:

http://www.lcv.umd.edu/ "palott/research/graduate/662/
CHUD is avallable from the macupdate web site at:

http://www.macupdate.com/info.php/id/8506

Apple G4/ Motorola 7455

Results are about 9 times slower that what we expected on the
highly optimized combine5 code, with a theoretical CPE 1.0, but
measured CPE 8.9928.

G4 is supposed to be capable of performing 2 IPC for both integer
and floating point arithmetic, and 1 IPC for doubles.

Figure 6 shows us that even though we have optimized code, we
don’t necessarily get optimal results.

Although we have made great optimizations, we have made so
few Instructions that the clock is actually hungry for data. Thus
we need a faster bus to feed the processor.

It would be ideal if we could indeed prove this by measuring the
number of instructions performed by the x86 machines with faster
buses, or a G5 with a faster bus.

Variations in CPE due to various optimizations and goc optimization flags

Bl int sum no opt
B int =um <02

[floatsum no opt
[floatsum -02
B douwble sum no opt
B dowble sum -02

=]
2

combing 1,2.3,4.4p,5 8,

Figure 4: G4 cycles per element 10000 elements.

Varigtions in Instruction Par Elemant dus to various optimizations and gec optimization flags

Bl int sum no opt
B int =um <02

[floatsum no opt
[floatsum -02
B douwble sum no opt
B dowble sum -02

Figure 5: G4 instructions per element 10000 elements.

vanatkmns inin LIS 10 WAk s ap

Bl int sum no opt
B int sum =02

[floatsum no opt
[floatsum -02
Bl dowble sum noopt
B dowle sum-02

3 4
combing 1,2.3,4.4p,

Figure 6: Performance Results from G4 Runs with 10000 elements. Instructions Per Cycle. Nowhere close to optimal
performance

Pentium Il and Pentium IV

Measured results are near theoretical results in most cases.

combine5 Theoretically gives CPE 1.00, 1.13 GHz P31.6915, 2.4
GHz P4 1.4432

combine6 Performs terrible on the floating point computation. La-
tencies dominate the advantages of unrolling, and on the P4 we get
stomped on even more

Variations in GPE due o various optimizations and gec optimization flags

Bl int sum noopt
B int sum —o2

[1 floatsum no opt
[1 floatsum —C2
B double sum nao opt
Bl dowblesum-02

=]

Figure 7: Performance Results from P3 Runs with 10000 elements.

&l

Avarag

Variations in CPE due fo various optimizations and geo optimization flags

Bl int sum no opt
B it sum -2

[floatsum nao opt
[foatsum -2
B double sum nao opt
Bl dowblesum-02

Figure 8: Performance Results from P4 Runs with 10000 elements.

void combine6(vec_ptr v, DATATYPE *dest)
{
int 1;
int length=vec_length(v);
int limit= length-1;
DATATYPE *data=get_vec_start(v);
DATATYPE x0=1; DATATYPE x1=1; DATATYPE sum=0;
for (i=0;i<limit; i+=3) {
x0*x=datali];
x1*=datali+1];
r
for(; i<length; i++)
x0*=data[i];
*dest=x0+x1;

}

Summary/Conclusion

We have developed a suite of code that performs useful optimiza-
tion analysis on several architectures, providing a simple way for
programmers/scientists to analyze their code before investing in
“better” hardware.

From our tests, we have shown that on average a 1.13 GHz P3
processor performs less clock cycles for the same operations thar
a 2.4GHz P4 processor. While a 1GHz G4 processor performs
almost 10 times more clock cycles that a 1.13 GHz P3 processor,
thus questioning the claims of the G4 PPC processor.

Testing one’s core code with such software can provide a use-
ful measure of expectation before purchasing a new machine, or
cluster to run ones code, and also serves as a development bed fo
testing new machine dependent optimization algorithms.

References

Computer Systems A Programmer’s Perspective. R. Bryant and
D. O’Hallaron. Prentice Hall 2003.

CHUD Documentation

The End — Thank you

