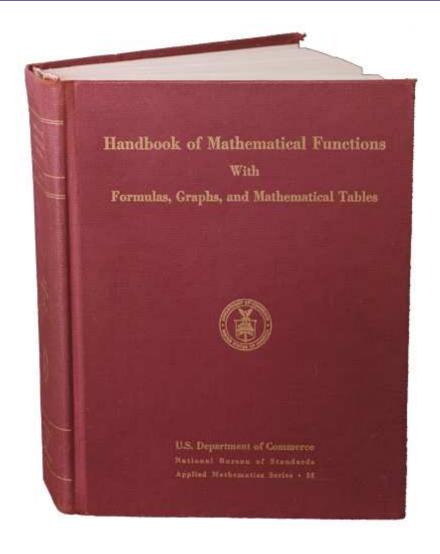
Representing Mathematical Knowledge in the Digital Library of Mathematical Functions

Bruce R. Miller NIST

Once upon a Time

when Computers sat at desks



before NIST was "formerly known as..."

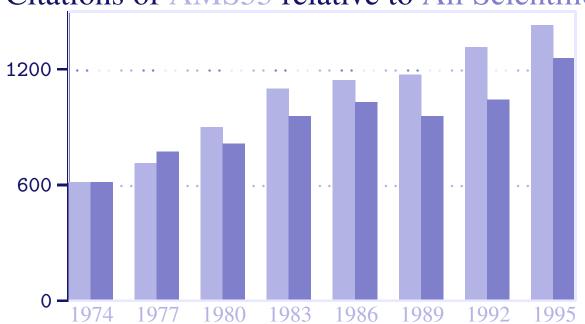
NBS published 'AMS55'1

1. Applied Mathematics Series No. 55

Meanwhile...

- Computers became digital,
- New functions were discovered,
- New properties of old functions were found,
- Numerical tables became *really* boring...

Meanwhile...


- Computers became digital,
- New functions were discovered,
- New properties of old functions were found,
- Numerical tables became really boring...
- And, of course,
 - The Internet
 - Hypertext
 - Computer Algebra Systems
 - MathML
 - The "Changing Face of Mathematical Software"!

Yet...

for all the number crunching, special functions are still *Special*.

Citations of AMS55 relative to All Scientific.

AMS55 is apparently used more than ever.

Fast Forward

- It's time for an rewrite
- ... and many opportunities.

DLMF Project

- Started looking at feasibility in 1997.
- NSF funding for authorship in 1999.
- 4 editors, \approx 12 associate editors, \approx 40 authors.
- Goals:
 - New mathematical content updating AMS55,
 - in form of Digital Library,
 - and in print form,
 - by 2005.

Obtaining the content: LATEX

For our project: LATEX

- The norm in our community and others.
- Portable and stable.
- Programmable and extensible.
- High quality typesetting.

For other projects

- Computer Algebra systems?
- (future) Word processors?

Target: XML, MathML

- Hypertext
 - \Longrightarrow Connections
 - ⇒ Interrelations
 - ⇒ Annotation
- Content Oriented
 - ⇒ Flexible presentation
 - ⇒ Accessibility
 - ⇒ Searchability
 - ⇒ Reusability

DLMF on the Web

For Example ...

LaTeX as Source ... But

- Needs more structure.
- Needs more data (often hidden).
- Quirky computational model.
- Ambiguous math markup.

DLMF Approach

Modestly Content-oriented LATEX.

- Stay close to L^AT_EX standard.
- Adaptable style (print, web);
 - multi-column
 - variable width.
- Discourage presentation markup.
- Encourage Content, but keep typeable.

LATEXML Goals

- $LAT_EX \Rightarrow XML$ Transformer
 - General purpose.
 - LaTeX-like DTD (or other?)
 - Math to MathML, OpenMath
- Closely mimic T_EX behaviour (& Quirks).
- Lossless.
- Extensible, Adaptable.
- Encourage higher-level markup, declarations.
- ... and finish DLMF project!

Making Connections

- Traditional LaTeX: \ref, \cite, \index.
- Leverage our mathematics markup.
- Additional markup:
 - Annotations \note.
 - Special metadata: Original handbook reference.
 - Additional declarations.

Using Connections

- Postprocessing XML documents.
- Disassemble XML into 'database'.
- Note all connections.

Not really that hard.

Math: LATEXML Data Flow

$$T_{E}X$$
 source $\xrightarrow{IAT_{E}XML}$ XML

- Let LATEXML deal with TeX quirks.
- Acts as structure-preserving Lexer.

$$XML \xrightarrow{LAT_{EXMLpost}} XML'$$

- Use grammar-based parser.
- Use author/document-specific declarations.
- Optionally: math images, table transformations,...

Math: The Easy Stuff

$$a = b+c$$

LATEXML produces the tokens

- <XMTok>a</XMTok>
- <XMTok>=</XMTok>
- <XMTok>b</XMTok>
- <XMTok>+</XMTok>
- <XMTok>c</XMTok>

Math: The Easy Stuff continued

$$a = b+c$$

```
LATEXMLpost parses this into

<XMApp><XMTok>=</XMTok>

<XMTok>a</XMTok>

<XMApp><XMTok>+</XMTok>

<XMTok>b</XMTok>

<XMTok>c</XMTok>

</XMApp>

</XMApp>
```


Math: The Easy Stuff continued

```
a = b+c
Conversion to MathML yields
<math xmlns="http://www.w3.org/1998/Math/MathML">
  <mrow>
    <mi>a</mi>
    < mo> = </mo>
    <mrow>
      <mi>b</mi>
      < mo> + </mo>
      <mi>c</mi>
    </mrow>
  </mrow>
```


Math: Higher Level Markup

Reduce ambiguities by introducing higher-level markup:

$$\deriv[n]{f}{x} \Rightarrow \frac{d^n f}{dx^n}$$

LATEX code:

omitted

LATEXML declaration:

```
DefConstructor('\deriv[]{}{}',
   "<XMApp><XMTok name='deriv'/>"
   ." <XMArg>#2</XMArg><XMArg>#3</XMArg>" . . .
```


Math: Higher Level Markup continued

$$\deriv[n]{f}{x} \Rightarrow \frac{d^n f}{dx^n}$$

LATEXML constructs the tree:

<XMApp><XMTok name='deriv'/>
 <XMArg><XMTok>f</XMTok></XMArg>
 <XMArg><XMTok>x</XMTok></XMArg>
 <XMArg><XMTok>n</XMTok></XMArg>
</XMApp>

Parser can treat args individually,

... avoiding much guesswork.

Math: Special Functions

With appropriate T_EX macrology:

\HyperpFq{p}{q}
$$\Rightarrow {}_{p}F_{q}$$

Introduce notion of evaluating a function at:

\HyperpFq{p}{q}@{a}{b}{z}
$$\Rightarrow {}_{p}F_{q}(a;b;z)$$

or (alternative notation)

\HyperpFq{p}{q}@@{a}{b}{z}
$$\Rightarrow {}_{p}F_{q}\left(\begin{matrix} a \\ b \end{matrix}; z\right)$$

Palatable notation? Easier to type than

 $\left(_{p} _{q} \right) = \left(_{q} \right)$

Math: Special Functions continued

With the end result:

```
<XMApp>
<XMTok name='HyperpFq'>F</XMTok>
<XMTok>p</XMTok>
<XMTok>q</XMTok>
<XMTok>a</XMTok>
<XMTok>b</XMTok>
<XMTok>b</XMTok>
<XMTok>z</XMTok>
<XMTok>z</XMTok>
```


and we know which 'F' is intended.

Math: Issues

- Role of text and spacing in math.
- Overloading of symbols (scoping?)
 - f is a function here, but a variable there.
- Palatable LATEX extensions for math.
- For *really* meaningful math (eg. OpenMath)
 - need type analysis
 - need more info from authors
- Open ended...

