
Symbolic/Numeric Methods for BVPs

Ian Gladwell
Department of Mathematics

Southern Methodist University
Dallas, Texas 75275

gladwell@seas.smu.edu

Based on work work with my graduate student
Hilary Risser



Plan of Talk

Introduction

Linear BVP analysis

BVP software

Impact of analysis on use of software



Plan of Talk

Introduction

Linear BVP analysis

BVP software

Impact of analysis on use of software



Plan of Talk

Introduction

Linear BVP analysis

BVP software

Impact of analysis on use of software



Plan of Talk

Introduction

Linear BVP analysis

BVP software

Impact of analysis on use of software



Introduction

ODE BVP Software

ODE BVP Software mainly designed for nonlinear
problems

Linear problems usually solved in nonlinear form

Difficulties

strong nonlinearity

solution approximability

mesh placement and error estimation

Cannot handle difficult linear problems (e.g. singular
perturbations) without assistance



Introduction

ODE BVP Software

ODE BVP Software mainly designed for nonlinear
problems

Linear problems usually solved in nonlinear form

Difficulties

strong nonlinearity

solution approximability

mesh placement and error estimation

Cannot handle difficult linear problems (e.g. singular
perturbations) without assistance



Linear singular perturbation problems

Simple form εy′′ − a(x)y′ + b(x)y = f(x) with Dirichlet BCs
y(xL) = L, y(xR) = R

If a(xL) > 0 potential boundary layer at xL; if a(xR) < 0
potential boundary layer at xR; for all x0 such that
a(x0) = 0, xL < x0 < xR potential turning layer at x0

Example: εy′′ + y′ = 0, y(0) = 1, y(1) = 2

Boundary layer at x = 1 of width O(ε). Inner solution near
x = 1 behaves like e(x−1)/ε

To O(ε) solution to BVP is 1 + e(x−1)/ε – found by matching
inner and outer solutions



Linear singular perturbation problems

Simple form εy′′ − a(x)y′ + b(x)y = f(x) with Dirichlet BCs
y(xL) = L, y(xR) = R

If a(xL) > 0 potential boundary layer at xL; if a(xR) < 0
potential boundary layer at xR; for all x0 such that
a(x0) = 0, xL < x0 < xR potential turning layer at x0

Example: εy′′ + y′ = 0, y(0) = 1, y(1) = 2

Boundary layer at x = 1 of width O(ε). Inner solution near
x = 1 behaves like e(x−1)/ε

To O(ε) solution to BVP is 1 + e(x−1)/ε – found by matching
inner and outer solutions



Linear singular perturbation problems

Simple form εy′′ − a(x)y′ + b(x)y = f(x) with Dirichlet BCs
y(xL) = L, y(xR) = R

If a(xL) > 0 potential boundary layer at xL; if a(xR) < 0
potential boundary layer at xR; for all x0 such that
a(x0) = 0, xL < x0 < xR potential turning layer at x0

Example: εy′′ + y′ = 0, y(0) = 1, y(1) = 2

Boundary layer at x = 1 of width O(ε). Inner solution near
x = 1 behaves like e(x−1)/ε

To O(ε) solution to BVP is 1 + e(x−1)/ε – found by matching
inner and outer solutions



Linear singular perturbation problems

Simple form εy′′ − a(x)y′ + b(x)y = f(x) with Dirichlet BCs
y(xL) = L, y(xR) = R

If a(xL) > 0 potential boundary layer at xL; if a(xR) < 0
potential boundary layer at xR; for all x0 such that
a(x0) = 0, xL < x0 < xR potential turning layer at x0

Example: εy′′ + y′ = 0, y(0) = 1, y(1) = 2

Boundary layer at x = 1 of width O(ε). Inner solution near
x = 1 behaves like e(x−1)/ε

To O(ε) solution to BVP is 1 + e(x−1)/ε – found by matching
inner and outer solutions



Linear singular perturbation problems

Simple form εy′′ − a(x)y′ + b(x)y = f(x) with Dirichlet BCs
y(xL) = L, y(xR) = R

If a(xL) > 0 potential boundary layer at xL; if a(xR) < 0
potential boundary layer at xR; for all x0 such that
a(x0) = 0, xL < x0 < xR potential turning layer at x0

Example: εy′′ + y′ = 0, y(0) = 1, y(1) = 2

Boundary layer at x = 1 of width O(ε). Inner solution near
x = 1 behaves like e(x−1)/ε

To O(ε) solution to BVP is 1 + e(x−1)/ε – found by matching
inner and outer solutions



Linear singular perturbation problems

Example: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2, Kervorkian
and Cole.

Potentially has boundary layer at each of x = −1 and x = 1
and turning layer at x = 0

In fact no turning layer. Central part of solution always looks
like straight line thru’ x = 0 for ε > 0 small enough

First order perturbation solution y = e−(1+x)/ε + 2e−(1−x)/ε

Except possibly for missing turning layer no sign from
singular perturbation analysis that this problem has any
peculiarities



Linear singular perturbation problems

Example: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2, Kervorkian
and Cole.

Potentially has boundary layer at each of x = −1 and x = 1
and turning layer at x = 0

In fact no turning layer. Central part of solution always looks
like straight line thru’ x = 0 for ε > 0 small enough

First order perturbation solution y = e−(1+x)/ε + 2e−(1−x)/ε

Except possibly for missing turning layer no sign from
singular perturbation analysis that this problem has any
peculiarities



Linear singular perturbation problems

Example: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2, Kervorkian
and Cole.

Potentially has boundary layer at each of x = −1 and x = 1
and turning layer at x = 0

In fact no turning layer. Central part of solution always looks
like straight line thru’ x = 0 for ε > 0 small enough

First order perturbation solution y = e−(1+x)/ε + 2e−(1−x)/ε

Except possibly for missing turning layer no sign from
singular perturbation analysis that this problem has any
peculiarities



Linear singular perturbation problems

Example: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2, Kervorkian
and Cole.

Potentially has boundary layer at each of x = −1 and x = 1
and turning layer at x = 0

In fact no turning layer. Central part of solution always looks
like straight line thru’ x = 0 for ε > 0 small enough

First order perturbation solution y = e−(1+x)/ε + 2e−(1−x)/ε

Except possibly for missing turning layer no sign from
singular perturbation analysis that this problem has any
peculiarities



Linear singular perturbation problems

Example: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2, Kervorkian
and Cole.

Potentially has boundary layer at each of x = −1 and x = 1
and turning layer at x = 0

In fact no turning layer. Central part of solution always looks
like straight line thru’ x = 0 for ε > 0 small enough

First order perturbation solution y = e−(1+x)/ε + 2e−(1−x)/ε

Except possibly for missing turning layer no sign from
singular perturbation analysis that this problem has any
peculiarities



Linear singular perturbation problems

Barrier problem: εy′′ + (x2 − 0.52)y = 0, y(−1) = 1, y(1) = 2

Not amenable to standard perturbation analysis (no y′

term). Can use WKB analysis

Solution highly oscillatory in intervals [−1,−0.5] and [0.5, 1].
Almost constant in interior of [−0.5, 0.5] for ε > 0 small
enough

Frequency of oscillation proportional to 1/
√

ε



Linear singular perturbation problems

Barrier problem: εy′′ + (x2 − 0.52)y = 0, y(−1) = 1, y(1) = 2

Not amenable to standard perturbation analysis (no y′

term). Can use WKB analysis

Solution highly oscillatory in intervals [−1,−0.5] and [0.5, 1].
Almost constant in interior of [−0.5, 0.5] for ε > 0 small
enough

Frequency of oscillation proportional to 1/
√

ε



Linear singular perturbation problems

Barrier problem: εy′′ + (x2 − 0.52)y = 0, y(−1) = 1, y(1) = 2

Not amenable to standard perturbation analysis (no y′

term). Can use WKB analysis

Solution highly oscillatory in intervals [−1,−0.5] and [0.5, 1].
Almost constant in interior of [−0.5, 0.5] for ε > 0 small
enough

Frequency of oscillation proportional to 1/
√

ε



Linear singular perturbation problems

Barrier problem: εy′′ + (x2 − 0.52)y = 0, y(−1) = 1, y(1) = 2

Not amenable to standard perturbation analysis (no y′

term). Can use WKB analysis

Solution highly oscillatory in intervals [−1,−0.5] and [0.5, 1].
Almost constant in interior of [−0.5, 0.5] for ε > 0 small
enough

Frequency of oscillation proportional to 1/
√

ε



Linear singular perturbation problems

More complex form εy′′ − a(x, ε)y′ + b(x, ε)y = f(x) with
Dirichlet BCs y(xL) = L(ε), y(xR) = R(ε) where at least one
of a(x, ε) and b(x, ε) are O(1) as ε→ 0

Same rules as above

Example: ε3y′′ + x3y′ + (x3 − ε)y = 0, y(0) = 1, y(1) = 2

Rules for turning layer satisfied at boundary x = 0 so
potential for boundary layer there



Linear singular perturbation problems

More complex form εy′′ − a(x, ε)y′ + b(x, ε)y = f(x) with
Dirichlet BCs y(xL) = L(ε), y(xR) = R(ε) where at least one
of a(x, ε) and b(x, ε) are O(1) as ε→ 0

Same rules as above

Example: ε3y′′ + x3y′ + (x3 − ε)y = 0, y(0) = 1, y(1) = 2

Rules for turning layer satisfied at boundary x = 0 so
potential for boundary layer there



Linear singular perturbation problems

More complex form εy′′ − a(x, ε)y′ + b(x, ε)y = f(x) with
Dirichlet BCs y(xL) = L(ε), y(xR) = R(ε) where at least one
of a(x, ε) and b(x, ε) are O(1) as ε→ 0

Same rules as above

Example: ε3y′′ + x3y′ + (x3 − ε)y = 0, y(0) = 1, y(1) = 2

Rules for turning layer satisfied at boundary x = 0 so
potential for boundary layer there



Linear singular perturbation problems

More complex form εy′′ − a(x, ε)y′ + b(x, ε)y = f(x) with
Dirichlet BCs y(xL) = L(ε), y(xR) = R(ε) where at least one
of a(x, ε) and b(x, ε) are O(1) as ε→ 0

Same rules as above

Example: ε3y′′ + x3y′ + (x3 − ε)y = 0, y(0) = 1, y(1) = 2

Rules for turning layer satisfied at boundary x = 0 so
potential for boundary layer there



Linear singular perturbation problems

Two layers at x = 0 one of width O(ε) and one of width
O(ε1/2)

That of width O(ε1/2) is the inner layer and that of width O(ε)
is the (narrower) inner-inner layer

Solutions in these layers have the forms e−x/ε and e−ε/(2x2)

respectively

Overall approximate solution by matching to O(ε) is
e−x/ε + 2e[e−ε/(2x2) + e−x − 1]

For moderately sized ε inner-inner layer quite visible



Linear singular perturbation problems

Two layers at x = 0 one of width O(ε) and one of width
O(ε1/2)

That of width O(ε1/2) is the inner layer and that of width O(ε)
is the (narrower) inner-inner layer

Solutions in these layers have the forms e−x/ε and e−ε/(2x2)

respectively

Overall approximate solution by matching to O(ε) is
e−x/ε + 2e[e−ε/(2x2) + e−x − 1]

For moderately sized ε inner-inner layer quite visible



Linear singular perturbation problems

Two layers at x = 0 one of width O(ε) and one of width
O(ε1/2)

That of width O(ε1/2) is the inner layer and that of width O(ε)
is the (narrower) inner-inner layer

Solutions in these layers have the forms e−x/ε and e−ε/(2x2)

respectively

Overall approximate solution by matching to O(ε) is
e−x/ε + 2e[e−ε/(2x2) + e−x − 1]

For moderately sized ε inner-inner layer quite visible



Linear singular perturbation problems

Two layers at x = 0 one of width O(ε) and one of width
O(ε1/2)

That of width O(ε1/2) is the inner layer and that of width O(ε)
is the (narrower) inner-inner layer

Solutions in these layers have the forms e−x/ε and e−ε/(2x2)

respectively

Overall approximate solution by matching to O(ε) is
e−x/ε + 2e[e−ε/(2x2) + e−x − 1]

For moderately sized ε inner-inner layer quite visible



Linear singular perturbation problems

Two layers at x = 0 one of width O(ε) and one of width
O(ε1/2)

That of width O(ε1/2) is the inner layer and that of width O(ε)
is the (narrower) inner-inner layer

Solutions in these layers have the forms e−x/ε and e−ε/(2x2)

respectively

Overall approximate solution by matching to O(ε) is
e−x/ε + 2e[e−ε/(2x2) + e−x − 1]

For moderately sized ε inner-inner layer quite visible



Linear singular perturbation problems

Position of boundary layers determined by sign of a(x) at
ends of interval

Positions of turning layers determined from changes of sign
of a(x). Note, positions can depend on ε in more general
case

Inner-inner layers at same positions as inner(turning) or
boundary layers – correspond to a second (faster changing)
solution in a layer – can only occur in the more general case

Width of layer – only known to be of width O(g(ε)) where
g(s) is s or

√
s in many applications – problem for meshing

in numerical solutions – is 2g(ε) safer choice
computationally than 0.5g(ε)?



Linear singular perturbation problems

Position of boundary layers determined by sign of a(x) at
ends of interval

Positions of turning layers determined from changes of sign
of a(x). Note, positions can depend on ε in more general
case

Inner-inner layers at same positions as inner(turning) or
boundary layers – correspond to a second (faster changing)
solution in a layer – can only occur in the more general case

Width of layer – only known to be of width O(g(ε)) where
g(s) is s or

√
s in many applications – problem for meshing

in numerical solutions – is 2g(ε) safer choice
computationally than 0.5g(ε)?



Linear singular perturbation problems

Position of boundary layers determined by sign of a(x) at
ends of interval

Positions of turning layers determined from changes of sign
of a(x). Note, positions can depend on ε in more general
case

Inner-inner layers at same positions as inner(turning) or
boundary layers – correspond to a second (faster changing)
solution in a layer – can only occur in the more general case

Width of layer – only known to be of width O(g(ε)) where
g(s) is s or

√
s in many applications – problem for meshing

in numerical solutions – is 2g(ε) safer choice
computationally than 0.5g(ε)?



Linear singular perturbation problems

Position of boundary layers determined by sign of a(x) at
ends of interval

Positions of turning layers determined from changes of sign
of a(x). Note, positions can depend on ε in more general
case

Inner-inner layers at same positions as inner(turning) or
boundary layers – correspond to a second (faster changing)
solution in a layer – can only occur in the more general case

Width of layer – only known to be of width O(g(ε)) where
g(s) is s or

√
s in many applications – problem for meshing

in numerical solutions – is 2g(ε) safer choice
computationally than 0.5g(ε)?



Analysis in Mathematica

Locate layers based on sign of a(x) and by solving a(x) = 0
for all roots in interval

Compute form of outer solution over whole interval

Compute form of inner solution(s) in each layer – more than
one solution if there are inner-inner layers

Match each inner solution to outer solution at edge of its
layer (asymptotically as ε→ 0). Match inner-inner solutions
to inner solution at edges of inner-inner layers
(asymptotically as ε→ 0)



Analysis in Mathematica

Locate layers based on sign of a(x) and by solving a(x) = 0
for all roots in interval

Compute form of outer solution over whole interval

Compute form of inner solution(s) in each layer – more than
one solution if there are inner-inner layers

Match each inner solution to outer solution at edge of its
layer (asymptotically as ε→ 0). Match inner-inner solutions
to inner solution at edges of inner-inner layers
(asymptotically as ε→ 0)



Analysis in Mathematica

Locate layers based on sign of a(x) and by solving a(x) = 0
for all roots in interval

Compute form of outer solution over whole interval

Compute form of inner solution(s) in each layer – more than
one solution if there are inner-inner layers

Match each inner solution to outer solution at edge of its
layer (asymptotically as ε→ 0). Match inner-inner solutions
to inner solution at edges of inner-inner layers
(asymptotically as ε→ 0)



Analysis in Mathematica

Locate layers based on sign of a(x) and by solving a(x) = 0
for all roots in interval

Compute form of outer solution over whole interval

Compute form of inner solution(s) in each layer – more than
one solution if there are inner-inner layers

Match each inner solution to outer solution at edge of its
layer (asymptotically as ε→ 0). Match inner-inner solutions
to inner solution at edges of inner-inner layers
(asymptotically as ε→ 0)



Result of Analysis in Mathematica

Know locations and types of all layers

Know form of solution in each layer which also reveals width
of layers

Often can compute global approximate solution. Do we
need it? Can supply to nonlinear boundary value solvers
but theoretically isn’t needed for linear problems.

Sometimes Mathematica’s inability to take some 0/0 limits,
and some other limits involving (its own) special functions
restricts what us. Also Mathematica’s inability to invert
some inner solutions a difficulty. Some cases where even if
we can complete the analysis have some unknown
constants in the solution – not sure whether this always
fixable



Result of Analysis in Mathematica

Know locations and types of all layers

Know form of solution in each layer which also reveals width
of layers

Often can compute global approximate solution. Do we
need it? Can supply to nonlinear boundary value solvers
but theoretically isn’t needed for linear problems.

Sometimes Mathematica’s inability to take some 0/0 limits,
and some other limits involving (its own) special functions
restricts what us. Also Mathematica’s inability to invert
some inner solutions a difficulty. Some cases where even if
we can complete the analysis have some unknown
constants in the solution – not sure whether this always
fixable



Result of Analysis in Mathematica

Know locations and types of all layers

Know form of solution in each layer which also reveals width
of layers

Often can compute global approximate solution. Do we
need it? Can supply to nonlinear boundary value solvers
but theoretically isn’t needed for linear problems.

Sometimes Mathematica’s inability to take some 0/0 limits,
and some other limits involving (its own) special functions
restricts what us. Also Mathematica’s inability to invert
some inner solutions a difficulty. Some cases where even if
we can complete the analysis have some unknown
constants in the solution – not sure whether this always
fixable



Result of Analysis in Mathematica

Know locations and types of all layers

Know form of solution in each layer which also reveals width
of layers

Often can compute global approximate solution. Do we
need it? Can supply to nonlinear boundary value solvers
but theoretically isn’t needed for linear problems.

Sometimes Mathematica’s inability to take some 0/0 limits,
and some other limits involving (its own) special functions
restricts what us. Also Mathematica’s inability to invert
some inner solutions a difficulty. Some cases where even if
we can complete the analysis have some unknown
constants in the solution – not sure whether this always
fixable



The linear BVP solver ODE_ADAP

Solves linear first order systems of BVP ODEs

Written by June-Yub Lee, EWHA, Korea – result of Ph.D.
studies with Leslie Greengard – development abandoned?

Uses collocation based on Chebyshev polynomials

Adapts mesh based on measure of size of Chebyshev
coefficients in each interval of mesh

Permits user to specify initial mesh – does not remove
“unneeded” points



The linear BVP solver ODE_ADAP

Solves linear first order systems of BVP ODEs

Written by June-Yub Lee, EWHA, Korea – result of Ph.D.
studies with Leslie Greengard – development abandoned?

Uses collocation based on Chebyshev polynomials

Adapts mesh based on measure of size of Chebyshev
coefficients in each interval of mesh

Permits user to specify initial mesh – does not remove
“unneeded” points



The linear BVP solver ODE_ADAP

Solves linear first order systems of BVP ODEs

Written by June-Yub Lee, EWHA, Korea – result of Ph.D.
studies with Leslie Greengard – development abandoned?

Uses collocation based on Chebyshev polynomials

Adapts mesh based on measure of size of Chebyshev
coefficients in each interval of mesh

Permits user to specify initial mesh – does not remove
“unneeded” points



The linear BVP solver ODE_ADAP

Solves linear first order systems of BVP ODEs

Written by June-Yub Lee, EWHA, Korea – result of Ph.D.
studies with Leslie Greengard – development abandoned?

Uses collocation based on Chebyshev polynomials

Adapts mesh based on measure of size of Chebyshev
coefficients in each interval of mesh

Permits user to specify initial mesh – does not remove
“unneeded” points



The linear BVP solver ODE_ADAP

Solves linear first order systems of BVP ODEs

Written by June-Yub Lee, EWHA, Korea – result of Ph.D.
studies with Leslie Greengard – development abandoned?

Uses collocation based on Chebyshev polynomials

Adapts mesh based on measure of size of Chebyshev
coefficients in each interval of mesh

Permits user to specify initial mesh – does not remove
“unneeded” points



COLMOD

Written by Jeff Cash and Ross Wright of Imperial College –
built on underlying code COLNEW by Georg Bader and Uri
Ascher

Solves a sequence of nonlinear systems of BVP ODEs
(continuation) – indicate a linear problem by setting flag –
deals with systems of higher order equations directly

Uses collocation based on spline monomials

Adapts mesh based on measure of equidistribution of error
– similar but different strategy to COLNEW – changed to
work with continuation process

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



COLMOD

Written by Jeff Cash and Ross Wright of Imperial College –
built on underlying code COLNEW by Georg Bader and Uri
Ascher

Solves a sequence of nonlinear systems of BVP ODEs
(continuation) – indicate a linear problem by setting flag –
deals with systems of higher order equations directly

Uses collocation based on spline monomials

Adapts mesh based on measure of equidistribution of error
– similar but different strategy to COLNEW – changed to
work with continuation process

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



COLMOD

Written by Jeff Cash and Ross Wright of Imperial College –
built on underlying code COLNEW by Georg Bader and Uri
Ascher

Solves a sequence of nonlinear systems of BVP ODEs
(continuation) – indicate a linear problem by setting flag –
deals with systems of higher order equations directly

Uses collocation based on spline monomials

Adapts mesh based on measure of equidistribution of error
– similar but different strategy to COLNEW – changed to
work with continuation process

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



COLMOD

Written by Jeff Cash and Ross Wright of Imperial College –
built on underlying code COLNEW by Georg Bader and Uri
Ascher

Solves a sequence of nonlinear systems of BVP ODEs
(continuation) – indicate a linear problem by setting flag –
deals with systems of higher order equations directly

Uses collocation based on spline monomials

Adapts mesh based on measure of equidistribution of error
– similar but different strategy to COLNEW – changed to
work with continuation process

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



COLMOD

Written by Jeff Cash and Ross Wright of Imperial College –
built on underlying code COLNEW by Georg Bader and Uri
Ascher

Solves a sequence of nonlinear systems of BVP ODEs
(continuation) – indicate a linear problem by setting flag –
deals with systems of higher order equations directly

Uses collocation based on spline monomials

Adapts mesh based on measure of equidistribution of error
– similar but different strategy to COLNEW – changed to
work with continuation process

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



ACDC

Also written by Jeff Cash and Ross Wright – built on
underlying BVP code TWPBVP by Jeff and Margaret Wright

Solves a sequence of nonlinear systems of BVP ODEs –
indicate a linear problem by setting flag – deals with first
order systems only

Uses deferred correction but with monoimplicit RK formulas
of TWPBVP replaced by Lobatto RK formulas

Adapts mesh based on measure of equidistribution of error

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



ACDC

Also written by Jeff Cash and Ross Wright – built on
underlying BVP code TWPBVP by Jeff and Margaret Wright

Solves a sequence of nonlinear systems of BVP ODEs –
indicate a linear problem by setting flag – deals with first
order systems only

Uses deferred correction but with monoimplicit RK formulas
of TWPBVP replaced by Lobatto RK formulas

Adapts mesh based on measure of equidistribution of error

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



ACDC

Also written by Jeff Cash and Ross Wright – built on
underlying BVP code TWPBVP by Jeff and Margaret Wright

Solves a sequence of nonlinear systems of BVP ODEs –
indicate a linear problem by setting flag – deals with first
order systems only

Uses deferred correction but with monoimplicit RK formulas
of TWPBVP replaced by Lobatto RK formulas

Adapts mesh based on measure of equidistribution of error

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



ACDC

Also written by Jeff Cash and Ross Wright – built on
underlying BVP code TWPBVP by Jeff and Margaret Wright

Solves a sequence of nonlinear systems of BVP ODEs –
indicate a linear problem by setting flag – deals with first
order systems only

Uses deferred correction but with monoimplicit RK formulas
of TWPBVP replaced by Lobatto RK formulas

Adapts mesh based on measure of equidistribution of error

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



ACDC

Also written by Jeff Cash and Ross Wright – built on
underlying BVP code TWPBVP by Jeff and Margaret Wright

Solves a sequence of nonlinear systems of BVP ODEs –
indicate a linear problem by setting flag – deals with first
order systems only

Uses deferred correction but with monoimplicit RK formulas
of TWPBVP replaced by Lobatto RK formulas

Adapts mesh based on measure of equidistribution of error

Uses continuation based on user-specified parameter –
predicts new mesh using measures of change in previous
mesh – removes unneeded mesh points



Possible use of Mathematica analysis

To provide suitable initial mesh for codes like ode_adap

For codes like COLMOD or ACDC to jump start
continuation process nearer end of path by providing good
initial mesh in regions where asymptotics should apply

As check to ensure computation kept on course, i.e. by
making sure there are layers/oscillations where there
should be



Possible use of Mathematica analysis

To provide suitable initial mesh for codes like ode_adap

For codes like COLMOD or ACDC to jump start
continuation process nearer end of path by providing good
initial mesh in regions where asymptotics should apply

As check to ensure computation kept on course, i.e. by
making sure there are layers/oscillations where there
should be



Possible use of Mathematica analysis

To provide suitable initial mesh for codes like ode_adap

For codes like COLMOD or ACDC to jump start
continuation process nearer end of path by providing good
initial mesh in regions where asymptotics should apply

As check to ensure computation kept on course, i.e. by
making sure there are layers/oscillations where there
should be



Choice of initial mesh

Choose total number of mesh points

Assign mesh in each layer separately using Baylhalov
formula – essentially proportionally to inverse function of
inner solution – choose edge of layer as ε or

√
ε or whatever

(plan to experiment with sensitivity later)

Use remaining mesh points to create equispaced mesh
between layers



Choice of initial mesh

Choose total number of mesh points

Assign mesh in each layer separately using Baylhalov
formula – essentially proportionally to inverse function of
inner solution – choose edge of layer as ε or

√
ε or whatever

(plan to experiment with sensitivity later)

Use remaining mesh points to create equispaced mesh
between layers



Choice of initial mesh

Choose total number of mesh points

Assign mesh in each layer separately using Baylhalov
formula – essentially proportionally to inverse function of
inner solution – choose edge of layer as ε or

√
ε or whatever

(plan to experiment with sensitivity later)

Use remaining mesh points to create equispaced mesh
between layers



Suitable initial mesh

Can supply an initial mesh for ode_adap

Sometimes more efficient than ode_adap’s default initial
mesh – never significantly less efficient

When starting with small ε can be difference between
success and failure



Suitable initial mesh

Can supply an initial mesh for ode_adap

Sometimes more efficient than ode_adap’s default initial
mesh – never significantly less efficient

When starting with small ε can be difference between
success and failure



Suitable initial mesh

Can supply an initial mesh for ode_adap

Sometimes more efficient than ode_adap’s default initial
mesh – never significantly less efficient

When starting with small ε can be difference between
success and failure



Reducing number of continuation steps

Aim to jump into continuation process closer to final value of
parameter than may be possible without good initial mesh

Hope to reduce total work by taking less continuation steps
and by using better mesh in later stages

Hope to extend range of ε over which solution may be
obtained

Experiments with COLMOD lead to no major improvement
so far – probably need to hook into COLMOD’s internal
mesh placement strategy

Equidistribution really what is needed?



Reducing number of continuation steps

Aim to jump into continuation process closer to final value of
parameter than may be possible without good initial mesh

Hope to reduce total work by taking less continuation steps
and by using better mesh in later stages

Hope to extend range of ε over which solution may be
obtained

Experiments with COLMOD lead to no major improvement
so far – probably need to hook into COLMOD’s internal
mesh placement strategy

Equidistribution really what is needed?



Reducing number of continuation steps

Aim to jump into continuation process closer to final value of
parameter than may be possible without good initial mesh

Hope to reduce total work by taking less continuation steps
and by using better mesh in later stages

Hope to extend range of ε over which solution may be
obtained

Experiments with COLMOD lead to no major improvement
so far – probably need to hook into COLMOD’s internal
mesh placement strategy

Equidistribution really what is needed?



Reducing number of continuation steps

Aim to jump into continuation process closer to final value of
parameter than may be possible without good initial mesh

Hope to reduce total work by taking less continuation steps
and by using better mesh in later stages

Hope to extend range of ε over which solution may be
obtained

Experiments with COLMOD lead to no major improvement
so far – probably need to hook into COLMOD’s internal
mesh placement strategy

Equidistribution really what is needed?



Reducing number of continuation steps

Aim to jump into continuation process closer to final value of
parameter than may be possible without good initial mesh

Hope to reduce total work by taking less continuation steps
and by using better mesh in later stages

Hope to extend range of ε over which solution may be
obtained

Experiments with COLMOD lead to no major improvement
so far – probably need to hook into COLMOD’s internal
mesh placement strategy

Equidistribution really what is needed?



Checking the solution

Two layer problem: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2

Problem ill-conditioned for ε ≈ 1/70 but seems better
conditioned for smaller values of ε

ode_adap can solve at just less than ε = 1/70 with care

COLMOD and ACDC both fail if continue from ε ≈ 1/2
(default) or smaller value to ε = 1/70 or even ε = 1/60

Seen it suggested that ill-conditioning results corresponding
eigenproblem having rounding error level eigenvalue when
ε ≈ 1/70. But why does problem seem better conditioned for
ε << 1/70?



Checking the solution

Two layer problem: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2

Problem ill-conditioned for ε ≈ 1/70 but seems better
conditioned for smaller values of ε

ode_adap can solve at just less than ε = 1/70 with care

COLMOD and ACDC both fail if continue from ε ≈ 1/2
(default) or smaller value to ε = 1/70 or even ε = 1/60

Seen it suggested that ill-conditioning results corresponding
eigenproblem having rounding error level eigenvalue when
ε ≈ 1/70. But why does problem seem better conditioned for
ε << 1/70?



Checking the solution

Two layer problem: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2

Problem ill-conditioned for ε ≈ 1/70 but seems better
conditioned for smaller values of ε

ode_adap can solve at just less than ε = 1/70 with care

COLMOD and ACDC both fail if continue from ε ≈ 1/2
(default) or smaller value to ε = 1/70 or even ε = 1/60

Seen it suggested that ill-conditioning results corresponding
eigenproblem having rounding error level eigenvalue when
ε ≈ 1/70. But why does problem seem better conditioned for
ε << 1/70?



Checking the solution

Two layer problem: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2

Problem ill-conditioned for ε ≈ 1/70 but seems better
conditioned for smaller values of ε

ode_adap can solve at just less than ε = 1/70 with care

COLMOD and ACDC both fail if continue from ε ≈ 1/2
(default) or smaller value to ε = 1/70 or even ε = 1/60

Seen it suggested that ill-conditioning results corresponding
eigenproblem having rounding error level eigenvalue when
ε ≈ 1/70. But why does problem seem better conditioned for
ε << 1/70?



Checking the solution

Two layer problem: εy′′ + xy′ − y = 0, y(−1) = 1, y(1) = 2

Problem ill-conditioned for ε ≈ 1/70 but seems better
conditioned for smaller values of ε

ode_adap can solve at just less than ε = 1/70 with care

COLMOD and ACDC both fail if continue from ε ≈ 1/2
(default) or smaller value to ε = 1/70 or even ε = 1/60

Seen it suggested that ill-conditioning results corresponding
eigenproblem having rounding error level eigenvalue when
ε ≈ 1/70. But why does problem seem better conditioned for
ε << 1/70?



Checking the solution

If start at default ε = 1/2 and aim for small ε continuation
path for both COLMOD and ACDC seem to jump over
difficult area then ”solve” the problem for all small value of ε
attempted

But often solution is not correct

Starting at ε = 1/2 and aiming for ε = 10−i, i = 1 . . . , 8 get
correct behavior except for ε = 10−2, 10−4 where right
boundary layer is lost

Starting at ε = 10−2 and aiming for ε = 10−i, i = 2 . . . , 8 lose
left boundary layer for ε = 10−2, 10−6, 10−7 and right
boundary layer for ε = 10−3, 10−4

ACDC behaves similarly unpredictably (but not exactly
same



Checking the solution

If start at default ε = 1/2 and aim for small ε continuation
path for both COLMOD and ACDC seem to jump over
difficult area then ”solve” the problem for all small value of ε
attempted

But often solution is not correct

Starting at ε = 1/2 and aiming for ε = 10−i, i = 1 . . . , 8 get
correct behavior except for ε = 10−2, 10−4 where right
boundary layer is lost

Starting at ε = 10−2 and aiming for ε = 10−i, i = 2 . . . , 8 lose
left boundary layer for ε = 10−2, 10−6, 10−7 and right
boundary layer for ε = 10−3, 10−4

ACDC behaves similarly unpredictably (but not exactly
same



Checking the solution

If start at default ε = 1/2 and aim for small ε continuation
path for both COLMOD and ACDC seem to jump over
difficult area then ”solve” the problem for all small value of ε
attempted

But often solution is not correct

Starting at ε = 1/2 and aiming for ε = 10−i, i = 1 . . . , 8 get
correct behavior except for ε = 10−2, 10−4 where right
boundary layer is lost

Starting at ε = 10−2 and aiming for ε = 10−i, i = 2 . . . , 8 lose
left boundary layer for ε = 10−2, 10−6, 10−7 and right
boundary layer for ε = 10−3, 10−4

ACDC behaves similarly unpredictably (but not exactly
same



Checking the solution

If start at default ε = 1/2 and aim for small ε continuation
path for both COLMOD and ACDC seem to jump over
difficult area then ”solve” the problem for all small value of ε
attempted

But often solution is not correct

Starting at ε = 1/2 and aiming for ε = 10−i, i = 1 . . . , 8 get
correct behavior except for ε = 10−2, 10−4 where right
boundary layer is lost

Starting at ε = 10−2 and aiming for ε = 10−i, i = 2 . . . , 8 lose
left boundary layer for ε = 10−2, 10−6, 10−7 and right
boundary layer for ε = 10−3, 10−4

ACDC behaves similarly unpredictably (but not exactly
same



Checking the solution

If start at default ε = 1/2 and aim for small ε continuation
path for both COLMOD and ACDC seem to jump over
difficult area then ”solve” the problem for all small value of ε
attempted

But often solution is not correct

Starting at ε = 1/2 and aiming for ε = 10−i, i = 1 . . . , 8 get
correct behavior except for ε = 10−2, 10−4 where right
boundary layer is lost

Starting at ε = 10−2 and aiming for ε = 10−i, i = 2 . . . , 8 lose
left boundary layer for ε = 10−2, 10−6, 10−7 and right
boundary layer for ε = 10−3, 10−4

ACDC behaves similarly unpredictably (but not exactly
same



Checking the solution

Tried changing problem for COLMOD

Tried changing problem εy′′ + xy′ − y = 0, y(−1) = 1,
y(1) = 2 to εy′′ + xy′ − 2y = 0, y(−1) = 1, y(1) = 2. Very
similar results including near ε = 1/70

And to εy′′ + xy′ − y = 0, y(−1) = −1, y(1) = 2. Changes
shape of solution but not behavior of code



Checking the solution

Tried changing problem for COLMOD

Tried changing problem εy′′ + xy′ − y = 0, y(−1) = 1,
y(1) = 2 to εy′′ + xy′ − 2y = 0, y(−1) = 1, y(1) = 2. Very
similar results including near ε = 1/70

And to εy′′ + xy′ − y = 0, y(−1) = −1, y(1) = 2. Changes
shape of solution but not behavior of code



Checking the solution

Tried changing problem for COLMOD

Tried changing problem εy′′ + xy′ − y = 0, y(−1) = 1,
y(1) = 2 to εy′′ + xy′ − 2y = 0, y(−1) = 1, y(1) = 2. Very
similar results including near ε = 1/70

And to εy′′ + xy′ − y = 0, y(−1) = −1, y(1) = 2. Changes
shape of solution but not behavior of code



Approximate initial solution

Not experimented sufficiently to draw conclusions

Should only help where initial guess is used to start
iteration or used as a check on computed solution



Approximate initial solution

Not experimented sufficiently to draw conclusions

Should only help where initial guess is used to start
iteration or used as a check on computed solution


	Symbolic/Numeric Methods for BVPs
	Plan of Talk
	Plan of Talk
	Plan of Talk
	Plan of Talk

	Introduction
	Introduction

	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems

	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems

	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems

	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems

	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems

	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems
	Linear singular perturbation problems

	Analysis in Mathematica
	Analysis in Mathematica
	Analysis in Mathematica
	Analysis in Mathematica

	Result of Analysis in Mathematica
	Result of Analysis in Mathematica
	Result of Analysis in Mathematica
	Result of Analysis in Mathematica

	The linear BVP solver ODE_ADAP
	The linear BVP solver ODE_ADAP
	The linear BVP solver ODE_ADAP
	The linear BVP solver ODE_ADAP
	The linear BVP solver ODE_ADAP

	COLMOD
	COLMOD
	COLMOD
	COLMOD
	COLMOD

	ACDC
	ACDC
	ACDC
	ACDC
	ACDC

	Possible use of Mathematica analysis
	Possible use of Mathematica analysis
	Possible use of Mathematica analysis

	Choice of initial mesh
	Choice of initial mesh
	Choice of initial mesh

	Suitable initial mesh
	Suitable initial mesh
	Suitable initial mesh

	Reducing number of continuation steps
	Reducing number of continuation steps
	Reducing number of continuation steps
	Reducing number of continuation steps
	Reducing number of continuation steps

	Checking the solution
	Checking the solution
	Checking the solution
	Checking the solution
	Checking the solution

	Checking the solution
	Checking the solution
	Checking the solution
	Checking the solution
	Checking the solution

	Checking the solution
	Checking the solution
	Checking the solution

	Approximate initial solution
	Approximate initial solution


