

Abdou Youssef

The George Washington University

And

The National Institute of Standards and Technology

(DLMF)

- n Context of the DLMF Math Search Project
- n The Project's Short-Term Goals
- n Where we are: A Demo
- n Technical Issues and Techniques
- n Goals and Issues for the Longer Term

- n The Digital Library of Mathematical Functions (DLMF) at NIST
 - web+Book Replacement of the Abramowitz and Stegun Handbook
 - Number Theory, Combinatorial Analysis, Numerical Methods, Statistical Methods, ...
 - DLMF:Mostly Equations Need Math Search

- Build a math search system that
 - 1. Understands math symbols & structures
 - 2. Returns equations directly, not just hit-titles
 - 3. Highlights matched equations in documents
 - 4. Understands dialects (Latex, Mathematica, Maple)
 - 5. Provides different search modes (TOC, Index, Free-style search, and Menu-driven search)

Where we Are

Demo of the Search System

Sample Queries: understanding math, eq. search & highlighting

Form	Entry
$\int_0^\infty \sin(\tfrac{1}{3}t^3 + xt)$	nint_0^infinity sin((1/3)t^3+xt)
	$n int sin((1/3)t^3+xt)$
$\sqrt{Ai^2 + Bi^2}$	sqrt(Ai^2+Bi^2)
$\Gamma(\lambda-\$+\$)$	Gamma(lambda-\$+\$)
J_{v} or J_{0}	<u>J_nu or J_0</u>
Ai and J	n Ai and J
	n Ai and BesselJ

Sample Queries: different dialects

- n BesselJ(nu,z)
- n BesselJ(nu,)
- n BesselJ(,zeta)
- n JacobiP(n,alpha,beta,x)
- n JacobiP(, alpha, ,)
- n LaguerreL(, , x)
- n LegendreP[, mu ,]
- n LegendreP[, ,sqrt(z)]

Search Modes

n One extreme:

n Table of contents

n Index

n Opposite extreme:

n Free-style search

n Another mode:

m Menu-driven search

based on an ontology

n constrained/standard vocabulary

n Hybrids of the above

(static and limited)

(thematic, coarse-grained)

(alphabetical, fine-grained)

(dynamic and unlimited)

(a middle ground)

Issues Faced

- Recognizing and Indexing Math Symbols and Structures
- Highlighting Matched Equations (GIF Images) inside HTML Documents
- n Development of a Query Language that is Intuitive, Natural, Rich, and Consistent
- Obtaining/Deriving Metadata for Equations
- Development of a Math Taxonomy/OntologySuitable for Menu-Driven Search

Techniques: for Handling Math Symbols and Structures

- For Recognizing and Indexing Math Symbols and Structures, *TexSN*ize:
 - 1. <u>Tex</u>tualization of math symbols (<u>illust</u>.)
 - 2. Scoping of the various parts of terms/exprs
 - Normalization of the orders of parts (illust.)
- TexSNize the Contents Offline before Indexing
- n TexSNize each Query before the search

Techniques: for Equation Search and Highlighting

- Create a data model that logically decouples equations from their native documents.
- n Assign a unique ID to each equation
- For Returning Equations directly:
 - algorithm that uses a hit list of equation IDs to generate online a document containing the equations
- n For Highlighting Equations:
 - Use the IDs of matched equations to locate the latter in a to-be-displayed document
 - n add coloring HTML markup to doc before display

Architecture of the System

- n Surrogate Files
- n Indexing System Architecture
- n Search System Architecture

Goals for the Longer Term

- Development of a 2nd Generation Math Search System
 - Based on Content MathML+XPath/XQuery
 - More Precise/Expressive Query Language
 - n Higher resolution search
 - n Keyword search
 - n Predicate search
 - ⁿ Search with term substitution
 - n Similarity Search (for Sci. Data Mining)

Examples of Future Query Types

- n Queries specifying subparts
 - n sin x in a denominator
 - n x-y in a 3rd row of a matrix
 - $_{\rm n}$ 2 π x inside an argument of a function
- n Predicate queries
 - _n z^k , where k is an integer that ranges from -4 to 4
- n Term-substitution queries
 - _n $g(\omega)=z^2+z+1$, where $z=e^{i\omega}$
- n Abstraction support and similarity search
 - $x^2 + y^2 = 1$ whatever x and y

Candidate Syntax (Based on 1st Order Logic)

```
n /(... sin x ...)
n @(... 2πx ...)
n z^$k where integer($k) & abs($k)<5</li>
n x-y in matrix[2,3]
n x^2 in matrix [$k,$j] where abs($k-$j) < 2</li>
n $A where matrix($A) & (forall $k) (forall $j < $k): $A[$k,$j]>0
```

n x<1 in condition(set)

n \$S where set(\$S) & ($\exists \$x \text{ in }\S): integer(\$x) & \$x>0

Issues that Need to Be Faced

- n Canonical Normal Forms of Contents
 - n Math equivalences: ab/c: (a*b)/c or a*(b/c)
 - n Notational equivalences: $\int_{a}^{b} or \int_{[a,b]}$
 - n Distributed definitions
- n Uniform Symbolic Notation
- n Standard Ontologies
- Development of Metadata
 - Automated extrapolation of metadata
 - Manual (by authors and communities)

Issues to Be Faced (Contd.)

- What Users Need/Want/Prefer
 - n What modes of search?
 - what kinds of information?
 - definitions, equations, theorems, proofs, proof techniques, step-by-step evaluations, themes, theories, expositions, etc.?
 - what granularity of retrieval unit?
 - **n** What interactive features?
 - Definition of terms, plotting/computing of matched functions?
- Use of Knowledge of Users' Needs/Preferences
 - More relevant search features & capabilities
 - Better design of the search user interface
 - Better relevance-ranking of search results

n The Possibilities Are Endless

- Search + Automated Reasoning
- Search + Computing + Visualization

The end