OP-SF NET – Volume 24, Number 5 – September 15, 2017

The Electronic News Net of the
SIAM Activity Group on Orthogonal Polynomials and Special Functions
http://math.nist.gov/opsf

OP-SF Net is distributed through OP-SF Talk.
Subscribe to OP-SF Talk at http://lists.siam.org/mailman/listinfo/siam-OPSF.
Please send contributions to the OP-SF Net editors.

Editors:
Howard S. Cohl howard.cohl@nist.gov
Sarah Post spost@hawaii.edu

Topics:
1. “Partition Functions and Automorphic Forms” at Dubna, Russia
2. “International Conf. on Special Functions & Applications” at Bikaner, India
4. Review of Beals & Wong, “Special Functions and Orthogonal Polynomials”
5. Comments on OPSFA-14 at the University of Kent
6. Special issue on OPSFA in the journal SIGMA
7. Special issue on Elliptic Hypergeometric Functions in the journal SIGMA
8. Orthogonal polynomials associated with nonconventional potentials
9. Preprints in arXiv.org
10. Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)

Calendar of Events:

September 18–22, 2017
Integrable systems, symmetries, and orthogonal polynomials
(Celebrating Peter Clarkson’s and Liz Mansfield’s 60th birthdays)
Instituto de Ciencias Matemáticas (ICMAT) Madrid, Spain.
https://www.icmat.es/RT/optrim/conference/index.php

October 23–27, 2017
II Orthonet School
Orthogonal polynomials and Special functions in Approximation Theory and
Mathematical Physics, Madrid, Spain
https://www.icmat.es/RT/optrim/school/index.php

November 2–4, 2017
International Conference on Special Functions & Applications (ICSFA–2017)
Bikaner (Rajasthan), India
http://www.ssfaindia.webs.com/conf.htm
November 30–December 2, 2017
International Conference Approximation and Computation – Theory and Applications
(Dedicated to Professor Walter Gautschi on the Occasion of his 90th Anniversary)
Belgrade, Serbia
http://easychair.org/smart-program/ACTA2017/Home.html

January 10–13, 2018
2018 Joint Mathematics Meetings, American Mathematical Society,
San Diego Convention Center and San Diego Marriott Hotel and Marina, San Diego, CA, USA
http://jointmathematicsmeetings.org/meetings/national/jmm2018/2197_intro

AMS Special Session on Orthogonal Polynomials and Applications,
Organized by Abey Lopez-Garcia and Xiang-Sheng Wang

AMS Special Session on Orthogonal Polynomials, Quantum Probability, and Stochastic Analysis,
Organized by Julius N. Esunge and Aurel I. Stan

AMS Special Session on Special Functions and Combinatorics
(in honor of Dennis Stanton’s 65th birthday),
Organized by Susanna Fishel, Mourad Ismail, and Vic Reiner

AMS Special Session on Algebraic, Analytic, and Geometric Aspects of Integrable Systems,
Painlevé Equations, and Random Matrices,
Organized by Vladimir Dragovic, Anton Dzhamay, and Sevak Mkrtchyan,

January 29–February 2, 2018
Partition Functions and Automorphic Forms
Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
http://indico.jinr.ru/event/diastp/Winter2018

November 11–17, 2018
Symmetries and Integrability of Difference Equations (SIDE13:2018)
Fukuoka, Japan
http://side-conferences.net

Summer, 2019
OPSFA 15 International Symposium
Linz, Austria

Topic #1 ______ OP – SF Net 24.5 ______ September 15, 2017

From: Vyacheslav Spiridonov (spiridon@theor.jinr.ru)
Subject: “Partition Functions and Automorphic Forms” at Dubna, Russia

Bogoliubov Laboratory of Theoretical Physics, JINR (Dubna) and International Laboratory for Mirror Symmetry and Automorphic Forms, NRU HSE (Moscow) are organizing an international winter school “Partition Functions and Automorphic Forms”.

The school will take place at BLTP JINR (Dubna, Russia) from January 29 to February 2, 2018 in the framework of the program DIAS-TH.

The scientific coordinators are V. A. Gritsenko and V. P. Spiridonov. The registration to the school is open on the website: http://indico.jinr.ru/event/diastp/Winter2018.
From: S. Ahmad Ali, Member, ICSFA-2017 Committee (ssfaindia@gmail.com)
Subject: “International Conf. on Special Functions & Applications” at Bikaner, India

I am pleased to announce that the 16th Annual Meeting of the Society for Special Functions & their Applications (SSFA) – International Conference on Special Functions & Applications (ICSFA–2017) is being organized by the Department of Mathematics, College of Engineering & Technology, Bikaner (Rajasthan), India, during November 2–4, 2017. The academic programs of the conference shall consist of plenary sessions, invited talks and paper presentations covering a wide range of topics in special functions and related areas. A symposium on the application of mathematical sciences in engineering problems shall be organized during the conference.

Important Dates:

- 15 September 2017: Last date for submission of a paper for the A. K. Agarwal Best Publication Award.
- 20 September 2017: Last date for nomination of the A. M. Mathai Research Excellence Award.
- 30 September 2017: Last date for submission of abstracts/full length papers for presentation or submission of papers for the Aruna Gupta and M. I. Qureshi Best Presentation Awards.
- 10 October 2017: Last date for registration.
- 15 January 2018: Last date for submission of papers for conference proceedings.

The SSFA and the Organizing Committee – ICSFA–2017 cordially invites you to participate in the conference. The conference details are available at:
http://www.ssfaindia.webs.com/conf.htm

We also request that you to circulate the conference information to your colleagues, friends and research scholars interested in the field of special functions and their applications in diverse areas of research.

Looking forward to your active participation for the success of ICSFA–2017.

From: Galina Filipuk (filipuk@mimuw.edu.pl)
Subject: Volume: “Analytic, Algebraic and Geometric Aspects of Differential Equations”

“Analytic, Algebraic and Geometric Aspects of Differential Equations”
Editors: Filipuk, Galina, Haraoka, Yoshishige, Michalik, Sławomir
Będlewo, Poland, September, 2015
Web Site

3
We would like to announce the publication of a recent volume, “Analytic, Algebraic and Geometric Aspects of Differential Equations,” that may be of interest to the SIAG/OPSF activity group members. These lecture notes, survey papers, and original research articles from the AAGADE school and conference held in Będlewo, Poland in September, 2015 provide an introduction and overview of the interaction between these different aspects (analytic, algebraic and geometric) of differential equations as well as a discussion of recent trends and open problems.

More information, including a complete list of contents is available at the following link: http://www.springer.com/gp/book/9783319528410.

Topic #4 OP – SF Net 24.5 September 15, 2017
From: Martin Muldoon (muldoon@yorku.ca)
Subject: Review of Beals & Wong, “Special Functions and Orthogonal Polynomials”

Web Site

This book is essentially a revision of the authors’ “Special Functions – a Graduate Text”, published as vol. 126 in the same series in 2010, and reviewed in Topic #6, OP–SF NET 18.5, 2011. The material on Orthogonal Polynomials has been extended from 2 to 4 chapters, there is more material on asymptotics and there are new chapters on generalized hypergeometric functions (including Meijer G–functions) and Painlevé Transcendents. The chapter summaries, that formed a prominent feature of the earlier book, are not included. However, the Remarks (including historical and expository references) are still a feature of each Chapter as are the Exercises (more than 400) that sometimes involve steps in the proofs of theorems. There are references to 449 books and articles – up from 322 in the earlier book.

Wong’s earlier research has been largely devoted to asymptotics including the book “Asymptotic Approximations of Integrals” (1989), republished on the SIAM “Classics in Applied Mathematics” series in 2001. Some of Beals’ earlier work is described in his article “PDE and Special Functions” in a volume dedicated to Yakar Kannai. This article goes a long way to explaining why the present book has a chapter on generalized hypergeometric functions and G–functions.

The authors of any textbook face choices when deciding on content, motivation and arrangement of material. In the present case, the authors devote particular care to these
issues, calling them “Organising Principles”. They write that their main goals are to “pro-
vide clear motivation, efficient proofs, and original references for all the principal results”
and “This book emphasizes general principles that unify and demarcate the subjects of
study”. This point of view influences the content, exercises, and references. While other
books use such principles, it is rare to find them so central and explicit.

For example, in Chapter 1 “Orientation”, the authors raise three questions:

- How can it be that so many of the functions (mentioned in the introduction) can be
 associated with just two differential equations (confluent hypergeometric and hy-
 pergeometric)?
- What does one want to know about these functions?
- Is this list of functions or related equations exhaustive in any sense?

Already in Section 1.1, they explain the idea of recursiveness of a second order linear dif-
ferential equation, the idea that it can be solved in a simple way using power series. This
leads in a natural way to the two kinds of equations mentioned in the first question. Later
(Chapter 3) the classical orthogonal polynomials are explained as the ones that arise when
the eigenvalues of a certain kind of second order differential equation are polynomials.

The end-of-chapter remarks include information on the history of the topics considered.
But the authors remark on p. 15, “There is much that could be said for proceeding histor-
ically ... but we shall not make a point of doing so ... later expositions can often be made
more efficient ... and ... more transparent than the original derivations.”

Although the book will probably be mainly used as a graduate level textbook, many of its
ideas and approaches can be useful at the undergraduate level and even at the research
level.

Contents:

1. Orientation
2. Gamma, beta, zeta
3. Second–order differential equations
4. Orthogonal polynomials on an interval
5. The classical orthogonal polynomials
6. Semi–classical orthogonal polynomials
7. Asymptotics of orthogonal polynomials: two methods
8. Confluent hypergeometric functions
9. Cylinder functions
10. Hypergeometric functions
11. Spherical functions
12. Generalized hypergeometric functions; G–functions
13. Asymptotics
14. Elliptic functions
15. Painlevé Transcendents

Appendix A. Complex analysis
Appendix B. Fourier analysis
From: Eric Shirley (eric.shirley@nist.gov)
Subject: Comments on OPSFA-14 at the University of Kent

I enjoyed attending OPSFA-14 for a variety of reasons, mostly related to applicability of other researchers’ results to my own work. This included automated algorithms for determining points and weights for Gaussian cubature (i.e., quadrature in more than one dimension, analysis of the stability of numerical grid–based methods to solve partial differential equations, and a robust tutorial (by means of very many lectures) on the theory of orthogonal polynomials. Regarding quadrature techniques, which are an especially important class of methods in Green’s function–based methods, integration over polygons and hyperspheres were of particular interest.

I was also very impressed by the advances in the areas of the Painlevé equations and exceptional orthogonal polynomials. Both of these topics may be of interest in upcoming advances in physics, including in the field of quantum information. For this reason, I would recommend that applied physical scientists consider attending future conferences in the same series. The potential for interdisciplinary collaborations between physical scientists and applied mathematicians is particularly alluring.

The conference was well run, being housed in a new building devoted to mathematical sciences at the University of Kent. It featured an enjoyable public lecture related to medical imaging, emphasizing the benefits of robust applied mathematical theory in a way that was accessible to non–specialists. Overall, the venue of Canterbury was attractive, and the mood of the conference could be described best, perhaps, in one word: festive.

From: OP–SF NET Editors
Subject: Special issue on OPSFA in the journal SIGMA

The journal Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) (ISSN 1815–0659) is publishing a special issue on “Orthogonal Polynomials, Special Functions and Applications (OPSFA14)”.

The Guest Editors for this special issue are:

• Peter Clarkson (University of Kent at Canterbury, UK)
• Erik Koelink (Radboud University Nijmegen, The Netherlands)
• Ana Loureiro (University of Kent at Canterbury, UK)
• Walter Van Assche (University of Leuven, Belgium)

The deadline for paper submissions is January 31, 2018.

More information on this special issue and the submission procedure can be found at http://www.emis.de/journals/SIGMA/OPSFA2017.html.
We would like to remind you about the Special Issue of the journal SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) on Elliptic Hypergeometric Functions and Their Applications.

The Guest Editors for this special issue are:

- Michael J. Schlosser (University of Vienna, Austria)
- Vyacheslav P. Spiridonov JINR, Dubna, Russia
- S. Ole Warnaar (University of Queensland, Australia)

The deadline for submission of papers has been extended to January 31, 2018.

Both original research articles and review papers are welcome.

For further details, please see: https://www.emis.de/journals/SIGMA/EHF2017.html.

Feel free to contact the guest editors if you have any questions.

Introduction: We often have the impression that all the important orthogonal polynomials are known, at least those that appear in applications, but now and then a new family is encountered and little is known about them. The OPSF Newsletter is a good place to mention this and to invite people to have a look at them, thereby bringing researchers in OPSF together and opening possibilities for international collaboration.

One prime example was brought to my attention recently by researchers from Saudi Arabia, and I asked the OP–SF NET Editors to include it as a topic in this newsletter. The problem is to derive properties of two new orthogonal polynomials on the real line that were overlooked in the mathematics literature, but have been encountered frequently in the physics literature since 2005. Currently, they are defined by their three-term recursion relations and initial values. If you are able to work out some of the relevant properties of these orthogonal polynomials, then please contact the author.

Abdulaziz D. Alhaidari
Saudi Center for Theoretical Physics, P.O. Box 32741, Jeddah 21438, Saudi Arabia
Haidari@sctp.org.sa

Physical Background:

The wavefunction in quantum mechanics could be viewed as a vector field in an infinite dimensional space with local unit vectors. Thus, in one of the formulations of quantum mechanics, the wavefunction at an energy E, $\psi_E(x)$, is written as a bounded sum over a
complete set of square integrable basis functions (the local unit vectors) in configuration
space:
\[|\psi_E(x)⟩ = \sum_n f_n(E)|\phi_n(x)⟩, \tag{1} \]
where \(\{\phi_n(x)\} \) are the basis elements and \(\{f_n(E)\} \) are proper expansion coefficients in
the energy (the components of the wavefunction along the unit vectors). All physical in-
formation (structural and dynamical) are contained in the expansion coefficients. In this
formulation, called the “Tridiagonal Representation Approach” [1–4], the basis elements
are chosen such that the matrix representation of the wave operator (e.g., the Schrödinger
or Dirac operator) is tridiagonal. Consequently, the resulting matrix wave equation be-
comes a three–term recursion relation for the expansion coefficients, which is solved in
terms of orthogonal polynomials in some physical parameter(s) and/or the energy. We
write \(f_n(E) = f_0(E)P_n(\varepsilon) \), where \(\varepsilon \) is an appropriate function of the energy and physical
parameters. Then, we have shown that \(\{P_n(\varepsilon)\} \) is a complete set of orthogonal polyno-
mials satisfying the said recursion relation with \(P_0(\varepsilon) = 1 \) and having a positive weight
function as \(|f_0(E)|^2\). These polynomials are associated with the continuum scattering
states of the system where \(E \) is a continuous set. On the other hand, the discrete bound
states are associated with the discrete version of these polynomials.

We found all such polynomials that correspond to well–known physical systems and to
new ones. For example, the scattering states of the Coulomb problem are associated with
Meixner–Pollaczek polynomial whereas the bound states are associated with its discrete
version, the Meixner polynomial. Additionally, the scattering states of the Morse oscilla-
tor are associated with the continuous dual Hahn polynomial whereas the finite number
of bound states are associated with its discrete version, the dual Hahn polynomial. And
so on.

Nonetheless, since 2005 we did encounter physical problems that are associated with or-
thogonal polynomials, which were not treated in the mathematics or physics literature in
the past [5–12]. These are defined, up to now, by their three–term recursion relations
and initial value \(P_0(\varepsilon) = 1 \). However, their other important properties are yet to be de-

The first polynomial:
The first orthogonal polynomial is a four–parameter polynomial, which we designate as
\(H_n^{(\mu,\nu)}(z; \alpha, \theta) \). It satisfies the following three–term recursion relation
\[
(\cos \theta)H_n^{(\mu,\nu)}(z; \alpha, \theta) \\
= \left\{ z \sin \theta \left[\left(n + \frac{\mu + \nu + 1}{2} \right)^2 + \alpha \right] + \frac{\nu^2 - \mu^2}{(2n + \mu + \nu)(2n + \mu + \nu + 2)} \right\} H_n^{(\mu,\nu)}(z; \alpha, \theta) \\
+ \frac{2(n + \mu)(n + \nu)}{(2n + \mu + \nu)(2n + \mu + \nu + 1)} H_{n-1}^{(\mu,\nu)}(z; \alpha, \theta) \\
+ \frac{2(n + 1)(n + \mu + \nu + 1)}{(2n + \mu + \nu + 1)(2n + \mu + \nu + 2)} H_{n+1}^{(\mu,\nu)}(z; \alpha, \theta), \tag{2} \\
\]
where \(n = 1, 2, \ldots \) and \(0 \leq \theta \leq \pi \). It is a polynomial of degree \(n \) in \(z \) and in \(\alpha \). From physical
arguments, we expect that \(\mu \) and \(\nu \) be greater than \(-1\) and \(z \in \mathbb{R} \). The polynomial of the
first kind satisfies this recursion relation together with \(H_0^{(\mu, \nu)}(z; \alpha, \theta) = 1 \) and

\[
H_1^{(\mu, \nu)}(z; \alpha, \theta) = \frac{\mu - \nu}{2} + \frac{\mu + \nu + 2}{2} \left\{ \cos \theta - z \sin \theta \left[\frac{(\mu + \nu + 1)^2}{4} + \alpha \right] \right\},
\]

which is obtained from (2) by setting \(n = 0 \) and \(H_{-1}^{(\mu, \nu)}(z; \alpha, \theta) \equiv 0 \). This polynomial has only a continuous spectrum over the whole real \(z \) line. This could be verified numerically by looking at the distribution of its zeros for a very large order. The asymptotics \((n \to \infty)\) of \(H_n^{(\mu, \nu)}(z; \alpha, \theta) \) could also be obtained numerically and found to be sinusoidal, which is consistent with the expected physical behavior. Additionally, the physics of the problems associated with this polynomial suggests that it should have two discrete versions (defined by the replacements \(\theta \to i\theta \) and \(z \to -iz \) in the above recursion relation). One with an infinite spectrum (for \(\alpha > 0 \)) and another with a finite spectrum (for \(\alpha < 0 \)). This is similar to the Meixner-Pollaczek polynomial and its discrete versions of the Meixner and Krawtchouk polynomials with infinite and finite spectra, respectively.

The second polynomial:

The second orthogonal polynomial is a three-parameter polynomial designated as \(G_n^{(\mu, \nu)}(z^2; \sigma) \). It satisfies the following three-term recursion relation for \(n = 1, 2, \ldots \)

\[
z^2 G_n^{(\mu, \nu)}(z^2; \sigma) = \left\{ (\sigma + B_n^2) \left[\frac{(2n + \mu + \nu)^2}{(2n + \mu + \nu)(2n + \mu + \nu + 2)} + 1 \right] - \frac{2n(n + \nu)}{(2n + \mu + \nu)(2n + \mu + \nu + 2)} \right\} G_n^{(\mu, \nu)}(z^2; \sigma)
\]

\[
- \frac{2(\sigma + B_n^2(n + \nu)(n + \nu)}{(2n + \mu + \nu)(2n + \mu + \nu + 1)} G_{n-1}^{(\mu, \nu)}(z^2; \sigma)
\]

\[
- \frac{2\sigma (n + 1)(n + \mu + \nu + 1)}{(2n + \mu + \nu + 1)(2n + \mu + \nu + 2)} G_{n+1}^{(\mu, \nu)}(z^2; \sigma),
\]

where \(B_n = n + 1 + \frac{\mu + \nu}{2} \), and \(\{\mu, \nu\} \) are greater than \(-1\). It is a polynomial of degree \(n \) in \(z^2 \). The polynomial of the first kind satisfies this recursion relation with \(G_0^{(\mu, \nu)}(z^2; \sigma) = 1 \) and

\[
G_1^{(\mu, \nu)}(z^2; \sigma) = \mu + 1 - (\mu + \nu + 2) \frac{z^2 + \frac{1}{2}(\mu + 1)^2}{2(\sigma + B_0^2)}.
\]

which is obtained from (4) by setting \(n = 0 \) and \(G_{-1}^{(\mu, \nu)}(z^2; \sigma) \equiv 0 \). The physics of the problems associated with this polynomial suggests that if \(\sigma \) is positive then this polynomial has only a continuous spectrum on the positive \(z^2 \) line. However, if \(\sigma \) is negative then the spectrum is a mix of a continuous part on the positive \(z^2 \) line and a discrete part on the negative \(z^2 \) line. This could also be verified numerically by looking at the distribution of the zeros of this polynomial for a very large order. We can also show numerically that the asymptotics \((n \to \infty)\) is sinusoidal and assumes the following form

\[
G_n^{(\mu, \nu)}(z^2; \sigma) \approx \frac{1}{n} A(z) \cos \left[\log(n) \theta(z) + \delta(z) \right],
\]

where the three functions \(A(z), \theta(z) \) and \(\delta(z) \) are independent of \(n \) but depend on the polynomial parameters \(\{\sigma, \mu, \nu\} \). The well–known energy spectrum of the physical problems associated with this polynomial gives its spectrum formula as

\[
z_m^2 = -2 \left(m + \frac{\nu + 1}{2} - \sqrt{-\sigma} \right)^2.
\]
where \(m = 0, 1, \ldots, N \) and \(N \) is the largest integer less than or equal to \(\sqrt{-\sigma - \frac{\nu+1}{2}} \). Therefore, the zeros of the scattering amplitude \(A(z) \) in the asymptotic formula (6) are at \(z = i \sqrt{-\frac{\nu^2}{m}} \). Consequently, the orthogonality relation for negative \(\sigma \) reads as follows
\[
\int_{0}^{\infty} \rho(z) G_n^{(\mu,\nu)}(z^2; \sigma) G_m^{(\mu,\nu)}(z^2; \sigma) \, dz + \sum_{k=0}^{N} \omega_k G_n^{(\mu,\nu)}(z_k^2; \sigma) G_m^{(\mu,\nu)}(z_k^2; \sigma) = \lambda_n \delta_{m,n},
\]
where \(\rho(z) \) is the continuous weight function, \(\omega_k \) is the discrete weight function and \(\lambda_n > 0 \). For positive \(\sigma \), however, only the integral part of this orthogonality survives. Moreover, the physics of the problems associated with this polynomial suggest that it has a discrete version with finite spectrum.

References:

Topic #9 OP – SF Net 24.5 September 15, 2017

From: OP–SF Net Editors
Subject: Preprints in arXiv.org

The following preprints related to the fields of orthogonal polynomials and special functions were posted or cross–listed to one of the subcategories of arXiv.org during July and August 2017. This list has been separated into two categories.
Spatial asymptotics of Green's function for elliptic operators and applications: a.c. spectral type, wave operators for wave equations
Sergey A. Denisov

Factorizations of symmetric Macdonald polynomials
Laura Colmenarejo, Charles F. Dunkl, Jean-Gabriel Luque

A continuous analogue of lattice path enumeration
T. Wakhare, C. Vignat, Q.–N. Le, S. Robins

An inverse factorial series for a general gamma ratio and related properties of the Nørlund–Bernoulli polynomials
Dmitrii B. Karp, Elena G. Prilepkina

q–Viscous Burgers’ Equation: Dynamical Symmetry, Shock Solitons and q–Semiclassical Expansion
Sengul Nalci Tumer, Oktay K. Pashaev

Jacobi matrices generated by ratios of hypergeometric functions
Maxim Derevyagin

On the derivatives $\frac{\partial^2 P_\nu(z)}{\partial \nu^2}$ and $\frac{\partial Q_\nu(z)}{\partial \nu}$ of the Legendre functions with respect to their degrees
Radosław Szmytkowski

Solutions of KZ differential equations modulo p
Vadim Schechtman, Alexander Varchenko

A Feynman integral in Lifshitz–point and Lorentz–violating theories in $R^D \oplus R^m$
R. B. Paris, M. A. Shpot

Hahn polynomials on polyhedra and quantum integrability
Plamen Iliev, Yuan Xu

Revisiting The Riemann Zeta Function at Positive Even Integers
Krishnaswami Alladi, Colin Defant
The general form of the Euler–Poisson–Darboux equation and application of transmutation method
Elina L. Shishkina, Sergei M. Sitnik

Large \(N \) expansions for the Laguerre and Jacobi \(\beta \) ensembles from the loop equations
Peter J. Forrester, Anas A. Rahman, Nicholas S. Witte

Liouville integrability of conservative peakons for a modified CH equation
Xiang–Ke Chang, Jacek Szmigielski

Umbral Methods and Harmonic Numbers
Giuseppe Dattoli, Bruna Germano, Silvia Licciardi, Maria Renata Martinelli

Introduction to Cluster Algebras. Chapters 4–5
Sergey Fomin, Lauren Williams, Andrei Zelevinsky

Nonintersecting Brownian bridges on the unit circle with drift
Robert Buckingham, Karl Liechty

Uniform asymptotics as a stationary point approaches an endpoint
Arran Fernandez, Athanassios S. Fokas, Euan A. Spence

Combinatorial and Arithmetical Properties of the Restricted and Associated Bell and Factorial Numbers
Victor H. Moll, José L. Ramirez, Diego Villamizar

Error bounds for the large–argument asymptotic expansions of the Lommel and allied functions
Gergő Nemes

A Koksma–Hlawka–Potential Identity on the \(d \) Dimensional Sphere and its Applications to Discrepancy
S. B. Damelin

An Extension of the Method of Brackets. Part 1
Ivan Gonzalez, Karen Kohl, Lin Jiu, Victor H. Moll

Counting Planar Eulerian Orientations
Andrew Elvey–Price, Anthony J Guttmann
http://arxiv.org/abs/1707.09477
A variation on the theme of Nicomachus
Florian Luca, Geremías Polanco, Wadim Zudilin

http://arxiv.org/abs/1707.09511
What is ... a multiple orthogonal polynomial?
Andrei Martínez-Finkelshtein, Walter Van Assche

http://arxiv.org/abs/1708.00548
Liouville–Green expansions of exponential form, with an application to modified Bessel functions
T. M. Dunster

http://arxiv.org/abs/1708.01637
Matrix biorthogonal polynomials, associated polynomials and functions of the second kind
Amilcar Branquinho, Juan Carlos García–Ardila, Francisco Marcellán

http://arxiv.org/abs/1708.01638
Ratio asymptotic for bi–orthogonal matrix polynomials with unbounded recurrence coefficients
Amilcar Branquinho, Juan Carlos García–Ardila, Francisco Marcellán

http://arxiv.org/abs/1708.01957
Some Elementary Partition Inequalities and Their Implications
Alexander Berkovich, Ali K. Uncu

http://arxiv.org/abs/1708.02519
Asymptotics for Hankel determinants associated to a Hermite weight with a varying discontinuity
Christophe Charlier, Alfredo Deano

http://arxiv.org/abs/1708.02381
A magnetic double integral
David Broadhurst, Wadim Zudilin

http://arxiv.org/abs/1708.02868
Explicit asymptotics for certain single and double exponential sums
Konstantinos Kalimeris, Athanassios S. Fokas

http://arxiv.org/abs/1708.03106
Exceptional Laguerre polynomials
Niels Bonneux, Arno B. J. Kuijlaars

http://arxiv.org/abs/1708.03368
A q–generalization of the para–Racah polynomials
Jean–Michel Lemay, Luc Vinet, Alexei Zhedanov

http://arxiv.org/abs/1708.03379
Fifth–order superintegrable quantum system separating in Cartesian coordinates. Doubly exotic potentials
Ismail Abouamal, Pavel Winternitz
The generating function for the Airy point process and a system of coupled Painlevé II equations
Tom Claeys, Antoine Doeraene

Fourier optimization and prime gaps
Emanuel Carneiro, Micah B. Milinovich, Kannan Soundararajan

Universality at an Endpoint for Orthogonal Polynomials with Geronimus–Type Weights
Brian Simanek

Some remarks on the theorems of Wright and Braaksma on the Wright function $\psi_q(z)$
R. B. Paris

Tracy–Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system
Shuai-Xia Xu, Dan Dai

Inequalities for integrals of modified Bessel functions and expressions involving them
Robert E. Gaunt

On the proof of a variant of Lindelöf’s hypothesis
Athanassios S. Fokas

A formal proof of a slight variant of Lindelöf’s hypothesis
Athanassios S. Fokas

Functional inequalities for Fox–Wright functions
Khaled Mehrez, Sergei M. Sitnik

Interbasis expansions in the Zernike system
Natig M. Atakishiyev, George S. Pogosyan, Kurt Bernardo Wolf, Alexander Yakhno

Hankel determinant of the Rayleigh sums of zeros of Bessel functions
Árpád Baricz

Product formulas on posets, Wick products, and a correction for the q–Poisson process
Michael Anshelevich
On the quasi–Ablowitz–Segur and quasi–Hastings–McLeod solutions of the inhomogeneous Painlevé II equation
Dan Dai, Weiying Hu

Decompositions of amplituhedra
Steven N. Karp, Lauren K. Williams, Yan X. Zhang

A note on the asymptotics of the modified Bessel functions on the Stokes lines
R. B. Paris

Other Relevant OP–SF E–Prints

On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops
Miguel Méndez, Rafael Sánchez

Starlikeness of the generalized Bessel function
Rosihan M. Ali, See Keong Lee, Saiful R. Mondal

A conjecture on the zeta functions of pairs of ternary quadratic forms
Jin Nakagawa

New and Sharp Bounds for Orthogonal Polynomial Approximation of Functions in Fractional Sobolev-type Spaces I: Chebyshev Case
Wenjie Liu, Li–Lian Wang, Huiyuan Li

Fast Approximate Implicitization of Envelope Curves using Chebyshev Polynomials
Oliver J. D. Barrowclough, Bert Jüttler, Tino Schulz

Spectral asymptotics for δ–interactions on sharp cones
Thomas Ourmières–Bonafos, Konstantin Pankrashkin, Fabio Pizzichillo

The signs of the Stieltjes constants associated with the Dedekind zeta function
Sumaia Saad Eddin

Generalized quaternionic Bargmann–Fock spaces and associated Segal–Bargmann transforms
A. El Hamyani, A. Ghanmi
http://arxiv.org/abs/1707.01754
An experimental study of the monotonicity property of the Riemann zeta function
Yochay Jerby

http://arxiv.org/abs/1707.02278
Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms
Peter Ochs, Jalal Fadili, Thomas Brox

http://arxiv.org/abs/1707.02688
A General Framework of Enhancing Sparsity of Generalized Polynomial Chaos Expansions
Xiu Yang, Xiaoliang Wan, Lin Lin

http://arxiv.org/abs/1707.03259
Irregular Hodge filtration of some confluent hypergeometric systems
Alberto Castaño Domínguez, Christian Sevenheck

http://arxiv.org/abs/1707.03287
An algorithm for the numerical evaluation of the associated Legendre functions that runs in time independent of degree and order
James Bremer

http://arxiv.org/abs/1707.03289
A class of exactly solvable rationally extended non-central potentials in Two and Three Dimensions
Nisha Kumari, Rajesh Kumar Yadav, Avinash Khare, Bhabani Prasad Mandal

http://arxiv.org/abs/1707.03379
Ramanujan’s Thoughts from God
Frank Aiello

http://arxiv.org/abs/1707.03582
Generalized Theta Functions. I
Yuriy Smilyanets

On the connection problem for nonlinear differential equation
Zhao-Yun Zeng, Lin Hu

Laplace-type representation for some generalized spherical functions of type BC
P. Sawyer

http://arxiv.org/abs/1707.04451
On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers
Wolfdieter Lang

http://arxiv.org/abs/1707.04667
Odd Dunkl Operators and nilHecke Algebras
Ritesh Ragavender
http://arxiv.org/abs/1707.04695
Jacobi matrices: continued fractions, approximation, spectrum
Eduard Ianovich

http://arxiv.org/abs/1707.04801
Asymptotic formula of the number of Newton polygons
Shushi Harashita

http://arxiv.org/abs/1707.05008
Cyclotomic analogues of finite multiple zeta values
Henrik Bachmann, Yoshihiro Takeyama, Koji Tasaka

http://arxiv.org/abs/1707.05126
Some analytic functions involving Gamma function and their various properties
Sercan Topkaya, Nizami Mustafa

http://arxiv.org/abs/1707.05202
Zeros of exceptional orthogonal polynomials and the maximum of the modulus of an energy function
Yu Luo

http://arxiv.org/abs/1707.05208
Characterization of certain sequences of q-polynomials
P. Njionou Sadjang

http://arxiv.org/abs/1707.05216
On basic Fourier–Bessel expansions
J. L. Cardoso

Higher derivatives of Airy functions and of their products
E. G. Abramochkin, E.V. Razueva

http://arxiv.org/abs/1707.05222
Poles of Painlevé IV Rationals and their Distribution
Davide Masoero, Pieter Roffelsen

http://arxiv.org/abs/1707.05412
Real–Root Preserving Differential Operator Representations of Orthogonal Polynomials
David A. Cardon, Evan L. Sorensen, Jason C. White

http://arxiv.org/abs/1707.05751
Two exercises of Comtet and two identities of Ruehr
Jan–Paul Allouche

http://arxiv.org/abs/1707.06275
On integral representations and asymptotics of some hypergeometric functions in two variables
Sascha Wald, Malte Henkel
http://arxiv.org/abs/1707.06283
Orthogonal Ramanujan Sums, its properties and Applications in Multiresolution Analysis
Devendra Kumar Yadav, Gajraj Kuldeep, S. D. Joshi

http://arxiv.org/abs/1707.06309
New integral operators arising from new bilateral generating functions for the weighted univariate complex Hermite polynomials
Abdelhadi Benahmadi, Abdelatif El Kachkouri, Allal Ghanmi

http://arxiv.org/abs/1707.06673
Some infinite series involving hyperbolic functions
Ce Xu

http://arxiv.org/abs/1707.06771
Generalized Arakawa–Kaneko zeta functions
Kwang–Wu Chen

http://arxiv.org/abs/1707.06877
Permutation properties of Dickson polynomials and connections to number theory
Antonia W. Bluher

Mehler’s formulas for the univariate complex Hermite polynomials and applications
Allal Ghanmi

http://arxiv.org/abs/1707.07174
Large deviation theorem for random covariance matrices
Tien–Cuong Dinh, Duc–Viet Vu

http://arxiv.org/abs/1707.07492
The Two–Weight Inequality for the Poisson Operator in the Bessel Setting
Ji Li, Brett D. Wick

http://arxiv.org/abs/1707.07701
Interpolation on Gauss hypergeometric functions with an application
Hina Manoj Arora, Swadesh Kumar Sahoo

http://arxiv.org/abs/1707.07776
Renewal sequences and record chains related to multiple zeta sums
Jean–Jil Duchamps, Jim Pitman, Wenpin Tang

http://arxiv.org/abs/1707.07871
On the sharpness of the weighted Bernstein–Walsh inequality, with applications to the superlinear convergence of conjugate gradients
Bernhard Beckermann, Thomas Helart

http://arxiv.org/abs/1707.07900
Sur l’irrationalité des racines de certaines familles de polynômes
Lionel Ponton
On some linear combination of two contiguous hypergeometric functions
Imane Ghanimi

Relationship between multiple zeta values of depths 2 and 3 and period polynomials
Ding Ma, Koji Tasaka

Dynamics beyond dynamic jam; unfolding the Painlevé paradox singularity
Arne Nordmark, Peter Varkonyi, Alan Champneys

On the ternary Hermite polynomials
Zhi-Guo Liu

Rotundus: triangulations, Chebyshev polynomials, and Pfaffians
Charles Conley, Valentin Ovsienko

Degenerate Dahee polynomials of the second kind
Taekyun Kim, Dae San Kim

Degenerate Changhee numbers and polynomials of the second kind
Taekyun Kim, Dae San Kim

Orthogonal rational functions on the unit circle with prescribed poles not on the unit circle
Adhemar Bultheel, Ruyman Cruz-Barroso, Andreas Lascarow

On the higher-order differential equations for the generalized Laguerre polynomials and
Bessel functions
Clemens Markett

Casoratian Identities for the Discrete Orthogonal Polynomials in Discrete Quantum Me-
chanics with Real Shifts
Satoru Odake

Sequences of Orthogonal Polynomials related to Isotropy Orbits of Symmetric Spaces
Gregor Weingart

Total positivity, Grassmannian and modified Bessel functions
Victor Buchstaber, Alexey Glutsyuk
Some evaluation of infinite series involving trigonometric and hyperbolic functions
Ce Xu

A Symmetric Integral Identity for Bessel Functions with Applications to Integral Geometry
Yehonatan Salman

An adaptive partition of unity method for Chebyshev polynomial interpolation
Kevin W. Aiton, Tobin A. Driscoll

On Hilbert’s 8th Problem
Nicholas G. Polson

Variants of the Riemann zeta function
Barry Brent

An Algorithm for Numerically Inverting the Modular j–function
Ethan Alwaise

On Borwein’s conjectures for planar uniform random walks
Yajun Zhou

Algebraic Independence of generic Painlevé Transcendents: P_{III} and P_{VI}
Joel Nagloo

Uniform bounds for sums of Kloosterman sums of half integral weight
Alexander Dunn

Airy series solution of Painlevé II in electrodiffusion: conjectured convergence
A. J. Bracken, L. Bass

An integral transform connecting spherical analysis on complex, quaternionic and octonionic hyperbolic spaces to the ones of odd dimensional real hyperbolic spaces
A. Intissar, M.V. Ould Moustapha, Z. Mouhcine

WKB approach to evaluate series of Mathieu functions in scattering problems
Maxime Hubert, Remy Dubertrand

The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials
Simon Willerton
Perfect quantum state transfer in weighted paths with potentials (loops) using orthogonal polynomials
Steve Kirkland, Darian McLaren, Rajesh Pereira, Sarah Plosker, Xiaohong Zhang

A generating function and formulae defining the first-associated Meixner–Pollaczek polynomials
Khalid Ahbli, Zouhair Mouayn

Blow–up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow–up profiles
Justin Holmer, Chang Liu

A Central Limit Theorem for First Passage Percolation in the Slab
Wei Wu, Serena Sian Yuan

Theory of Series in the \mathcal{A}–calculus and the \mathcal{N}–Pythagorean Theorem
James S. Cook, Daniel Freese

On unbounded denominators and hypergeometric series
Cameron Franc, Terry Gannon, Geoffrey Mason

Surprising identities for the hypergeometric $\,_{4}F_{3}$ function
Jacopo D'Aurizio, Sabino Ditrani

On the Euler discretization error of Brownian motion about random times
A. B. Dieker, Guido Lagos

On solving a restricted linear congruence using generalized Ramanujan sums
K. Vishnu Namboothiri

Unnormalized quasi–distributions and tomograms of quantum states
V. I. Man’ko, L. A. Markovich

On the number of solutions of a restricted linear congruence
K. Vishnu Namboothiri

On the ψ–Hilfer fractional derivative
J. Vanterler da C. Sousa, E. Capelas de Oliveira
Fundamental polyhedra for all Deligne–Mostow lattices in $PU(2,1)$
Irene Pasquinelli

Hirzebruch L–polynomials and multiple zeta values
Alexander Berglund, Jonas Bergström

A Liouville theorem for some Bessel generalized operators
Vanesa Galli, Sandra Molina, Alejandro Quintero

Coarsening model on \mathbb{Z}^d with biased zero–energy flips and an exponential large deviation bound for ASEP
Michael Damron, Leonid Petrov, David Sivakoff

Bifurcations of self–similar solutions for reversing interfaces in the slow diffusion equation with strong absorption
Jamie M. Foster, Peter Gysbers, John R. King, Dmitry E. Pelinovsky

Expressions for the entropy of binomial–type distributions
Mahdi Cheraghchi

Level Spacings and Nodal Sets at Infinity for Radial Perturbations of the Harmonic Oscillator
Thomas Beck, Boris Hanin

A matrix formulation of the Tau method for the numerical solution of non–linear problems
Kourosh Parand, Amin Ghaderi, Mehdi Delkhosh, Reza Pourgholi

Distribution modulo one and denominators of the Bernoulli polynomials
Bernd C. Kellner

A dimension conjecture for q–analogues of multiple zeta values
Henrik Bachmann, Ulf Kuehn

Existence of meromorphic solutions of first order difference equations
Risto Korhonen, Yueyang Zhang

Accurate calculation of oblate spheroidal wave functions
Arnie L. Van Buren
Fourier series of modular graph functions
Eric D'Hoker, William Duke

Totally positive matrices and dilogarithm identities
Andrei Bytsko, Alexander Volkov

Asymptotics of sums of partial theta functions with a Dirichlet character
Su Hu, Min-Soo Kim

Recursion for the smallest eigenvalue density of β-Wishart–Laguerre ensemble
Santosh Kumar

Schur complement preconditioners for multiple saddle point problems of block tridiagonal form with application to optimization problems
Jarle Sogn, Walter Zulehner

Integral representation for Bessel's functions of the first kind and Neumann series
Enrico De Micheli

Nikolskii constants for polynomials on the unit sphere
Feng Dai, Dmitry Gorbachev, Sergey Tikhonov

Topic #10 OP – SF Net 24.5 September 15, 2017

From: OP–SF Net Editors
Subject: Submitting contributions to OP–SF NET and SIAM–OPSF (OP–SF Talk)

To contribute a news item to OP–SF NET, send e–mail to one of the OP–SF Editors howard.cohl@nist.gov, or spost@hawaii.edu.
Contributions to OP–SF NET 24.6 should be sent by November 1, 2017.

OP–SF NET is an electronic newsletter of the SIAM Activity Group on Special Functions and Orthogonal Polynomials. We disseminate your contributions on anything of interest to the special functions and orthogonal polynomials community. This includes announcements of conferences, forthcoming books, new software, electronic archives, research questions, and job openings as well as news about new appointments, promotions, research visitors, awards and prizes. OP–SF Net is transmitted periodically through a post to SIAM–OPSF (OP–SF Talk).

SIAM–OPSF (OP–SF Talk) is a listserv of the SIAM Activity Group on Special Functions and Orthogonal Polynomials, which facilitates communication among members, and friends of the Activity Group. See the previous Topic. To post an item to the listserv, send e–mail to siam–opsf@siam.org.
WWW home page of this Activity Group:
http://math.nist.gov/opsf
Information on joining SIAM and this activity group: service@siam.org

The elected Officers of the Activity Group (2017–2019) are:
 Walter Van Assche, Chair
 Andrei Martinez–Finkelshtein, Vice Chair
 Sarah Post, Program Director
 Yuan Xu, Secretary

The appointed officers are:
 Howard Cohl, OP–SF NET co-editor
 Sarah Post, OP–SF NET co-editor
 Diego Dominici, OP–SF Talk moderator
 Bonita Saunders, Webmaster and OP–SF Talk moderator

Thought of the month

“Legendre is an extremely amiable man, but unfortunately as old as the stones.”

Niels Henrik Abel, October, 1826. This was in response to Legendre’s refusal in 1824 to
vote for the government’s candidate for the Institut National. As a result of Legendre’s
refusal to vote for the government’s candidate in 1824 his pension was stopped and he
died in poverty.