OOMMF
User’s Guide

April 4, 2000

This manual documents release 1.1b0.

Abstract

This manual describes OOMMEF (Object Oriented Micromagnetic Framework), a
public domain micromagnetics program developed at the National Institute of Stan-
dards and Technology. The program is designed to be portable, flexible, and extensible,
with a user-friendly graphical interface. The code is written in C++ and Tcl/Tk. Tar-
get systems include a wide range of Unix platforms, Windows NT, and Windows 95/98.

Contents

Disclaimer
1 Overview of OOMMF
2 Installation

8

9

2.1 Requirements e
2.2 Basic Installation o oo
221 Download
2.2.2 Check Your Platform Configuration
2.2.3 Compiling and Linking o L.
224 Installing
2.2.5 Using OOMMF Software
2.2.6 Reporting Problems 000000
2.3 Advanced Installation L oo
2.3.1 Reducing Disk Space Usage
2.3.2 Local Customizations
2.3.3 Managing OOMMF Platform Names
2.3.4 Microsoft Windows Options

Quick Start: Example OOMMEF Session

OOMMEF Architecture Overview

Command Line Launching

OOMMF Launcher/Control Interface: mmLaunch
Micromagnetic Problem Editor: mmProbEd
Micromagnetic Problem File Source: FileSource

The 2D Micromagnetic Solver: mmSolve2D

10 Data Table Display: mmDataTable

11 Data Graph Display: mmGraph

12 Vector Field Display: mmDisp

iii

—

20

22

25

27

29

31

39

42

46

13 Data Archive: mmArchive 56

14 Documentation Viewer: mmHelp 58
15 Command Line Utilities 60
15.1 Making Bitmaps from Vector Fields: avf2ppm 60
15.2 Bitmap File Format Conversion: any2ppm 65
15.3 Vector Field File Format Conversion: avf2ovf. 66
15.4 Calculating H Fields from Magnetization: mag2hfield 66
15.5 Platform-Independent Make: pimake 67
16 OOMMEF Batch System 69
16.1 Solver Batch Interface: batchsolve L. 69
16.2 Batch Scheduling System L 72
16.2.1 Master Scheduling Control: batchmaster 72

16.2.2 Task Control: batchslave 73

16.2.3 Batch Task Scripts 75

16.2.4 Sample task scriptso 7

17 File Formats 81
17.1 Problem specification format (MIF) 81
17.2 Data table format (ODT) 90
17.3 Vector field format (OVFE) o oo 91
17.3.1 The OVF 1.0 format 91

17.3.2 The OVF 0.0 format 96

18 Troubleshooting 99
19 References 101

20 Credits 102

i

Disclaimer

This software was developed at the National Institute of Standards and Technology by
employees of the Federal Government in the course of their official duties. Pursuant to Title
17, United States Code, Section 105, this software is not subject to copyright protection and
is in the public domain.

OOMMEF is an experimental system. NIST assumes no responsibility whatsoever for
its use by other parties, and makes no guarantees, expressed or implied, about its quality,
reliability, or any other characteristic. We would appreciate acknowledgement if the software
is used.

Commercial equipment and software referred to on these pages is identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.

il

1 Overview of OOMMF

The goal of the OOMMEF'! (Object Oriented Micromagnetic Framework) project in the Infor-
mation Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) is to develop a portable, extensible public domain micromagnetic program and asso-
ciated tools. This code will form a completely functional micromagnetics package, but will
also have a well documented, flexible programmer’s interface so that people developing new
code can swap their own code in and out as desired. The main contributors to OOMMEF are
Mike Donahue and Don Porter.

In order to allow a programmer not familiar with the code as a whole to add modifications
and new functionality, we feel that an object oriented approach is critical, and have settled
on C++ as a good compromise with respect to availability, functionality, and portability.
In order to allow the code to run on a wide variety of systems, we are writing the interface
and glue code in Tecl/Tk?. This enables our code to operate across a wide range of Unix
platforms, Windows NT, and Windows 95/98.

The code may actually be modified at 3 distinct levels. At the top level, individual
programs interact via well-defined protocols across network sockets. One may connect these
modules together in various ways from the user interface, and new modules speaking the
same protocol can be transparently added. The second level of modification is at the Tecl/Tk
script level. Some modules allow Tcl/Tk scripts to be imported and executed at run time,
and the top level scripts are relatively easy to modify or replace. At the lowest level, the
C—++ source is provided and can be modified, although at present there is no documentation
detailing this process.

The first portion of OOMMEF released was a magnetization file display program called
mmDisp. A working release® of the complete OOMMEF project is now available. This
includes a problem editor, a 2D micromagnetic solver, and several display widgets, including
an updated version of mmDisp. The solver can be controlled by an interactive interface
(Sec. 9), or through a sophisticated batch control system (Sec. 16).

The solver is based on a micromagnetic code that Mike Donahue and Bob McMichael
had previously developed. It utilizes a heavily damped Landau-Lifshitz ODE solver to relax
3D spins on a 2D mesh of square cells, using FFT’s to compute the self-magnetostatic
(demag) field. Anisotropy, applied field, and initial magnetization can be varied pointwise,
and arbitrarily shaped elements can be modeled. We are currently working on a full 3D
version of this code suitable for modeling layered materials.

Thttp://math.nist.gov/oommf/
2http://www.scriptics.com/
3http://math.nist.gov /oommf/software.html

If you want to receive e-mail notification of updates to this project, register your e-mail
address with the “4MAG Announcement” mailing list:

http://www.ctcms.nist.gov/ rdm/email-list. html.

The OOMMEF developers are always interested in your comments about OOMMF. See
the Credits (Sec. 20) for instructions on how to contact them.

2 Installation

2.1 Requirements

OOMMF software is written in C++ and Tcl. It uses the Tcl-based Tk Windowing Toolkit
to create graphical user interfaces that are portable to many varieties of Unix as well as
Microsoft Windows 95/98/NT.

Tcl and Tk must be installed before installing OOMMEF. Tcl and Tk are available for
free download from Scriptics Corporation® . We recommend the latest stable versions of Tcl
and Tk concurrent with this release of OOMME. OOMMEF requires at least Tcl version 7.5
and Tk version 4.1 on Unix platforms, and requires at least Tcl version 7.6 and Tk version
4.2 on Microsoft Windows platforms. OOMMEF software does not support any alpha or beta
versions of Tcl/Tk, and each release of OOMMF may not work with later releases of Tcl/Tk.
Check the release dates of both OOMMEF and Tcl/Tk to ensure compatibility.

A Tecl/Tk installation includes two shell programs. The names of these programs may
vary depending on the Tcl/Tk version and the type of platform. The first shell program
contains an interpreter for the base Tcl language. In the OOMMEF documentation we refer
to this program as tclsh. The second shell program contains an interpreter for the base
Tecl language extended by the Tcl commands supplied by the Tk toolkit. In the OOMMF
documentation we refer to this program as wish. Consult your Tcl/Tk documentation to
determine the actual names of these programs on your platform (for example, tc1sh80.exe
or wish4.2).

OOMMEF applications communicate via TCP/IP network sockets. This means that
OOMMEF requires support for networking, even on a stand-alone machine. At a minimum,
OOMMEF must be able to access the loopback interface so that the host can talk to itself
using TCP/IP.

The OOMMEF source distribution unpacks into a directory tree containing about 500
files and directories, occupying about 7 MB of storage. Compiling and linking for each
platform consumes approximately an additional 7 MB of storage. The OOMMEF distribution
containing Windows executables unpacks into a directory tree occupying about 8 MB of
storage. Note: On a non-compressed FAT16 file system on a large disk, OOMMF may
take up much more disk space. This is because on such systems, the minimum size of any
file is large, as much as 32 KB. Since this is much larger than many files in the OOMMF
distribution require, a great deal of disk space is wasted.

To build OOMMEF software from source code, you will need a C++ compiler capable of
handling C++ templates, as well as other software development utilities for your platform.

4http://www.scriptics.com/

We do development and test builds on the following platforms, although porting to others
should not be difficult:

Platform Compilers
AIX Gnu gee
Alpha/Digital UNIX Digital C++-, Gnu gcc
Alpha/Linux Gnu gee/eges
Alpha/Windows NT Microsoft Visual C++
HP-UX HP C++ (cfront), aC++
Intel/Linux Gnu gee/eges
Intel/Windows NT, 95, 98 | Microsoft Visual C++,
Cygwin gce, Borland C++
MIPS/IRIX 6 (SGI) MIPSpro C++, Gnu gcc
SPARC/Solaris Sun Workshop C++, Gnu gcc

2.2 Basic Installation

Follow the instructions in the following sections, in order, to prepare OOMMEF software for
use on your computer.

2.2.1 Download

The latest release of the OOMMEF software may be retrieved from the OOMMF down-
load page’. Each release is available in two formats. The first format is a gzipped tar
file containing an archive of all the OOMMEF source code. The second format is a .zip
compressed archive containing source code and pre-compiled executables for Microsoft Win-
dows 95/98/NT running on an x86-based microprocessor system. FEach Windows binary
distribution is compatible with only a particular sequence of releases of Tcl/Tk. We release
one Windows binary distribution compatible with Tcl/Tk 8.0.x, one Windows binary dis-
tribution compatible with Tcl/Tk 8.2.x, and one Windows binary distribution compatible
with Tcl/Tk 8.3.x. Other release formats, e.g., pre-compiled executables for Microsoft Win-
dows NT running on a Digital Alpha Systems RISC-based microprocessor system, and/or
compatible with Tecl/Tk version 7.6/4.2 or Tecl/Tk 8.1.x. may be made available on request.
For the first format, unpack the distribution archive using gunzip and tar:

gunzip -c¢ oommf11b0_20000404.tar.gz | tar xvf -

Shttp://math.nist.gov/oommf/software.html

For the other format(s), you will need a utility program to unpack the .zip archive. This
program must preserve the directory structure of the files in the archive, and it must be able
to generate files with names not limited to the traditional MSDOS 8.3 format. Some very
old versions of the pkzip utility do not have these properties. One utility program which is
known to work is UnZip®. Using your utility, unpack the .zip archive, e.g.

unzip oommf11b0_20000404.zip

For either distribution format, the unpacking sequence creates a subdirectory oommf
which contains all the files and directories of the OOMMEF distribution. If a subdirectory
named oommf already existed (say, from an earlier OOMMEF release), then files in the new
distribution overwrite those of the same name already on the disk. Some care may be needed
in that circumstance to be sure that the resulting mix of files from an old and a new OOMMF
distribution combine to create a working set of files.

2.2.2 Check Your Platform Configuration

After downloading and unpacking the OOMMF software distribution, all the OOMMEF soft-
ware is contained in a subdirectory named oommf. Start a command line interface (a shell
on Unix, or the MS-DOS Prompt on Microsoft Windows), and change the working direc-
tory to the directory oommf. Find the Tecl shell program installed as part of your Tcl/Tk
installation. In this manual we call the Tcl shell program tclsh, but the actual name of the
executable depends on the release of Tcl/Tk and your platform type. Consult your Tecl/Tk
documentation.

In the root directory of the OOMMEF distribution is a file named oommf.tcl. It is the
bootstrap application (Sec. 5) which is used to launch all OOMMF software. With the
command line argument +platform, it will print a summary of your platform configuration
when it is evaluated by tclsh. This summary describes your platform type, your C++
compiler, and your Tcl/Tk installation. As an example, here is the typical output on a
Linux/Alpha system:

$ tclsh oommf.tcl +platform
<24537> platform info:
OOMMF release 1.1.1.0

Platform Name: linalp

C++ compiler: /usr/bin/g++

Tcl configuration file: /usr/local/lib/tclConfig.sh
tclsh: /usr/local/bin/tclsh8.3

Shttp://www.cdrom.com/pub/infozip/UnZip.html

Tcl release: 8.3.0 (config) 8.3.0 (running)
Tk configuration file: /usr/local/lib/tkConfig.sh
wish: /usr/local/bin/wish8.3

Tk release: 8.3.0 (config) 8.3.0 (running)

If oommf.tcl +platform doesn’t print a summary like that, it should instead print an
error message describing why it can’t. For example, if your Tcl installation is older than
release 7.5, the error message will report that fact. Follow whatever instructions are provided
to get oommf.tcl +platform to print a summary of platform configuration information.

The first line of the example summary reports that OOMMEF recognizes the platform
by the name linalp. OOMMEF software recognizes many of the most popular computing
platforms, and assigns each a platform name. The platform name is used by OOMMEF in
index and configuration files and to name directories so that a single OOMMEF installation
can support multiple platform types. If oommf.tcl +platform reports the platform name
to be “unknown”, then you will need to add some configuration files to help OOMMEF assign
a name to your platform type, and associate with that name some of the key features of your
computer. See the section on “Managing OOMMEF platform names” (Sec. 2.3.3) for further
instructions.

The second line reports what C++ compiler will be used to build OOMMF from its
C++ source code. If you downloaded an OOMMEF release with pre-compiled binaries for
your platform, you may ignore this line. Otherwise, if this line reports “none selected”, or if
it reports a compiler other than the one you wish to use, then you will need to tell OOMMF
what compiler to use. The compiler selection for the example above is recorded in the file
config/cache/linalp.tcl. To change the compiler selection, that file must be edited.
Editing instructions are contained within the file. Of course, on other platforms the name
linalpin linalp.tcl should be replaced with the platform name OOMMEF reports for your
platform. For example, on a Windows machine using an x86 processor, the corresponding
configuration file is wintel.tcl.

The next three lines describe the Tcl configuration OOMMEF finds on your platform. The
first line reports the name of the configuration file installed as part of Tcl, if any. Conven-
tional Tecl installations on Unix systems and within the Cygwin environment on Windows
have such a file, usually named tclConfig.sh. The Tcl configuration file records details
about how Tcl was built and where it was installed. On Windows platforms, this infor-
mation is recorded in the Windows registry, so it is normal to have oommf.tcl +platform
report “none found”. If oommf.tcl +platform reports “none found”, but you know that
an appropriate Tcl configuration file is present on your system, you can tell OOMMF where
to find the file by setting the environment variable OOMMF _TCL_CONFIG to its absolute
location. (For information about setting environment variables, see your operating system

documentation.) In unusual circumstances, OOMMF may find a Tl configuration file which
doesn’t correctly describe your Tcl installation. In that case, use the environment variable
OOMMF_TCL_CONFIG to instruct OOMMF to use a different file that you specify, and
edit that file to include a correct description of your Tecl installation.

The second line describing your Tecl installation reports the absolute pathname of the
tclsh program. If this differs from the tclsh you used to evaluate oommf.tcl +platform,
there may be something wrong with your Tcl configuration file. Note that the same tclsh
program might be known by several absolute pathnames if there are symbolic links in your
Tcl installation. If oommf.tcl +platform reports that it cannot find a tclsh program,
yet you know where an appropriate one is installed on your system, you can tell OOMMF
where to find the tclsh program by setting the environment variable OOMMF_TCLSH to
its absolute location.

The third line describing your Tcl installation reports its release number according to
two sources. First is the release number recorded in the Tcl configuration file. Second is
the release number of the tclsh program used to evaluate oommf.tcl +platform. If these
numbers do not match, it may indicate something is wrong with your Tcl configuration
file. If you have multiple releases of Tcl installed under a common root directory on your
computer, there can be only one Tcl configuration file. It is important that you use the Tcl
release that corresponds to the Tcl configuration file.

The next three lines describe the Tk configuration OOMMEF finds on your platform. They
are analogous to the three lines describing the Tcl configuration. The environment variables
OOMMF_TK_CONFIG and OOMMF _WISH may be used to tell OOMMEF where to find the
Tk configuration file and the wish program, respectively.

If oommf.tcl +platform indicates problems with your Tcl/Tk installation, it may be
easiest to re-install Tecl/Tk taking care to perform a conventional installation. OOMMF
deals best with conventional Tcl/Tk installations. If you do not have the power to re-install
an existing broken Tcl/Tk installation (perhaps you are not the sysadmin of your machine),
you might still install your own copy of Tecl/Tk in your own user space. In that case, if your
private Tcl/Tk installation makes use of shared libraries, take care that you do whatever is
necessary on your platform to be sure that your private tclsh and wish find and use your
private shared libraries instead of those from the system Tcl/Tk installation. This might
involve setting an environment variable (such as LD_LIBRARY_PATH). If you use a private
Tcl/Tk installation, you also want to be sure that there are no environment variables like
TCL_LIBRARY or TK_LIBRARY that still refer to the system Tcl/Tk installation.

Other Configuration Issues If you plan to compile and link OOMMF software from
source code, be sure the C++ compiler reported by oommf.tcl +platform is properly con-

figured. In particular, the Microsoft Visual C++ command line compiler, cl.exe, may
require the running of vcvars32.bat to set up the path and some environment variables.
This file is distributed as part of Visual C++. See your compiler documentation for details.

A few other configurations should be checked on Windows platforms. First, note that
absolute filenames on Windows makes use of the backslash (\) to separate directory names.
On Unix and within Tcl the forward slash (/) is used to separate directory names in an
absolute filename. In this manual we usually use the Tcl convention of forward slash as
separator. In portions of the manual pertaining only to MS Windows we use the backslash
as separator. There may be instructions in this manual which do not work exactly as written
on Windows platforms. You may need to replace forward slashes with backward slashes in
pathnames when working on Windows.

OOMMEF software needs networking support that recognizes the host name localhost.
It may be necessary to edit a file which records that localhost is a synonym for the loop-
back interface (127.0.0.1). If a file named hosts exists in your system area (for example,
C:\Windows\hosts), be sure it includes an entry mapping 127.0.0.1 to localhost. If no
hosts file exists, but a hosts.sam file exists, make a copy of hosts.sam with the name
hosts, and edit the copy to have the localhost entry.

In recent releases of Tecl/Tk (version 8.0.3 and later) the directory which holds the tclsh
and wish programs also holds several *.d11 files that OOMMEF software needs to find to
run properly. Normally when the OOMMF bootstrap application (Sec. 5) or mmLaunch
(Sec. 6) is used to launch OOMMEF programs, they take care of making sure the necessary
x.d11 files can be found. As an additional measure, you might want to add the directory
which holds the tclsh and wish programs to the list of directories stored in the PATH
environment variable. All the directories in the PATH are searched for *.d11 files needed
when starting an executable.

2.2.3 Compiling and Linking

If you downloaded a distribution with pre-compiled executables, you may skip this section.

The compiling and linking of the C++ portions of OOMMF software are guided by the
application pimake (Sec. 15.5) (“Platform Independent Make”) which is distributed as part
of the OOMMEF release. To begin building OOMMEF software with pimake, first change your
working directory to the root directory of the OOMMEF distribution:

cd .../path/to/oommf

If you unpacked the new OOMMEF release into a directory oommf which contained an
earlier OOMMEF release, use pimake to build the target upgrade to clear away any source

8

code files which were in a former distribution but are not part of the latest distribution:
tclsh oommf.tcl pimake upgrade

Next, build the target distclean to clear away any old executables and object files which
are left behind from the compilation of the previous distribution:

tclsh oommf.tcl pimake distclean
Next, to build all the OOMMEF software, run pimake without specifying a target:
tclsh oommf.tcl pimake

Note that on some platforms, you cannot successfully compile OOMMEF software if there are
OOMMEF programs running. Check that all OOMMF programs have terminated (including
those in the background) before trying to compile and link OOMMF.

When pimake calls on a compiler or other software development utility, the command line
is printed, so that you may monitor the build process. Assuming a proper configuration for
your platform, pimake should be able to compile and link all the OOMMF software without
error. If pimake reports errors, please first consult Troubleshooting (Sec. 18) to see if a fix
is already documented. If not, please send both the complete output from pimake and the
output from oommf.tcl +platform to the OOMME developers when you e-mail to ask for
help.

2.2.4 Installing
The current OOMMEF release does not support an installation procedure. For now, simply
run the executables from the directories in which they were unpacked/built.

2.2.5 Using OOMMEF Software

To start using OOMMF software, run the OOMMF bootstrap application (Sec. 5). This
may be launched from the command line interface:

tclsh oommf.tcl

If you prefer, you may launch the OOMMF bootstrap application ocommf . tcl using what-
ever graphical “point and click” interface your operating system provides. By default, the
OOMMEF bootstrap application will start up a copy of the OOMMEF application mmLaunch
(Sec. 6) in a new window.

2.2.6 Reporting Problems

If you encounter problems when installing or using OOMMEF, please report them to the
OOMMEF developers. See Troubleshooting (Sec. 18) for detailed instructions.

2.3 Advanced Installation

The following sections provide instructions for some additional installation options.

2.3.1 Reducing Disk Space Usage

To delete the intermediate files created when building the OOMMF software from source
code, use pimake (Sec. 15.5) to build the target objclean in the root directory of the
OOMMF distribution.

tclsh oommf.tcl pimake objclean

Running the strip utility on the OOMMEF executable files should also reduce their size
somewhat.

2.3.2 Local Customizations

OOMMEF software supports local customization of some of its features. All OOMMEF pro-
grams load the file config/options.tcl, which contains customization commands as well
as editing instructions. As it is distributed, config/options.tcl directs those programs
that load it to also load the file config/local/options.tcl, if it exists. Because future
OOMMF releases may overwrite the file config/options.tcl, permanent customizations
should be made by copying config/options.tcl to config/local/options.tcl and edit-
ing the copy. It is recommended that you leave in the file config/local/options.tcl only
the customization commands necessary to change those options you wish to modify. Remove
all other options so that overwrites by subsequent OOMMEF releases are allowed to change
the default behavior.

Notable available customizations include the choice of which network port the host service
directory application (Sec. 4) uses, and the choice of what program is used for the display of
help documentation. By default, OOMMEF software uses the application mmHelp (Sec. 14),
which is included in the OOMMEF release, but the help documentation files are standard
HTML, so any web browser (for example, Netscape Navigator or Microsoft Internet Explorer)
may be used instead. Complete instructions are in the file config/options.tcl.

10

2.3.3 Managing OOMMEF Platform Names

OOMMEF software classifies computing platforms into different types using the scripts in the
directory config/names relative to the root directory of the OOMMEF distribution. Each
type of computing platform is assigned a unique name. These names are used as directory
names and in index and configuration files so that a single OOMMEF installation may contain
platform-dependent sections for many different types of computing platforms.

To learn what name OOMMEF software uses to refer to your computing platform, run

tclsh oommf.tcl +platform

in the OOMMEF root directory.

Changing the name OOMMEF assigns to your platform First, use pimake (Sec. 15.5)
to build the target distclean to clear away any compiled executables built using the old
platform name.

tclsh oommf.tcl pimake distclean

Then, to change the name OOMMF software uses to describe your platform from foo to
bar, simply rename the file

config/names/foo.tcl to config/names/bar.tcl
and
config/cache/foo.tcl to config/cache/bar.tcl.

After renaming your platform type, you should recompile your executables using the new
platform name.

Adding a new platform type If oommf.tcl +platform reports the platform name
unknown, then none of the scripts in config/names/ recognizes your platform type. As
an example, to add the platform name foo to OOMMEF’s vocabulary of platform names,
create the file config/names/foo.tcl. The simplest way to proceed is to copy an existing
file in the directory config/names and edit it to recognize your platform.

The files in config/names include Tcl code like this:

Oc_Config New _ \

[string tolower [file rootname [file tail [info script]l]]] {
In this block place the body of a Tcl proc which returns 1

11

if the machine on which the proc is executed is of the
platform type identified by this file, and which returns 0O
otherwise.

The usual Tcl language mechanism for discovering details
about the machine on which the proc is running is to
consult the global Tcl variable ’tcl_platform’. See the
existing files for examples, or contact the OOMMF
developers for further assistance.

H OH H H H R HE R

3

After creating the new platform name file config/names/foo.tcl, you also need to
create a new platform cache file config/cache/foo.tcl. A reasonable starting point is to
copy the file config/cache/unknown.tcl for editing. Contact the OOMME developers for
assistance.

Please consider contributing your new platform recognition and configuration files to the
OOMMEF developers for inclusion in future releases of OOMMEF software.

Resolving platform name conflicts If the script oommf.tcl +platform reports “Mul-
tiple platform names are compatible with your computer”, then there are multiple files in the
directory config/names/ that return 1 when run on your computer. For each compatible
platform name reported, edit the corresponding file in config/names/ so that only one of
them returns 1. Experimenting using tclsh to probe the Tcl variable tcl_platform should
assist you in this task. If that fails, you can explicitly assign a platform type corresponding
to your computing platform by matching its hostname. For example, if your machine’s host
name is foo.bar.net:

Oc_Config New _ \
[string tolower [file rootname [file tail [info script]l]]] {
if {[string match foo.bar.net [info hostname]]} {
return 1

}

Continue with other tests...

}
Contact the OOMMEF developers if you need further assistance.

2.3.4 Microsoft Windows Options

This section lists installation options for Microsoft Windows.

12

Adding an OOMMEF shortcut to your desktop Right mouse click on the desktop
to bring up the configuration dialog, and select New|Shortcut. Enter the command line
necessary to bring up OOMMEF, e.g.,

tclsh83 c:\oommf\oommf.tcl

Click Next> and enter 0O0OMMF for the shortcut name. Select Finish.

At this point the shortcut will appear on your desktop with either the tclsh or wish icons.
Right mouse click on the icon and select Properties. Select the ShortCut tab, and bring up
Change Icon. .. Under File Name: enter the OOMMEF icon file, e.g.,

C:\oommf\oommf .ico

Click OK. Back on the Shortcut tab, change the Run: selection to Minimized. Click OK
to exit the Properties dialog box. Double clicking on the OOMMEF icon should now bring
up the OOMMEF application mmLaunch.

Using the Cygwin toolkit The Cygwin Project” is a free port of the GNU development
environment to Windows NT, 95, and 98, which includes the GNU C++ compiler gcc and
a port of Tcl/Tk. OOMMEF has been tested against the Beta 20.1 release of Cygwin, and
sample config/names/cygtel.tcl and config/cache/cygtel.tcl files are included in the
OOMMEF distribution. Use the cygtclsh80.exe program as your tclsh program when
configuring, building, and launching OOMMEF software.

Note that OOMMEF software determines whether it is running with the Cygwin versions
of Tcl/Tk by examining the environment variables OSTYPE and TERM. If either is set to
a value beginning with cygwin, the Cygwin environment is assumed. If you are using the
Cygwin environment with a different values for both OSTYPE and TERM, you will have to
modify config/names/cygtel.tcl accordingly.

Using Borland C++ OOMMEF has been successfully built and tested using the Borland
C++ command line compiler® version 5.5. However, a couple preparatory steps are necessary
before building OOMMEF with this compiler.

1. Create Borland compatible Tcl and Tk libraries.

The import libraries distributed with Tcl/Tk, release 8.0.3 and later, are not compat-
ible with the Borland C++ linker. However, the command line utility implib can
be used to create suitable libraries from the Tcl/Tk DLL’s. In the Tecl/Tk library
directory (typically "C:/Program Files/Tcl/1ib"), issue a command of the form

"http://sourceware.cygnus.com/cygwin/
8http://www.inprise.com /beppbuilder /freecompiler/

13

implib -a tcl83bc.lib ..\bin\tc1l83.d11

to create the Borland compatible import library tc183bc.1lib. Repeat with “tk”
in place of “tcl” to create tk83bc.lib. The “-a” switch requests implib to add a
leading underscore to function names. This is sufficient for the DLL’s shipped with
Tcl/Tk 8.3, but other releases may require some additional tweaking. You can use the
Borland command line tool impdef to create a module definition file from each DLL,
add leading underscores manually as needed, and add the module definition file to the
implib command line.

2. Edit config/cache/wintel.tcl.

At a minimum, you will have to change the program compiler_c++ value to point to the
Borland C++ compiler. The sample wintel.tcl cache file assumes the librarian t1ib
and the linker i1ink32 are in the execution path, and that the Borland compatible
import libraries made above are in the Tcl/Tk library directory. If this is not the case
then you will have to make the appropriate additional modifications. (Depending on
your linker, you may need to add the “-0” switch to the linker command, to force
ordinal usage of the Borland compatible Tcl/Tk libraries produced in the previous

step.)

After this, continue with the instructions in Sec. 2.2.3, Compiling and Linking.

Setting the TCL_LIBRARY environment variable If you encounter difficulties dur-
ing OOMMEF start up, you may need to set the environment variable TCL_LIBRARY.

On Windows NT Bring up the Control Panel (e.g., by selecting Settings|Control
Panel off the Start menu), and select System. Go to the Environment tab, and enter
TCL_LIBRARY as the Variable, and the name of the directory containing init.tcl for the
Value, e.g.,

%SystemDrive’\Program Files\Tc1l\1lib\tc18.0

Click Set and OK to finish.

On Windows 95 Edit the file autoexec.bat. Add a line such as the following:

set TCL_LIBRARY=C:\Program Files\Tcl\1ib\tc18.0

14

Checking .tcl file association on Windows NT As part of the Tcl/Tk installation,
files with the .tcl extension are normally associated with the wish application. This allows
Tcl scripts to be launched from Windows Explorer by double-clicking on their icon, or from
the NT command line without specifying the tclsh or wish shells. If this is not working,
you may check your installation from the NT command line as follows. First, run the
command assoc .tcl. This should return the file type associated with the .tcl extension,
e.g., TclScript. Next, use the ftype command to check the command line associated with
that file type, e.g.,

C:\> ftype TclScript
"C:\Program Files\Tcl\bin\wish83.exe" "%1" %2 %3 %4 %5 %6 A7 %8 %9

Note that the quotes are required as shown to protect spaces in pathnames.

15

3 Quick Start: Example OOMMEF Session

STEP 1: Start up the mmLaunch window.

e At the command prompt, when you are in the OOMMEF root directory, type
tclsh oommf.tcl

(The name of the Tcl shell, rendered here as tclsh, may vary between systems. This
matter is discussed in Sec. 2.1.) Alternatively, you may launch oommf .tcl using what-
ever “point and click” interface is provided by your operating system.

e This will bring up a small window labeled mmLaunch. It will come up in background
mode, so you will get another prompt in your original window, even before the mm-
Launch window appears.

STEP 2: Gain access to other useful windows.

e On mmLaunch window, check the localhost box, causing a menu of user account boxes
to appear. Then check the box corresponding to the account you want to compute on.
This gives a menu of options:

— mmProbEd: to grab/modify a problem

— mmSolve2D: to control the solver

— mmDisp: to display vector fields

— mmGraph: to form x-y plots

— mmDataTable: to display current values of variables
— mmArchive: to auto-save vector field data (primitive)

e Click on mmDisp, mmGraph, and/or mmDataTable, depending on what form of
output you want.

STEP 3: Load a problem.

e On mmLaunch window, click on the mmProbEd button.

¢ On mmProbEd window, make menu selection File|Open... An Open File dialog
window will appear.

e On this window:

— Double click in the Path subwindow to change directories. Several sample problems
can be found in the directory oommf/app/mmpe/examples.

16

— To load a problem, double click on a *.mif file (e.g., probl.mif) from the list above
the Filter: subwindow.

— Modify the problem as desired by clicking on buttons from the main mmProbEd
window (e.g., Material Parameters), and fill out the pop-up forms. A completely
new problem may be defined this way.

STEP 4: Initialize the solver.

e On mmLaunch window, click on the mmSolve2D button to launch an instance of the
program mmSolve2D.

e Wait for the new solver instance to appear in the Threads column in the mmLaunch
window.

e Check the box next to the mmSolve2D entry in the Threads column. A window
containing an mmSolve2D interface will appear.

e On mmSolve2D window:

— Check Problem Description under Inputs.

— Check mmProbEd under Source Threads.

— Click LoadProblem.

— A status line will indicate the problem is loading.

— When the problem is fully loaded, more buttons appear.
— Check Scheduled Outputs.

— For each desired output (TotalField, Magnetization, and/or DataTable), specify
the frequency of update:

* Check desired output. This will exhibit the possible output destinations in Des-
tination Threads. Output applications such as mmDisp, mmGraph, and/or
mmDataTable must be running to appear in this list.

* Check the box next to the desired Destination Thread. This will exhibit Sched-
ule options.

* Choose a schedule:
- Iteration: fill in number and check the box.
- ControlPoint: fill in number and check the box.
- Interactive: whenever you click corresponding Interactive output button.

STEP 5: Start the calculation.

e On the mmSolve2D window, start the calculation with Run or Relax.

17

e If you requested mmDataTable output, check the boxes for the desired quantities on the
mmDataTable window under the Data menu, so that they appear and are updated
as requested in your schedule.

e Similarly, check the box for the desired X, Y1, and Y2 variables on the mmGraph
window(s) under the X, Y1 and Y2 menus.

STEP 6: Saving results.

e Vector field data (magnetization and effective field) may be interactively written to disk
using mmDisp, or may be automatically saved via scheduled output to mmArchive.
For example, to save the magnetization state at each control point, start up an instance
of mmArchive and select the ControlPoint check box for mmArchive on the Mag-
netization schedule in the solver. This may be done before starting the calculation.
(Control points are points in the simulation where the applied field is stepped. These
are typically equilibrium states, but depending on the input *.mif file, may be triggered
by elapsed simulation time or iteration count.)

e DataTable data may be saved using mmGraph. Schedule output from the solver to
mmGraph as desired, and use either the interactive or automated save functionality of
mm@Graph (Sec. 11). You can setup the solver data scheduling before the calculation is
started, but must wait for the first data point to configure mmGraph before saving any
data. As a workaround, you may configure mm@Graph by sending it the initial solver
state interactively, and then use the Options|clear Data menu item in mmGraph to
remove the initializing data point. Alternatively, you may send scheduled output from
the solver to mmArchive, which will automatically save all the data it receives.

STEP 7: Perform midcourse controls as desired.

e On the mmSolve2D window, buttons can stop and restart the calculation:

— Reset: Return to beginning of problem.
— LoadProblem: Restart with a new problem.
— Run: Apply a sequence of fields until all complete.

— Relax: Run the ODE at the current applied field until the next control point is
reached.

— Pause: Click anytime to stop the solver. Restart with Run or Relax.
— Field-: Apply the previous field again.
— Field+: Apply the next field in the list.

e Output options can be changed and new output windows opened.

18

STEP 8: Exit OOMMEF.

e On the mmSolve2D window, terminate the simulation with Exit.

e Terminate each mmArchive instance by hitting the Exit button in its user interface

window.

e Use the File| Exit menu on each remaining window to exit.

19

4 OOMMEF Architecture Overview

Before describing each of the applications which comprise the OOMMEF software, it is helpful
to understand how these applications work together. OOMMEF is not structured as a single
program. Instead it is a collection of programs, each specializing in some task needed as
part of a micromagnetic simulation system. An advantage of this modular architecture is
that each program may be improved or even replaced without a need to redesign the entire
system. Because the state of the art in micromagnetic simulation is continuing to evolve,
this flexibility is essential for the longevity of a micromagnetic simulation system.

The OOMMEF programs work together by providing services to one another. The pro-
grams communicate over Internet (TCP/IP) connections, even when the programs are run-
ning on a common host. An advantage of this design is that distributed operation of OOMMF
programs over a networked collection of hosts is supported in the basic design, and will be
available in a future release.

When two OOMMF applications are in the relationship that one is requesting a service
from the other, it is convenient to introduce some clarifying terminology. Let us refer to
the application that is providing a service as the “server application” and the application
requesting the service as the “client application.” Note that a single application can be both
a server application in one service relationship and a client application in another service
relationship.

Each server application provides its services on a particular Internet port, and needs to
inform potential client applications how to obtain its service. Each client application needs
to be able to look up possible providers of the service it needs. The intermediary which
brings server applications and client applications together is another application called the
“account service directory.” There may be at most one account service directory application
running under the user ID of each user account on a host. Each account service directory
keeps track of all the services provided by OOMMEF server applications running under its
user account on its host and the corresponding Internet ports at which those services may be
obtained. OOMMEF server applications register their services with the corresponding account
service directory application. OOMMEF client applications look up service providers running
under a particular user ID in the corresponding account server directory application.

The account service directory applications simplify the problem of matching servers and
clients, but they do not completely solve it. OOMMEF applications still need a mechanism
to find out how to obtain the service of the account service directory applications! Another
application, called the “host service directory” serves this function. Only one copy of the
host service directory application runs on each host. Its sole purpose is to tell OOMMF
applications where to obtain the services of account service directories on that host. Because
only one copy of this application runs per host, it can provide its service on a well-known

20

port which is configured into the OOMMEF software. By default, this is port 15136. OOMMF
software can be customized (Sec. 2.3.2) to use a different port number.

The account service directory applications perform another task as well. They launch
other programs under the user ID for which they manage service registration. The user
controls the launching of programs through the interface provided by the application mm-
Launch (See Sec. 6), but it is the account service directory application that actually spawns
a subprocess for the new application. Because of this architecture, most OOMMEF applica-
tions are launched as child processes of an account service directory application. These child
processes inherit their environment from their parent account service directory application,
including their working directory, and other key environment variables, such as DISPLAY.
Each account service directory application sets its working directory to the root directory
of the OOMMEF distribution. Future releases of OOMMEF software will likely be based on a
revised architecture which alleviates these restrictions.

These service directory applications are vitally important to the operation of the total
OOMMEF micromagnetic simulation system. However, it would be easy to overlook them.
They act entirely “behind the scenes” without a user interface window. Furthermore, they
are never launched by the user. When any server application needs to register its service, if
it finds that these service directory applications are not running, it launches new copies of
them. In this way the user can be sure that if any OOMMEF server applications are running,
then so are the service directory applications needed to direct clients to its service. After all
server applications terminate, and there are no longer any services registered with a service
directory application, it terminates as well.

In the sections which follow, the OOMMF applications are described in terms of the
services they provide and the services they require.

21

5 Command Line Launching

Some of the OOMMEF applications are platform-independent Tecl scripts. Some of them
are Tcl scripts that require special platform-dependent interpreters. Others are platform-
dependent, compiled C++ applications. It is likely that some of them will change status in
later releases of OOMMF. Each of these types of application requires a different command line
for launching. Rather than require all OOMMEF users to manage this complexity, we provide
a pair of programs that provide simplified interfaces for launching OOMMEF applications.

The first of these is used to launch OOMMEF applications from the command line. Because
its function is only to start another program, we refer to this program as the “bootstrap
application.” The bootstrap application is the Tcl script oommf.tcl. In its simplest usage,
it takes a single argument on the command line, the name of the application to launch. For
example, to launch mmGraph (Sec. 11), the command line is:

tclsh oommf.tcl mmGraph

The search for an application matching the name is case-insensitive. (Here, as elsewhere in
this document, the current working directory is assumed to be the OOMMEF root directory.
For other cases, adjust the pathname as appropriate.) As discussed in Sec. 2.1, the name of
the Tcl shell, rendered here as tclsh, may vary between systems.

If no command line arguments are passed to the bootstrap application, by default it will
launch the application mmLaunch (Sec. 6).

Any command line arguments to the bootstrap application which begin with the char-
acter + modify its behavior. For a summary of all command line options recognized by the
bootstrap application, run:

tclsh oommf.tcl +help

The command line arguments +bg and +fg control how the bootstrap behaves after
launching the requested application. It can exit immediately after launching the requested
application in background mode (+bg), or it can block until the launched application ex-
its (+fg). Each application registers within the OOMMF system whether it prefers to be
launched in foreground or background mode. If neither option is requested on the command
line, the bootstrap launches the requested application in its preferred mode.

The first command line argument which does not begin with the character + is interpreted
as a specification of what application should be launched. As described above, this is usually
the simple name of an application. When a particular version of an application is required,
though, the bootstrap allows the user to include that requirement as part of the specification.
For example:

22

tclsh oommf.tcl "mmGraph 1.1"

will guarantee that the instance of the application mmGraph it launches is of at least version
1.1. If no copy of mmGraph satisfying the version requirement can be found, an error is
reported.

The rest of the command line arguments which are not recognized by the bootstrap are
passed along as arguments to the application the bootstrap launches. Since the bootstrap
recognizes command line arguments which begin with + and most other applications recognize
command line arguments which being with -, confusion about what options are provided to
what programs can be avoided. For example,

tclsh oommf.tcl +help mmGraph

prints out help information about the bootstrap and exits without launching mmGraph.
However,

tclsh oommf.tcl mmGraph -help

launches mmGraph with the command line argument ~help. mmGraph then display its own
help message.

All the OOMMEF applications accept the standard options listed below. Some of the
OOMMEF applications accept additional arguments when launched from the command line,
as documented in the corresponding sections of this manual. When an option argument is
specified as <0|1>, 0 typically means off, no or disable, and 1 means on, yes or enable.

-version Display the version of the application and exit.
-help Display a help message and exit.

-tk <0]1> Disable or enable Tk. Tk must be enabled for an application to display graph-
ical widgets. However, when Tk is enabled, on many platforms the application is
dependent on an X Windows server. If the X Windows server dies, it will kill the
application. Long-running applications which do not inherently use display widgets
support disabling of Tk with -tk 0. Other applications which must use display wid-
gets are unable to run with the option -tk O.

-cwd directory Set the current working directory of the application.

-console Display a console widget in which Tcl commands may be interactively typed into
the application. Useful for debugging.

23

In addition, those applications which enable Tk accept the Tk options like -display.
See the Tk documentation.

The bootstrap application should be infrequently used by most users. The application
mmULaunch (Sec. 6) provides a more convenient graphical interface for launching applica-
tions. The main uses for the bootstrap application are launching mmLaunch, launching
pimake, launching programs which make up the OOMMF Batch System (Sec. 16) and other
programs which are inherently command line driven, and in circumstances where the user
wishes to precisely control the command line arguments passed to an OOMMEF application
or the environment in which an OOMMEF application runs.

Platform Issues

The Tcl script oommf . tcl begins with the lines:

#1/bin/sh
\
exec tclsh "$0" ${1+"$0"}

On most Unix platforms, if oommf .tcl is marked executable, the interpreter tclsh (on the
execution path) will be invoked to interpret the script. If the Tcl shell program cannot
be invoked by the name tclsh on your computer, edit the first lines of oommf.tcl to use
the proper name. Better still, use symbolic links or some other means to make the Tcl
shell program available by the name tclsh. The latter solution will not be undone by file
overwrites from OOMMEF upgrades.

If in addition, the directory . ../path/to/oomnf is in the execution path, the command
line can be as simple as:

oommf.tcl appName

from any working directory.

On Windows platforms, because oommf.tcl has the file extension .tcl, it is normally
associated by Windows with the wish interpreter. The oommf .tcl script has been specially
written so that either tclsh or wish is a suitable interpreter. This means that simply
double-clicking on an icon associated with the file oommf.tcl (say, in Windows Explorer)
will launch the bootstrap application with no arguments. This will result in the default
behavior of launching the application mmLaunch, which is suitable for launching other
OOMMEF applications. (If this doesn’t work, refer back to the Windows Options section in
the installation instructions, Sec. 2.3.4.)

24

6 OOMMF Launcher/Control Interface: mmLaunch

Hie Help
@ localhost ||localhost: W donahue
donahue |
Programs Threads
mmProbEd mimProbEd<29191 >
_| mmS3olveZD<ZI237 =
mm3olveZD
mimDataTable 29243 >
mmDisp mmGraph<29242 >
mmGraph mmbDisp<29241 =
mmDataTable
mmArchive

Overview

The application mmLaunch launches, monitors, and controls other OOMMF applications.
It is the OOMMEF application that is most closely connected to the account service directory
and host service directory applications that run behind the scenes. It also provides user
interfaces to any applications, notably mmSolve2D (Sec. 9), that do not have their own
user interface window.

Launching

mmULaunch should be launched using the bootstrap application (Sec. 5). The command
line is

tclsh oommf.tcl mmLaunch [standard options]

Controls

Upon startup, mmLaunch displays a panel of checkbuttons, one for each host service
directory to which it is connected. In the current release of OOMMEF there is only one

25

checkbutton—Ilocalhost. Future releases of mmLaunch will be able to connect to remote
hosts as well. If there is no host service directory running on the localhost when mm-
Launch is launched, mmLaunch will start one. In that circumstance, there may be some
delay before the localhost check button appears.

Toggling the localhost checkbutton toggles the display of an interface to the host service
directory. The host service directory interface consists of a row of checkbuttons, one for each
account service directory registered with the host service directory. Each checkbutton is
labeled with the user ID of the corresponding account service directory. For most users, there
will be only one checkbutton, labeled with the user’s own account ID, except on Windows,
where the dummy account ID oommf is displayed instead. If there is no account service
directory running for the account under which mmLaunch was launched, mmLaunch will
start one. In that circumstance, there may be some delay before the account checkbutton
appears.

Toggling an account checkbutton toggles the display of an interface to the corresponding
account service directory. The account service directory interface consists of two columns.
The Programs column contains buttons labeled with the names of OOMMEF applications
that may be launched under the account managed by this account service directory. Clicking
on one of these buttons launches the corresponding application. Only one click is needed,
though there will be some delay before the launched application displays a window to the
user. Multiple clicks will launch multiple copies of the application. Note: The launching is
actually handled by the account service directory application (Sec. 4), which sets the initial
working directory to the OOMMEF root directory.

The Threads column is a list of all the OOMMEF applications currently running under
the account that are registered with the account service directory. The list includes both
the application name and an ID number by which multiple copies of the same application
may be distinguished. This ID number is also displayed in the title bar of the corresponding
application’s user interface window. When an application exits, its entry is automatically
removed from the Threads list.

Any of the running applications that do not provide their own interface window will be
displayed in the Threads list with a checkbutton. The checkbutton toggles the display of
an interface which mmLaunch provides on behalf of that application. The only OOMMF
applications currently using this service are mmSolve2D (Sec. 9), mmArchive (Sec. 13),
and batchsolve (Sec. 16.1). These interfaces are described in the documentation for the
corresponding applications.

The menu selection File|Exit terminates the mmLaunch application. The menu Help
provides the usual help facilities.

26

—[<6994> mmProbEd | | -

File Help

Micromagnetic Problem Editor: mmProbEd

Matenal Parameters

Material Types | | | |

Demay Specification

Part Geometry

Initial Mag

Experiment Parameters

Output. Specifications

Miscellaneous

Overview

The application mmProbEd provides a user interface for creating and editing micromag-
netic problem descriptions in the Micromagnetic Input Format (MIF) (Sec. 17.1). mm-
ProbEd also acts as a server, supplying problem descriptions to running micromagnetic

solvers.

Launching

mmProbEd may be started either by selecting the mmProbEd button on mmLaunch, or

from the command line via

Material Hame: |Permalloy
Ms (Afm): |BE0ES
A {Jim): [13E-12
K1 (Jim*3): |0
Damp Coef: 0.5
anisotropy type: % Uniaxial - - Cubic
anisotropy init: 4 Constant - Uniform XY - Uniform 52

x: |1 y: |0 z: |0
x: |0 y: |1 z: |0
ok | cancel | Mext |

tclsh oommf.tcl mmProbEd [standard options] [-net <0[1>]

-net <0|1> Disable or enable a server which provides problem descriptions to other appli-
cations. By default, the server is enabled. When the server is disabled, mmProbEd

is only useful for editing problem descriptions and saving them to files.

27

Inputs

The menu selection File| Open... displays a dialog box for selecting a file from which to load
a MIF problem description. Several example files are included in the OOMMEF release in
the directory app/mmpe/examples. At startup, mmProbEd loads the problem contained in
app/mmpe/init.mif as an initial problem. Note: When loading a file, mmProbEd discards
comments and records it does not understand. Use the FileSource application (Sec.8) to
serve unmodified problem descriptions.

Outputs

The menu selection File|Save as... displays a dialog box for selecting/entering a file in which
the problem description currently held by mmProbEd is to be saved. Because the internal
data format use by mmProbEd is an unordered array that does not include comments (or
unrecognized records), the simple operation of reading in a MIF file and then writing it back
out may alter the file.

Each instance of mmProbEd contains exactly one problem description at a time. When
the option -net 1 is active (the default), each also services requests from client applications
(typically solvers) for the problem description it contains.

Controls

The main panel in the mmProbEd window contains buttons corresponding to the sections
in a MIF problem description. Selecting a button brings up another window through which
the contents of that section of a problem description may be edited. The MIF sections and
the elements they contain are described in detail in the MIF (Sec. 17.1) documentation.
Only one editing window is displayed at a time. The windows may be navigated in order
using their Next or Previous buttons.

PLEASE NOTE: The material parameter values provided for the symbolic material types
of Iron, Nickel, etc. should not be taken as standard reference values for these materials.
These values are only approximate. They are included for convenience, and as examples for
users who wish to supply their own material types with symbolic names.

The menu selection File| Exit terminates the mmProbEd application. The menu Help
provides the usual help facilities.

28

8 Micromagnetic Problem File Source: FileSource

File Help

1| Ezport: ftmpfoommffapp/mmpefezamples/probl.mif |

Overview

The application FileSource provides the same service as mmProbEd (Sec. 7), supplying
a MIF description of a micromagnetic problem to a solver. As the MIF specification evolves,
mmProbEd may lag behind. There may be new fields in the MIF specification that mm-
ProbEd is not capable of editing, or which mmProbEd may not pass on to solvers after
loading them in from a file. To make use of such fields, a MIF file may need to be edited “by
hand” using a general purpose text editor. FileSource may then be used to supply the MIF
problem description contained in a file to a solver without danger of corrupting its contents.

Launching

FileSource must be launched from the command line. You may specify on the command
line the MIF problem description file it should serve to client applications. The command
line is

tclsh oommf.tcl FileSource [standard options] [filename]

Although FileSource does not appear on the list of Programs that mmLaunch offers
to launch, running copies do appear on the list of Threads since they do provide a service
registered with the account service directory.

Inputs

FileSource takes its MIF problem description from the file named on the command line,
or from a file selected through the File|Open dialog box. No checking of the file contents
against the MIF specification is performed. The file contents are passed uncritically to any
client application requesting a problem description. Those client applications should raise
errors when presented with invalid problem descriptions.

29

Outputs

Each instance of FileSource provides the contents of exactly one file at a time. The file
name is displayed in the FileSource window to help the user associate each instance of
FileSource with the data file it provides. Each instance of FileSource accepts and services
requests from client applications (typically solvers) for the contents of the file it exports.

The contents of the file are read at the time of the client request, so if the contents of
a file change between the time of the FileSource file selection and the arrival of a request
from a client, the new contents will be served to the client application.

Controls

The menu selection File| Exit terminates the FileSource application. The Help menu pro-
vides the usual help facilities.

30

9 The 2D Micromagnetic Solver: mmSolve2D

F — l_ =

| I Inputs |

Status: Run |
Solver: Reset | LoadProblem | Run | Relax | Pause | Field- | Field+ |

Exit

Interactive 1o, Heig | Magnetization | DataTable

Outputs:

! ® Scheduled Outputs |

Outputs | Destination Threads | Schedule |
~ TotalField ~ mmbDataTable 12845 i Iteration EVery |5
~ Magnetization || .- mmArchive<12846: W Equilibrium every |1
4 DataTahle # mmGraph<12847 > W Interactive
Overview

The application mmSolve2D is a micromagnetic computation engine capable of solving
problems defined on two-dimensional square grids of three-dimensional spins. Within the
OOMMEF architecture (see Sec. 4), mmSolve2D is both a server and a client application.
mmSolve2D is a client of problem description server applications, data table display and
storage applications, and vector field display and storage applications. mmSolve2D is the
server of a solver control service for which the only client is mmLaunch (Sec. 6). It is
through this service that mmLaunch provides a user interface window (shown above) on
behalf of mmSolve2D.

Launching

mmSolve2D may be started either by selecting the mmSolve2D button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmSolve2D [standard options] [-restart <0|1>]
-restart <0|1> Affects the behavior of the solver when a new problem is loaded. Default

value is 0. When launched with -restart 1, the solver will look for basename.log
and basenamex*.onf files to restart a previous run from the last saved state (where

31

basename is the “Base Output Filename” specified in the input MIF problem specifi-
cation file (Sec. 17.1)). If these files cannot be found, then a warning is issued and the
solver falls back to the default behavior (-restart 0) of starting the problem from
scratch. The specified -restart setting holds for all problems fed to the solver, not
just the first. (There is currently no interactive way to change the value of this switch.)

Since mmSolve2D does not present any user interface window of its own, it depends on
mmULaunch to provide an interface on its behalf. The entry for an instance of mmSolve2D
in the Threads column of any running copy of mmLaunch has a checkbutton next to it.
This button toggles the presence of a user interface window through which the user may
control that instance of mmSolve2D. The user interface window is divided into panels,
providing user interfaces to the Inputs, Outputs, and Controls of mmSolve2D.

Note on Tk dependence: If a problem is loaded that uses a bitmap mask file (Sec. 17.1),
and if that mask file is not in the PPM P3 (text) format, then mmSolve2D will launch
any2ppm (Sec. 15.2) to convert it into the PPM P3 format. Since any2ppm requires
Tk, at the time the mask file is read a valid display must be available. See the any2ppm
documentation for details.

Inputs

The top panel of the user interface window may be opened and closed by toggling the
Inputs checkbutton. When open, the Inputs panel reveals two subpanels. The left subpanel
contains a list of the inputs required by mmSolve2D. There is only one item in the list:
ProblemDescription. When ProblemDescription is selected, the right subpanel (labeled
Source Threads) displays a list of applications that can supply a problem description. The
user selects from among the listed applications the one from which mmSolve2D should
request a problem description.

Outputs

When mmSolve2D has outputs available to be controlled, a Scheduled Outputs check-
button appears in the user interface window. Toggling the Scheduled Outputs checkbutton
causes a bottom panel to open and close in the user interface window. When open, the
Scheduled Outputs panel contains three subpanels. The Qutputs subpanel is filled with a
list of the types of output mmSolve2D can generate while solving the loaded problem. The
three elements in this list are TotalField, for the output of a vector field representing the
total effective field, Magnetization, for the output of a vector field representing the current

32

magnetization state of the grid of spins, and DataTable, for the output of a table of data
values describing other quantities of interest calculated by mmSolve2D.

Upon selecting one of the output types from the Outputs subpanel, a list of applications
appears in the Destination Threads subpanel which provide a display and/or storage service
for the type of output selected. The user may select from this list those applications to which
the selected type of output should be sent.

For each application selected, a final interface is displayed in the Schedule subpanel.
Through this interface the user may set the schedule according to which the selected type
of data is sent to the selected application for display or storage. The schedule is described
relative to events in mmSolve2D. An Iteration event occurs at every step in the solution
of the ODE. A ControlPoint event occurs whenever the solver determines that a control
point specification is met. (Control point specs are discussed in the Experiment parameters
paragraph in the MIF documentation (Sec. 17.1), and are triggered by solver equilibrium,
simulation time, and iteration count conditions.) An Interactive event occurs for a partic-
ular output type whenever the corresponding “Interactive Outputs” button is clicked in the
Runtime Control panel. The Interactive schedule gives the user the ability to interactively
force data to be delivered to selected display and storage applications. For the Iteration and
ControlPoint events, the granularity of the output delivery schedule is under user control.
For example, the user may elect to send vector field data describing the current magnetiza-
tion state to an mmDisp instance for display every 25 iterations of the ODE, rather than
every iteration.

The quantities included in DataTable output produced by mmSolve2D include:

e Iteration: The iteration count of the ODE solver.

e Field Updates: The number of times the ODE solver has calculated the effective
field.

e Sim Time (ns): The elapsed simulated time.

e Time Step (ns): The interval of simulated time spanned by the last step taken in
the ODE solver.

e Step Size: The magnitude of the last step taken by the ODE solver as a normalized
value. (This is currently the time step in seconds, multiplied by the gyromagnetic ratio
times the damping coefficient times M.)

e Bx, By, Bz (mT): The z, y, and z components of the nominal applied field (see
Sec. 17.1, Experimental parameters paragraph).

33

B (mT): The magnitude of the nominal applied field (always non-negative).

Im x h|: The maximum of the point-wise quantity ||[M x Heg|| /M2 over all the spins.
This “torque” value is used to test convergence to an equilibrium state (and raise
control point —torque events).

Mx/Ms, My/Ms, Mz/Ms: The z, y, and z components of the average magnetiza-
tion of the magnetically active elements of the simulated part.

Total Energy (J/m?): The total average energy density for the magnetically active
elements of the simulated part.

Exchange Energy (J/m?): The component of the average energy density for the
magnetically active elements of the simulated part due to exchange interactions.

Anisotropy Energy (J/m?): The component of the average energy density for the
magnetically active elements of the simulated part due to crystalline anisotropy.

Demag Energy (J/m?): The component of the average energy density for the mag-
netically active elements of the simulated part due to self-demagnetizing fields.

Zeeman Energy (J/m?): The component of average energy density for the mag-
netically active elements of the simulated part due to interaction with the applied
field.

Max Angle: The maximum angle (in degrees) between the magnetization orientation
of any pair of neighboring spins in the grid. (The neighborhood of a spin is the same
as that defined by the exchange energy calculation.)

In addition, the solver automatically keeps a log file that records the input problem specifi-
cation and miscellaneous runtime information. The name of this log file is basename.log,
where basename is the “Base Output Filename” specified in the input problem specification.
If this file already exists, then new entries are appended to the end of the file.

Controls

The middle section of the user interface window contains a series of buttons providing user
control over the solver. After a problem description server application has been selected, the
LoadProblem button triggers a fetch of a problem description from the selected server. The
LoadProblem button may be selected at any time to (re-)load a problem description from
the currently selected server. After loading a new problem the solver goes automatically

34

into a paused state. (If no problem description server is selected when the LoadProblem
button is invoked, nothing will happen.) The Reset button operates similarly, except that
the current problem specifications are used.

Once a problem is loaded, the solver can be put into any of three states: run, relax
and pause. Selecting Relax puts the solver into the “relax” state, where it runs until a
control point is reached, after which the solver pauses. If the Relax button is reselected
after reaching a control point, then the solver will simply re-pause immediately. The Field+
or Field- button must be invoked to change the applied field state. (Field state schedules
are discussed below.) The Run selection differs in that when a control point is reached, the
solver automatically steps the nominal applied field to the next value, and continues. In
“run” mode the solver will continue to process until there are no more applied field states in
the problem description. At any time the Pause button may be selected to pause the solver.
The solver will stay in this state until the user reselects either Run or Relax. The current
state of the solver is indicated in the Status line in the center panel of the user interface
window.

The problem description (in MIF format) specifies a fixed applied field schedule (see
Sec. 17.1, Experimental parameters paragraph). This schedule defines an ordered list of
applied fields, which the solver in “run” mode steps through in sequence. The Field- and
Field4+ buttons allow the user to interactively adjust the applied field sequence. Each click
on the Field+ button advances forward one step through the specified schedule, while Field-
reverses that process. In general, the step direction is not related to the magnitude of the
applied field. Also note that hitting these buttons does not generate a “ControlPoint” event.
In particular, if you are manually accelerating the progress of the solver through a hysteresis
loop, and want to send non-ControlPoint data to a display or archive widget before advancing
the field, then you must use the appropriate “Interactive Output” button.

The second row of buttons in the interaction control panel, TotalField, Magnetization
and DataTable, allow the user to view the current state of the solver at any time. These
buttons cause the solver to send out data of the corresponding type to all applications for
which the “Interactive” schedule button for that data type has been selected, as discussed
in the Outputs section above.

At the far right of the solver controls is the Exit button, which terminates mmSolve2D.
Simply closing the user interface window does not terminate mmSolve2D, but only closes
the user interface window. To kill the solver the Exit button must be pressed.

35

Details

Given a problem description, mmSolve2D integrates the Landau-Lifshitz equation [7, 9]

%:—VMXHeH_%MX(MXHeﬁ% (1>

where

M is the pointwise magnetization (A/m),
H.s is the pointwise effective field (A/m),
~v is the gyromagnetic ratio (m/(A-s)),

a is the damping coefficient (dimensionless).

The effective field is defined as
N

eff = —Hyg oM’

The average energy density E is a function of M specified by Brown’s equations [4],
including crystalline anisotropy, exchange, self-magnetostatic (demagnetization) and applied
field (Zeeman) terms.

The micromagnetic problem is impressed upon a regular 2D grid of squares, with 3D
magnetization spins positioned at the centers of the cells. Note that the constraint that the
grid be composed of square elements takes priority over the requested size of the grid. The
actual size of the grid used in the computation will be the nearest integral multiple of the
grid’s cell size to the requested size. It is important when comparing the results from grids
with different cell sizes to account for the possible change in size of the overall grid. At
present, Neumann boundary conditions are assumed.

The crystalline anisotropy and applied field energy terms are calculated assuming con-
stant magnetization in each cell. The exchange energy is calculated using the eight-neighbor
bilinear interpolation described in [5]. The more common four-neighbor scheme is available
as a compile-time option. See the file app/mmsolve/magelt.cc for details.

The self-magnetostatic field is calculated as the convolution of the magnetization against a
kernel that describes the cell to cell magnetostatic interaction. The convolution is evaluated
using fast Fourier transform (FFT) techniques. Several kernels are supported; these are
selected as part of the problem description in MIF format; for details see Sec. 17.1: Demag
specification. Each kernel represents a different interpretation of the discrete magnetization.
The recommended model is ConstMag, which assumes the magnetization is constant in each

cell, and computes the average demagnetization field through the cell using formulae from
[12] and [2].

H

36

The Landau-Lifshitz ODE (1) is integrated using a second order predictor-corrector tech-
nique of the Adams type. The right side of (1) at the current and previous step is extrapo-
lated forward in a linear fashion, and is integrated across the new time interval to obtain a
quadratic prediction for M at the next time step. (At each stage the spins are renormalized
to M, before evaluating the energy and effective fields.) The right side of (1) is evaluated
at the predicted M, which is then combined with the value at the current step to produce a
linear interpolation of dM/dt across the new interval. This is then integrated to obtain the
final estimate of M at the new step. The local (one step) error of this procedure should be
O(A#?).

The step is accepted if the total energy of the system decreases, and the maximum error
between the predicted and final M is smaller than a nominal value. If the step is rejected,
then the step size is reduced and the integration procedure is repeated. If the step is accepted,
then the error between the predicted and final M is used to adjust the size of the next step.
No fixed ratio between the previous and current time step is assumed.

A fourth order Runge-Kutta solver is used to prime the predictor-corrector solver, and is
used as a backup in case the predictor-corrector fails to find a valid step. The Runge-Kutta
solver is not selectable as the primary solver at runtime, but may be so selected at compile
time by defining the RUNGE_KUTTA_ODE macro. See the file app/mmsolve/grid.cc for all
details of the integration procedure.

For a given applied field, the integration continues until a control point (cf. Experiment
parameters paragraph in Sec. 17.1) is reached. A control point event may be raised by the
ODE iteration count, elapsed simulation time, or by the maximum value of M x Hg||/M?
dropping below a specified control point —torque value (implying an equilibrium state has
been reached).

Known Bugs

mmSolve2D requires the damping coefficient to be non-zero. See the MIF documentation
(Sec. 17.1) for details on specifying the damping coefficient.

When multiple copies of mmLaunch are used, each can have its own interface to a
running copy of mmSolve2D. When the interface presented by one copy of mmLaunch
is used to set the output schedule in mmSolve2D, those settings are not reflected in the
interfaces presented by other copies of mmLaunch. For example, although the first interface
sets a schedule that DataTable data is to be sent to an instance of mm@Graph every third
Iteration, there is no indication of that schedule presented to the user in the second interface
window. It is unusual to have more than one copy of mmLaunch running simultaneously.
However, this bug also appears when one copy of mmLaunch is used to load a problem
and start a solver, and later a second copy of mmLaunch is used to monitor the status of

37

that running solver.

A bug in the network traffic handling code of T'cl on Windows 95 and Windows 98 systems
can sometimes interfere with communications between the control interface of mmSolve2D
and the actual computation engine. If mmSolve2D is sending out data to two or more data
display services every iteration, the network traffic used to send out that data can “crowd
out” the receipt of control messages from the control interface. You may observe this as
a long delay between the time you click the Pause button and the time the solver stops
iterating. This bug first appeared in Tcl release 8.0.3, and remained through Tcl release
8.1.1. It is fixed in Tcl releases 8.2 and later, which we recommend for OOMMEF users on
Windows 95 or Windows 98 systems. Other platforms do not have this problem.

38

10 Data Table Display: mmDataTable

| S E
N Iteration
]] W Field Updates
|| mmDataTable=24531> ||| || sim Time
Fle Data Options Help [~ Time Step
lteration : 873 W Step Size
Field Updates : 1891 [Bx
Sim Time {ns) : 9.52674 Wy
Step Size : 0.965 I Bz
[m x h| : 0.005406 B
By (mT) : -4 W jm x h|
Total Energy (J/m~3) : 9352.84 [~ Mx/Ms
Exchange Energy {J/m~3) : 328.02 ™ My/Ms
Anisotropy Energy (J/m~3) : 119.53 [T MziMs
Demay Energy (Jim*3) : 3051.23 M Total Eneryy
Zeeman Energy (Jfm~3) : 5854.06 M Exchange Energy
LRERIE S [ET) 8 2t ‘ W Anisotropy Energy
[Demay Enerygy
W Feeman Energy
| W Max Angle

Overview

The application mmDataTable provides a data display service to its client applications.
It accepts data from clients and displays it in a window. Its typical use is to display the
evolving values of quantities computed by a micromagnetic solver program.

Launching

mmDataTable may be started either by selecting the mmDataTable button on mm-
Launch, or from the command line via

tclsh oommf.tcl mmDataTable [standard options] [-net <0[1>]

39

-net <0|1> Disable or enable a server which allows the data displayed by mmDataTable
to be updated by another application. By default, the server is enabled. When the
server is disabled, mmProbEd is only useful if it is embedded in another application.

Inputs

The client application(s) that send data to mmDataTable for display control the flow of
data. The user, interacting with the mmDataTable window, controls how the data is
displayed. Upon launch, mmDataTable displays only a menubar. Upon user request, a
display window below the menubar displays data values.

Each message from a client contains a list of (name, value, units) triples containing data
for display. For example, one element in the list might be {Magnetization 800000 A/m}.
mmDataTable stores the latest value it receives for each name. Earlier values are discarded
when new data arrives from a client.

Outputs

mmDataTable does not support any data output or storage facilities. To save tabular
data, use the mmGraph (Sec. 11) or mmArchive (Sec. 13) applications.

Controls

The Data menu holds a list of all the data names for which mmDataTable has received
data. Initially, mmDataTable has received no data from any clients, so this menu is empty.
As data arrives from clients, the menu fills with the list of data names. Each data name
on the list lies next to a checkbutton. When the checkbutton is toggled from off to on, the
corresponding data name and its value and units are displayed at the bottom of the display
window. When the checkbutton is toggled from on to off, the corresponding data name is
removed from the display window. In this way, the user selects from all the data received
what is to be displayed. Selecting the dashed rule at the top of the Data menu detaches it
so the user may easily click multiple checkbuttons.

Displayed data values can be individually selected (or deselected) with a left mouse button
click on the display entry. Highlighting is used to indicated which data values are currently
selected. The Options menu also contains commands to select or deselect all displayed
values. The selected values can be copied into the cut-and-paste (clipboard) buffer with the
CTRL-c key combination, or the Options| Copy menu command.

The data value selection mechanism may also be used in data value formatting con-
trol. The Options|Format menu command brings up a Format dialog box to change the

40

justification and format specification string. (The latter is the conversion string passed to
the Tcl format command, which uses the C printf format codes.) If the Adjust:Selected
radiobutton is active, then the specification will be applied to only the currently selected
(highlighted) data values. Alternately, if Adjust:All is active, then the specification will be
applied to all data values, and will additionally become the default specification.

A right mouse button click on a display entry will select that entry, and bring up the
Format with the justification and format specifications of the selected entry. These specifi-
cations, with any revisions, may then be applied to all of the selected entries.

The menu selection File|Exit terminates the mmDataTable application. The menu
Help provides the usual help facilities.

41

11 Data Graph Display: mmGraph

FHle X Y1 YZ Options Help . .
_'IX_HHISI _II 4
Run on stdprob2-75.mif, with cellsize=20e-9 “* Iteration —[v1-axis] ||
1) —_— @ Bx [~ Iteration
Mxzfs “ By
My/hs N [~ Bx
MziMs B I By
“ Mufids I~ Bz
“ My/Ms W MxiMs
M S MzfMs . M?fMS
;:1 N "“ Energy W MziMs
s /(| I Energy
-1 —r .
| -100 Bx (mT) 100
Overview

The application mmGraph provides a data display service similar to that of mmDataT-
able (Sec. 10). The usual data source is a running solver, but rather than the textual output
provided by mmDataTable, mmGraph produces 2D line plots. mmGraph also stores
the data it receives, so it can produce multiple views of the data and can save the data to
disk. Postscript output is also supported.

Launching

mmGraph may be started either by selecting the mmGraph button on mmLaunch or
from the command line via

tclsh oommf.tcl mmGraph [standard options] [-net <0[1>]

42

-net <0|1> Disable or enable a server which allows the data displayed by mmGraph to
be updated by another application. By default, the server is enabled. When the server
is disabled, mmGraph may only input data from a file.

Inputs

Input to mmGraph may come from either a file in the ODT format (Sec. 17.2), or, when
-net 1 (the default) is active, from a client application (typically a running solver). The
File| Open. .. dialog box is used to select an input file. Receipt of data from client applica-
tions is the same as for mmDataTable (Sec. 10). In either case, input data are appended
to any previously held data.

Curve breaks (i.e., separation of a curve into disjoint segments) are recorded in the data
storage buffer via curve break records. These records are generated whenever a Table Start
or a Table End record is read from an ODT file, when an empty data record is received from
a client application, or when requested by the user using the mmGraph Options|Break
menu option.

Outputs

Unlike mmDataTable, mmGraph internally stores the data sent to it. This data may
be written to disk via the File|Save As... dialog box. If the file specified already exists,
then mmGraph output is appended to that file. The output is in the tabular ODT format
described in Sec. 17.2. The data are segmented into separate Table Start/Table End blocks
across each curve break record.

By default, all data currently held by mmGraph is written, but the Save: Selected
Data option presented in the File| Save As... dialog box causes the output to be restricted
to those curves currently selected for display. In either case, the graph display limits do not
affect the output.

The save operation writes records that are held by mmGraph at the time the File|Save
As... dialog box OK button is invoked. Additionally, the Auto Save option in this dialog
box may be used to automatically append to the specified file each new data record as it is
received by mmGraph. The appended fields will be those chosen at the time of the save
operation, i.e., subsequent changing of the curves selected for display does not affect the
automatic save operation. The automatic save operation continues until either a new output
file is specified, the Options | Stop autosave control is invoked, or mmGraph is terminated.

The File|Print... dialog is used to produce a Postscript file of the current graph. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry
with the appropriate pipe command, e.g., |1pr. (The exact form is system dependent.)

43

Controls

Graphs are constructed by selecting any one item off the X-axis menu, and any number of
items off the Y1-axis and Y2-axis menus. The yl-axis is marked on the left side of the graph;
the y2-axis on the right. These menus may be detached by selecting the dashed rule at the
top of the list. Sample results are shown in the figure at the start of this section.

When mmGraph is first launched, all the axis menus are empty. They are dynamically
built based on the data received by mmGraph. By default, the graph limits and labels are
automatically set based on the data. The x-axis label is set using the selected item data
label and measurement unit (if any). The y-axes labels are the measurement unit of the first
corresponding y-axis item selected.

The Options| Configure... dialog box allows the user to override default settings. To
change the graph title, simply enter the desired title into the Title field. To set the axis
labels, deselect the Auto Label option in this dialog box, and fill in the X Label, Y1 Label
and Y2 Label fields as desired. The axis limits can be set in a similar fashion. In addition,
if an axis limit is left empty, a default value (based on all selected data) will be used.

The size of the margin surrounding the plot region is computed automatically. Larger
margins may be specified by filling in the appropriate fields in the Margin Requests section.
Units are pixels. Requested values smaller than the computed (default) values are ignored.

As mentioned earlier, mmGraph stores in memory all data it receives. Over the course
of a long run, the amount of data stored can grow to many megabytes. This storage can
be limited by specifying a positive (> 0) value for the Point buffer size entry in the Op-
tions| Configure... dialog box. The oldest records are removed as necessary to keep the
total number of records stored under the specified limit. A zero value for Point buffer size
is interpreted as no limit. (The storage size of an individual record depends upon several
factors, including the number of items in the record and the version of Tcl being used.) Data
erasures may not be immediately reflected in the graph display.

At any time, the point buffer storage may be completely emptied with the Options|clear
Data command. The Options|stop Autosave selection will turn off the auto save feature,
if currently active. Also on this menu is Options|Rescale, which autoscales the graph axis
limits from the selected data. This command ignores but does not reset the “Auto Scale”
settings in the Options| Configure... dialog box. The Options|Break item inserts a curve
break record into the point buffer, causing a break in each curve after the current point.
This option may be useful if mmGraph is being fed data from multiple sources.

The Options|Key selection toggles the key (legend) display on and off. The key may
also be repositioned by dragging with the left mouse button. If curves are selected off both
the y1 and y2 menus, then a horizontal line in the key separates the two sets of curves, with
the labels for the y1 curves on top.

44

The last command on the options menu is Options|Smooth. If smoothing is disabled,
then the data points are connected by straight line segments. If enabled, then each curve
is rendered as a set of parabolic splines, which do not in general pass through the data
points. This is implemented using the ——smooth 1 option to the Tcl canvas create line
command; see that documentation for details.

A few other controls are also available only through the mouse. If the mouse pointer
is positioned over a drawn item in the graph, holding down the left mouse button will
bring up the coordinates of that point, with respect to the yl-axis. Similarly, depressing
the right mouse button, or alternatively holding down the shift key while pressing the left
mouse button will bring up the coordinates of the point with respect to the y2-axis. The
coordinates displayed are the coordinates of a point on a drawn line, which are not necessarily
the coordinates of a plotted data point. (The data points are plotted at the endpoints of
each line segment.) The coordinate display is cleared when the mouse button is released.

One vertical and one horizontal rule (line) are also available. Initially, these rules are
tucked and hidden against the left and bottom graph axes, respectively. Either may be
repositioned by dragging with the left or right mouse button.

The menu selection File| Exit terminates the mmGraph application. The menu Help
provides the usual help facilities.

Details

The axes menus are configured based on incoming data. As a result, these menus are initially
empty. If a graph widget is scheduled to receive data only upon control point events in the
solver, it may be a long time after starting a problem in the solver before the graph widget
can be configured. Because mmGraph keeps all data up to the limit imposed by the Point
buffer size, data loss is usually not a problem. Of more importance is the fact that automatic
data saving can not be set up until the first data point is received. As a workaround, the
solver initial state may be sent interactively as a dummy point to initialize the graph widget
axes menus. (You may turn off the Interactive schedule connection after sending this data
point.) Select the desired quantities off the axes menus, and use the Options|clear Data
command to remove the dummy point from mmGraph’s memory. The File|Save As...
dialog box may then be used—with the Auto Save option enabled—to write out an empty
table with proper column header information. Subsequent data will be written to this file
as it arrives.

45

12 Vector Field Display: mmDisp

- - l_ =
Hle View Options Help
77| Arvow Suhsample:l 2 I | Size: | 1.2
++ | ™| Data Scale {Nm]:l 485000 I
foom: 5 |

Overview

The application mmDisp displays two-dimensional spatial distributions of three-dimensional
vectors (i.e., vector fields). It can load vector fields from files in a variety of formats, or it
can accept vector field data from a client application, typically a running solver. mmDisp
offers a rich interface for controlling the display of vector field data, and can also save the
data to a file and produce Postscript print output.

Launching

mmDisp may be started either by selecting the mmDisp button on mmLaunch, or from
the command line via

tclsh oommf.tcl mmDisp [standard options] [-net <0|1>] [filename]

-net <0|1> Disable or enable a server which allows the data displayed by mmDisp to be
updated by another application. By default, the server is enabled. When the server is
disabled, mmDisp may only input data from a file.

46

If a filename is supplied on the command line, mmDisp takes it to be the name of a file
containing vector field data for display. That file will be opened on startup.

Inputs

Input to mmDisp may come from either a file or from a client application (typically a
running solver), in any of the vector field formats described in Sec. 17.3. Other file formats
can also be supported if a translation filter program is available.

Client applications that send data to mmDisp control the flow of data. The user,
interacting with the mmDisp window, determines how the vector field data are displayed.

File input is initiated through the File|Open... dialog box. Several example files are
included in the OOMMEF release in the directory app/mmdisp/examples. When the Browse
button is enabled, the “Open File” dialog box will remain open after loading a file, so that
multiple files may be displayed in sequence. The Auto configuration box determines whether
the vector subsampling, data scale, or zoom factor of the display should be determined
automatically (based on the data in the file and the current display window size), or whether
their values should be held constant while loading the file.

mmDisp permits local customization allowing for automatic translation from other file
formats into one of the vector field formats (Sec. 17.3) that mmDisp recognizes. When
loading a file, mmDisp compares the file name to a list of glob-style patterns. These
patterns typically match on the filename extension. An example pattern is *.gz. The
assumption is that the pattern identifies files containing data in a particular format. For
each pattern in the list, there is a corresponding translation program. mmDisp calls on
that program as a filter which takes data in one format from standard input and writes to
standard output the same data in one of the formats supported by mmDisp. In its default
configuration, mmDisp recognizes the pattern *.gz and invokes the translation program
gzip -dc to perform the “translation.” In this way, support for reading gzip compressed
files is “built in” to mmDisp on any platform where the gzip program is installed.

New patterns and translation programs may be added to mmDisp by the usual method
of local customization (Sec. 2.3.2). The command to add to the customization file is of the
form

Oc_Option Add mmDisp Input filters {{*.gz {gzip -dc}}}

The final argument in this command is a list of pairs. The first element in each pair is the
filename pattern. The second element in each pair is the command line for launching the
corresponding translation program. If a program foo were known to translate a file format
identified by the extension .bar into the OVF file format, that program could be made
known to mmDisp by changing the above customization command to:

47

Oc_Option Add mmDisp Input filters {{*.gz {gzip -dc}} {*.bar fool}}

Outputs

The vector field displayed by mmDisp may be saved to disk via the File| Save As. .. dialog
box. The output is in the OVF format (Sec. 17.3.1). The OVF file options may be set by
selecting the appropriate radio buttons in the OVF File Options panel. The Title and Desc
fields may be edited before saving. Enabling the Browse button allows for saving multiple
files without closing the “Save File” dialog box.

The File|Print. .. dialog is used to produce a Postscript file of the current display. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry
with the appropriate pipe command, e.g., |1pr. (The exact format is system dependent.)

To produce bitmap output, save the file to disk in the OVF format, and use the avf2ppm
(Sec. 15.1) utility to do the conversion.

Controls

The menu selection File|Clear clears the display window. The menu selection File|Exit
terminates the mmDisp application. The menu Help provides the usual help facilities.

The View menu provides high-level control over how the vector field is placed in the
display window. The menu selection View|Wrap Display resizes the display window so
that it just contains the entire vector field surrounded by a margin. View|Fill Display
resizes the vector field until it fills the current size of the display window. If the aspect
ratio of the display window does not match the aspect ratio of the vector field, a larger
than requested margin appears along one edge to make up the difference. View | Rotate ccw
and View|Rotate cw rotate the display one quarter turn counter-clockwise and clockwise
respectively. The display window also rotates, so that the portion of the vector field seen and
any margins are preserved (unless the display of the control bar forces the display window
to be wider). View |reDraw allows the user to invoke a redrawing of the display window.

The menu selection Options|Configure... brings up a dialog box through which the
user may control many features of the vector field display. Vectors in the vector field may be
displayed as arrows, pixels, or both. The Arrow and Pixel buttons in the Plot type column
on the left of the dialog box enable each type of display.

Columns 2-4 in the Configure dialog box control the use of color. Both arrows and
pixels may be independently colored to indicate some quantity. The Color Quantity column
controls which scalar quantity the color of the arrow or pixel represents. The z, y, or z
components of the vector, the vector magnitude, or the in-plane xy-angle of the vector from

48

the positive z-axis may be selected. On regularly gridded data the vector field divergence is
also available for display.

The assignment of a color to a quantity value is determined by the Colormap selected.
Colormaps are labeled by a sequence of colors that are mapped across the range of the
selected quantity. For example, if the “Red-Black-Blue” colormap is applied to the Color
Quantity “z”, then vectors pointing into the xy-plane (z < 0) are colored red, those lying in
the plane (z = 0) are colored black, and those pointing out of the plane (z > 0) are colored
blue. Values between the extremes are colored with intermediate colors, selected using a
discretization determined by the # of Colors value. This value governs the use of potentially
limited color resources, and can be used to achieve some special coloring effects. (Note: The
xry-angle quantity is best viewed with a colormap that begins and ends with the same color,
e.g., “Red-Green-Blue-Red.”)

When there are many vectors in a vector field, a display of all of them may be more con-
fusing than helpful. The Subsample column allows the user to request that only a sampling
of vectors from the vector field be displayed. The Subsample value is roughly the number of
vectors along one spatial dimension of the vector field which map to a single displayed vector
(arrow or pixel). Each vector displayed is an actual vector in the vector field—the selection
of vectors for display is a sampling process, not an averaging or interpolation process. The
subsample rates for arrows and pixels may be set independently. A subsample rate of 0 is
interpreted specially to display all data. (This is typically much quicker than subsampling
at a small rate, e.g., 0.1.)

The length of an arrow represents the magnitude of the vector field. All arrows are
drawn with a length between zero and “full-scale.” By default, the full-scale arrow length
is computed so that it covers the region of the screen that one displayed vector is intended
to represent, given the current subsample rate. Following this default, arrows do not signifi-
cantly overlap each other, yet all non-zero portions of the vector field have a representation
in the display. Similarly, pixels are drawn with a default size that fills an area equal to
the region of the screen one pixel is intended to represent, given the pixel subsample rate.
The Size column allows the user to (independently) override the default size of pixels and
full-scale arrows. A value of 1 represents the default size. By changing to a larger or smaller
Size value, the user may request arrows or pixels larger or smaller than the default size.

Below the Arrow and Pixel Controls are several additional controls. The Data Scale
entry affects the data value scaling. As described above, all arrows are displayed with length
between zero and full-scale. The full-scale arrow length corresponds to some scalar value of
the magnitude of the vector field. The Data Scale entry allows the user to set the value at
which the drawn arrow length goes full-scale. Any vectors in the vector field with magnitude
equal to or greater than the data scale value will be represented by arrows drawn at full scale.
Other vectors will be represented by shorter arrows with length determined by a linear scale

49

between zero and the data scale value. Similarly, the data scale value controls the range
of values spanned by the colormap used to color pixels. The usual use of the Data Scale
entry is to reduce the data scale value so that more detail can be seen in those portions of
the vector field which have magnitude less than other parts of the vector field. If the data
scale value is increased, then the length of the arrows in the plot is reduced accordingly.
If the data scale value is decreased, then the length of the arrows is increased, until they
reach full-scale. An arrow representing a vector with magnitude larger than the data scale
value may be thought of as being truncated to the data scale value. The initial (default)
data scale value is usually the maximum vector magnitude in the field, so at this setting no
arrows are truncated. Entering 0 into the data scale box will cause the data scale to be reset
to the default value. (For OVF files (Sec. 17.3.1), the default data scale value is set from
the ValueRangeMaxMag header line. This is typically set to the maximum vector magnitude,
but this is not guaranteed.) The data scale control is intended primarily for use with vector
fields of varying magnitude (e.g., H-fields), but may also be used to adjust the pixel display
contrast for any field type.

The Zoom entry controls the spatial scaling of the display. The value roughly corresponds
to the number of pixels per vector in the fully-sampled vector field. (This value is not affected
by the subsampling rate.)

To the right of the Data Scale and Zoom entries are controls to specify what margin (in
pixels) should be maintained around the vector field, whether or not a bounding polygon is
displayed, and what background color the display window should use.

No changes made by the user in the Options| Configure. .. dialog box affect the display
window until either the Apply or OK button is selected. If the OK button is selected, the
dialog box is also dismissed. The Close button dismisses the dialog without changing the
display window.

The other item under the Options menu is a checkbutton that toggles the display of a
control bar. The control bar offers alternative interfaces to some of the operations available
from the Options|Configure... dialog box and the View menu. On the left end of the
control bar is a display of the coordinate axes. These axes rotate along with the vector field
in the display window to identify the coordinate system of the display, and are color coded
to agree with the pixel (if active) or arrow coloring. A click of the left mouse button on the
coordinate axes causes a counter-clockwise rotation. A click of the right mouse button on
the coordinate axes causes a clockwise rotation.

To the right of the coordinate axes are two rows of controls. The top row allows the
user to control the subsample rate and size of displayed arrows. The subsample rate may be
modified either by direct entry of a new rate, or by manipulation of the slider. The second
row controls the current data scale value. A vertical bar in the slider area marks the default
data scale value. Specifying 0 for the data scale value will reset the data scale to the default

50

value. At the bottom of the control bar is a zoom (spatial magnification) control.

The zoom value may also be changed by using the mouse inside the display window. A
click and drag with the left mouse button displays a red rectangle that changes size as the
mouse is dragged. When the left mouse button is released, the vector field is rescaled so
that the portion of the display window within the red rectangle expands until it reaches the
edges of the display window. Both dimensions are scaled by the same amount so there is
no distortion of the vector field. Small red arrows on the sides of the red rectangle indicate
which dimension will expand to meet the display window boundaries upon release of the left
mouse button. After the rescaling, the red rectangle remains in the display window briefly,
surrounding the same region of the vector field, but at the new scale.

A click and drag with the right mouse button displays a blue rectangle that changes size
as the mouse is dragged. When the right mouse button is released, the vector field is rescaled
so that all of the vector field currently visible in the display window fits in the size of the
blue rectangle. Both dimensions are scaled by the same amount so there is no distortion of
the vector field. Small blue arrows on the sides of the blue rectangle indicate the dimension
in which the vector field will shrink to exactly transform the display window size to the blue
rectangle size. After the rescaling, the blue rectangle remains in the display window briefly,
surrounding the same region of the vector field, now centered in the display window, and at
the new scale.

When the zoom value is large enough that a portion of the vector field lies outside the
display window, scrollbars appear that may be used to translate the vector field so that
different portions are visible in the display window. On systems that have a middle mouse
button, clicking the middle button on a point in the display window translates the vector
field so that the selected point is centered within the display window.

mmDisp remembers the previous zoom value and data scale values. To revert to the
previous settings, the user may hit the ESC key. This is a limited “Undo” feature.

Several keyboard shortcuts are available as alternatives to menu- or mouse-based opera-
tions. The effect of a key combination depends on which subwindow of mmDisp is active.
The TAB key may be used to change the active subwindow. The SHIFT-TAB key combination
also changes the active subwindow, in reverse order.

When the active subwindow is the display window, the following key combinations are
active:

e CTRL-o — same as menu selection File|Open. ..
e CTRL-s — same as menu selection File|Save as. ..

e CTRL-p — same as menu selection File|Print. ..

51

e CTRL-w — same as menu selection View | Wrap Display

e CTRL-f — same as menu selection View | Fill Display

e HOME — First fill, then wrap the display.

e CTRL-r — same as menu selection View | Rotate ccw

e SHIFT-CTRL-r — same as menu selection View | Rotate cw
e INSERT — decrease arrow subsample by 1

e DEL — increase arrow subsample by 1

e SHIFT-INSERT — decrease arrow subsample by factor of 2
e SHIFT-DEL — increase arrow subsample by factor of 2

e PAGEUP — increase the zoom value by a factor of 1.149

e PAGEDOWN — decrease the zoom value by a factor of 1.149
e SHIFT-PAGEUP — increase the zoom value by factor of 2

e SHIFT-PAGEDOWN — decrease the zoom value by factor of 2
e ESC — revert to previous data scale and zoom values

When the active subwindow is the control bar’s coordinate axes display, the following
key combinations are active:

e LEFT — same as menu selection View | Rotate ccw
e RIGHT — same as menu selection View | Rotate cw

When the active subwindow is any of the control bar’s value entry windows — arrow
subsample, size, data scale or zoom, the following key combinations are active:

e ESC — undo uncommitted value (displayed in red)
e RETURN — commit entered value

When the active subwindow is either of the control bar’s sliders—arrow subsample, data
scale or zoom—the following key combinations are active:

52

e LEFT - slide left (decrease value)

e RIGHT - slide right (increase value)

e ESC — undo uncommitted value (displayed in red)
e RETURN — commit current value

Of course the usual keyboard access to the menu items is also available.

Details

The selection of vectors for display according to the Subsample differs depending on whether
or not the data lies on a regular grid. If so, the Subsample takes integer values and deter-
mines the ratio of data points to displayed points. For example, a value of 5 means that
every fifth vector on the grid is displayed. This means that the number of vectors displayed
is 25 times fewer than the number of vectors on the grid.

For an irregular grid of vectors, an average cell size is computed, and the Subsample takes
values in units of 0.1 times the average cell size. A square grid of that size is overlaid on the
irregular grid. For each cell in the square grid, the data vector from the irregular grid closest
to the center of the square grid cell is selected for display. The vector is displayed at its true
location in the irregular grid, not at the center of the square grid cell. As the subsample
rate changes, the set of displayed vectors also changes, which can in some circumstances
substantially change the appearance of the displayed vector field.

Using mmDisp as a WWW browser helper application

You may configure your web browser to automatically launch mmDisp when downloading
an OVF file. The exact means to do this depends on your browser, but a couple of examples
are presented below.

In Netscape Navigator 4.X, bring up the Edit|Preferences... dialog box, and select
the Category Navigator | Applications subwindow. Create a New Type, with the following
fields:

Description of type: OOMMEF Vector Field
MIME Type: application/x-oommf-vf
Suffixes: ovf omf ohf obf svf

Application: wish oommfroot/oommf.tcl +fg mmDisp -net 0 “arg’

53

On Windows platforms, the Suffixes field is labeled File Extension, and only one file
extension may be entered. Files downloaded from a web server are handled according to
their MIME Type, rather than their file extension, so that restriction isn’t important when
web browsing. If you wish to have files on the local disk with all the above file extensions
recognized as OOMMF Vector Field files, you must repeat the New Type entry for each
file extension. In the Application field, the values of wish, oommfroot, and arg vary with
your platform configuration. The value of wish is the full path to the wish application on
your platform (see Section 5). On Unix systems, wish may be omitted, assuming that the
oommf . tcl script is executable. If wish is not omitted on Unix systems, Netscape may issue
a security warning each time it opens an OOMMEF Vector Field file. The value of oommfroot
should be the full path to the root directory of your OOMMEF installation. The value of arg
should be “%1” on Windows and “%s” on Unix. The MIME type “application/x-oommf-v{”
must be configured on any HT'TP server which provides OOMMEF Vector Field files as well.

For Microsoft Internet Explorer 3.X, bring up the View|Options... dialog box, and
select the Program tab. Hit the File Types... button, followed by the New Type...
button. Fill the resulting dialog box with

Description of type: OOMMEF Vector Field
Associated extension: ovf

Content type (MIME): application/x-oommf-vf

You may also disable the Confirm open after download checkbutton if you want. Then hit
the New. .. button below the Actions: window, and in the pop-up fill in

Action: open

Application used to perform action:
wish oommfroot/oommf.tcl +fg mmDisp -net 0 “%1”

Hit OK, Close, Close and OK. Replace wish and oommfroot with the appropriate paths on
your system (cf. Section 5). This will set up an association on files with the .ovf extension.
Internet Explorer 3.X apparently ignores the HTML Content Type field, so you must repeat
this process for each file extension (.ovf, .omf, .ohf, .obf and .svf) that you want to recognize.
This means, however, that Internet Explorer will make the appropriate association even if
the HTML server does not properly set the HITML Content Type field.

Microsoft Internet Explorer 4.X is integrated with the Windows operating system. Inter-
net Explorer 4.X doesn’t offer any means to set up associations between particular file types
and the applications which should be used to open them. Instead, this association is config-
ured within the Windows operating system. To set up associations for the OOMMEF Vector

o4

Field file type on Windows 95 or Windows NT 4.0, select Settings|Control Panel from
the Start menu. The Control Panel window appears. Select View|Options. .. to display
a dialog box. A Windows 98 shortcut to the same dialog box is to select Settings|Folder
Options. .. from the Start menu. Select the File Types tab and proceed as described above
for Internet Explorer 3.X. Depending on the exact release/service patch of your Windows
operating system, the exact instructions may vary.

Once you have your browser configured, you can test it on the uMAG 1st Standard
Problem report page,

http://www.ctcms.nist.gov/%7Erdm/std1/vectorcompare.html.

95

13 Data Archive: mmArchive

I mmAwchived2eri- 0 [

Status: Opened oommf-small.odt |

Exit | T

Overview

The application mmArchive provides automated vector field and data table storage ser-
vices. Although mmDisp (Sec. 12) and mmGraph (Sec. 11) are able to save such data
under the direction of the user, there are situations where it is more convenient to write data
to disk without interactive control.

mmArchive does not present a user interface window of its own, but like mmSolve2D
(Sec. 9) relies on mmLaunch (Sec. 6) to provide an interface on its behalf. Because
mmaArchive does not require a window, it is possible on Unix systems to bring down
the X (window) server and still keep mmArchive running in the background.

Launching

mmATrchive may be started either by selecting the mmArchive button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmArchive [standard options]

When the mmArchive button of mmLaunch is invoked, mmArchive is launched with
the -tk 0 option. This allows mmArchive to continue running if the X window server is
killed. The -tk 1 option is useful only for enabling the ~console option for debugging.

As noted above, mmArchive depends upon mmLaunch to provide an interface. The
entry for an instance of mmArchive in the Threads column of any running copy of mm-
Launch has a checkbutton next to it. This button toggles the presence of a user interface
window through which the user may control that instance of mmArchive.

Inputs

mmA-rchive accepts vector field and data table style input from client applications (typically
running solvers) on its network (socket) interface.

56

Outputs

The client applications that send data to mmArchive control the flow of data. mmArchive
copies the data it receives into files specified by the client. There is no interactive control to
select the names of these output files. A simple status line shows the most recent vector file
save, or data table file open/close event.

Controls

The Exit in the mmLaunch-supplied user interface terminates mmArchive. Simply clos-
ing the user interface window does not terminate mmArchive, but only hides the control
window. To kill mmArchive the Exit button must be pressed.

Known Bugs

mmATrchive appends data table output to the file specified by the source client application
(e.g., arunning solver). If, at the same time, more than one source specifies the same file, or if
the the same source sends data table output to more than one instance of mmArchive, then
concurrent writes to the same file may corrupt the data in that file. It is the responsibility
of the user to ensure this does not happen; there is at present no file locking mechanism in
OOMMF to protect against this situation.

57

14 Documentation Viewer: mmHelp

|=l mmHelp Version 1.0.0.0: Quick Start: Example OOMMF Session | || - |
File Havigate Options Help

Home | Back | | Refresh | Exit |

Link: http:fimath.nist.govioommf

|§ Next| Up| F’reviaus| Cantentsl

Next: QOMMFE Architecture Owerview Up: COMMF Documentation
Previous : Advanced Installation Optons

L L

Quick Start: Example OOMMEF Session
o STEP 1: Start up the mmnLaunch window.

|\! L-'ia"‘

Overview

The application mmHelp manages the display and navigation of hypertext (HTML) help
files. It presents an interface similar to that of World Wide Web browsers.

Although mmMHelp is patterned after World Wide Web browsers, it does not have all of
their capabilities. mmHelp displays only a simplified form of hypertext required to display
the OOMMEF help pages. It is not able to display many of the advanced hypertext features
provided by modern World Wide Web browsers. In the current release, mmHelp is not able
to follow http: URLs. It only follows file: URLs.

OOMMF software can be customized (See Sec. 2.3.2) to use another program to display
the HTML help files.

Launching

mmHelp may be launched from the command line via
tclsh oommf.tcl mmHelp [standard options] [URL]

The command line argument URL is the URL of the first page (home page) to be displayed. If
no URL is specified, mmHelp displays the Table of Contents of the OOMMF User’s Guide
by default.

58

Controls

Each page of hypertext is displayed in the main mmHelp window. Words which are under-
lined and colored blue are hyperlinks which mmHelp knows how to follow. Words which
are underlined and colored red are hyperlinks which mmHelp does not know how to follow.
Moving the mouse over a hyperlink displays the target URL of the hyperlink in the Link:
line above the display window. Clicking on a blue hyperlink will follow the hyperlink and
display a new page of hypertext.

mmHelp keeps a list of the viewed pages in order of view. Using the Back and Forward
buttons, the user may move backward and forward through this list of pages. The Home
button causes the first page to be displayed, allowing the user to start again from the
beginning. These three buttons have corresponding entries in the Navigate menu.

The menu selection File | Refresh, or the Refresh button causes mmHelp to reload and
redisplay the current page. This may be useful if the display becomes corrupted, or for
repeatedly loading a hypertext file which is being edited.

When mmHelp encounters hypertext elements it does not recognize, it will attempt to
work around the problem. However, in some cases it will not be able to make sense of the
hypertext, and will display an error message. Documentation authors should take care to
use only the hypertext elements supported by mmHelp in their documentation files. Users
should never see such an error message.

mmHelp displays error messages in one of two ways: within the display window, or in
a separate window. Errors reported in the display window replace the display of the page of
hypertext. They usually indicate that the hypertext page could not be retrieved, or that its
contents are not hypertext. File permission errors are also reported in this way.

Errors reported in a separate window are usually due to a formatting error within the
page of hypertext. Selecting the Continue button of the error window instructs mmHelp to
attempt to resume display of the hypertext page beyond the error. Selecting Abort abandons
further display.

The menu selection Options|Font scale... brings up a dialog box through which the
user may select the scale of the fonts to use in the display window, relative to their initial
size.

The menu selection File| Exit or the Exit button terminates the mmMHelp application.
The menu Help provides the usual help facilities.

Known Bugs

mmHelp is pretty slow. You may be happier using local customization (Sec. 2.3.2) methods
to replace it with another more powerful HTML browser.

59

15 Command Line Utilities

This section documents a few utilities distributed with OOMMEF that are run from the
command line (Unix shell or Windows DOSprompt), which are typically used in pre- or
post-processing of data associated with a micromagnetic simulation.

15.1 Making Bitmaps from Vector Fields: avif2ppm

The avf2ppm utility converts a collection of vector field files (e.g., .omf, .ohf) into color
bitmaps suitable for inclusion into documents or collating into movies. The command line
arguments control filename and format selection, while plain-text configuration files, modeled
after the mmDisp (Sec. 12) configuration dialog box, specify conversion parameters.

Launching

The avf2ppm launch command is:

tclsh oommf.tcl avf2ppm [standard options] [-config file] [-f] \
[-filter program] [-format <P3|P6|B24>] [-ipat pattern] \
[-opatexp regexp] [-opatsub sub] [-v level] [infile ...]

where

-config file User configuration file that specifies the image conversion parameters. This file
is discussed in detail below.

-f Force overwriting of existing (output) files. By default, if avf2ppm tries to create a
file, say foo.ppm, that already exists, it generates instead a new name of the form
foo.ppm-000, or foo.ppm-001, ..., or foo.ppm-999, that doesn’t exist and writes
to that instead. The -f flag disallows alternate filename generation, and overwrites
foo.ppm instead.

-filter program Post-processing application to run on each app2ppm output file. May be
a pipeline of many programs.

-format <P3|P6|B24> Specify the output image file format. Currently supported for-
mats are the true color Portable Pizmap (PPM) formats P3 (ASCII text) and P6
(binary), and the uncompressed BMP 24 bits-per-pixel format. The default is P6.

-ipat pattern Specify input files using a pattern including “glob-style” wildcards. Mostly
useful in DOS.

60

-opatexp regexp Specify the ‘“regular expression” applied to input filenames
to determine portion to be replaced in generation of output filenames.

Default: (\.[~.]1?2[".1?[".17?%1$)

-opatsub sub The string with which to replace the portion of input filenames matched by
the —opatsub during output filename generation. The default is .ppm for type P3 and
P6 file output, .bmp for B24 file output.

-v level Verbosity (informational message) level, with 0 generating only error messages,
and larger numbers generating additional information. The level value is an integer,
defaulting to 1.

infile ... List of input files to process.

Note that by default avf2ppm is run with the standard option -tk 0. This means
avf2ppm will not use or initialize Tk. Tk is only needed to convert background color
requests (see misc,background in the configuration file discussion below) from symbolic
form to hexadecimal representation (#RRGGBB). If the background color is not specified using
the hexadecimal format, then Tk is needed, and avf2ppm must be run with -tk 1.

The file specification options require some explanation. Input files may be specified either
by an explicit list (infile ...), or by giving a wildcard pattern, e.g., —ipat *.omf, which is
expanded in the usual way by avf2ppm (using the Tcl command glob). Unix shells (sh, csh,
etc.) automatically expand wildcards before handing control over to the invoked application,
so the —ipat option is not needed (although it is useful in case of a “command-line too long”
error). DOS does not do this expansion, so you must use -ipat to get wildcard expansion
in Windows.

As each input file is processed, a name for the output file is produced from the input
filename by rules determined by handing the -opatexp and -opatsub expressions to the
Tcl regsub command. Refer to the Tcl regsub documentation for details, but essentially
whatever portion of the input filename is matched by the -opatexp expression is removed
and replaced by the —opatsub string. The default —opatexp expression matches against any
filename extension of up to 3 characters, and the default —~opatsub string replaces this with
the extension either .ppm or .bmp.

If you have command line image processing “filter” programs, e.g., ppmtogif (part of
the NetPBM package), then you can use the -filter option to pipe the output of avf2ppm
through that filter before it is written to the output file specified by the -opat* expressions.
If the processing changes the format of the file, (e.g., ppmtogif converts from PPM to GIF),
then you will likely want to specify a -opatsub different from the default.

Here is an example that processes all input files with the .omf extension, sending the
output through ppmtogif before saving the results in a files with the extension .gif:

61

tclsh oommf.tcl avf2ppm -ipat *.omf -opatsub .gif -filter ppmtogif

(On Unix, either drop the -ipat flag, or use quotes to protect the input file specification
string from expansion by the shell, as in -ipat ’#*.omf’.) You may also pipe together
multiple filters, e.g., -filter ’ppmquant 256 | ppmtogif’.

Configuration files

The details of the conversion process are specified by plain-text configuration files, with fields
analogous to the entries in the mmDisp (Sec. 12) configuration dialog box. Each of the pa-
rameters is an element in an array named plot_config. The default values for this array are
taken from the default configuration file commf/app/mmdisp/scripts/avf2ppm.def, which
is a Tcl script read during avf2ppm initialization.

The sample default configuration script shown in Fig. 1 can be used as a starting point for
user (per-run) configuration files. Refer to this sample file and the mmDisp documentation
(Sec. 12) as we discuss each element of the array plot_config. (See the Tcl documentation
for details of the array set command.)

colormaps A list of valid colormaps known to the program. This entry is mot user-
configurable, and should not appear in user configuration files.

arrow,status Set to 1 to display arrows, 0 to not draw arrows.

arrow,colormap Select the colormap to use when drawing arrows. Should be one of the
strings specified in the colormaps array element.

arrow,colorcount Number of discretization levels to use from the colormap. A value of
zero will color all arrows with the first color in the colormap.

arrow,quantity Scalar quantity the arrow color is to represent. Supported values include
%, v, and z. The mmDisp configuration dialog box will present the complete list of
allowed quantities (which may be image dependent).

arrow,autosample If 1, then ignore the value of arrow,subsample and automatically de-
termine a ‘“reasonable” subsampling rate for the arrows. Set to 0 to turn off this
feature.

arrow,subsample If arrow,autosample is 0, then subsample the input vectors at this rate
when drawing arrows. A value of 0 for arrow,subsample is interpreted specially to
display all data.

62

arrow,size Size of the arrows relative to the default size (represented as 1.0).

arrow,antialias If 1, then each pixel along the edge of an arrow is drawn not with the color
of the arrow, but with a mixture of the arrow color and the background color. This
makes arrow boundaries appear less jagged, but increases computation time. Also, the
colors used in the anti-aliased pixels are not drawn from the arrow or pixel colormap
discretizations, so color allocation in the output bitmap may increase dramatically.

pixel,... Each pixel configuration element has interpretation analogous to the corresponding
array configuration element, except that there is no pixel,antialias element, and
the auto subsampling rate for pixels is considerably denser than for arrows.

misc,background Specify the background color, using the hexadecimal format #RRGGBB
(for example, #££f££00 is yellow), or, when -tk 1 is active, using any of the forms
recognized by the Tk routine Tk_GetColor, including symbolic names such as white,
black, green.

misc,drawboundary If 1, then draw the bounding polygon, if any, as specified in the input
vector field format file.

misc,margin The size of the border margin, in pixels.

misc,width, misc,height Maximum width and height of the output bitmap, in pixels. If
misc,crop is enabled, then one or both of these dimensions may be shortened.

misc,crop If disabled (0), then any leftover space in the bitmap (of dimensions misc,width
by misc,height) after packing the image are filled with the background color. If en-
abled (1), then the bitmap is cropped to just include the image (with the margin
specified by misc,margin). NOTE: Some movie formats require that bitmap dimen-
sions be multiples of 8 or 16. For such purposes, you should disable misc,crop and
specify appropriate dimensions directly with misc,width and misc,height.

misc,zoom Scaling factor for the display. This is the same value as shown in the “zoom”
box in the mmDisp control bar, and corresponds roughly to the number of pixels
per vector in the (original, fully-sampled) vector field. If set to zero, then avf2ppm
will automatically set the scaling so the image (with margins) just fits inside the area
specified by misc,width and misc,height.

misc,rotation Rotation in degrees; either 0, 90, 180 or 270.

63

array set plot_config {
colormaps { Red-Black-Blue Blue-White-Red Teal-White-Red \
Black-Gray-White White-Green-Black Red-Green-Blue-Red }

arrow,status
arrow,colormap
arrow,colorcount

1
Black-Gray-White
0

arrow,quantity z
arrow,autosample 1
arrow,subsample 10
arrow,size 1
arrow,antialias 1
pixel,status 1
pixel,colormap Teal-White-Red
pixel,colorcount 225
pixel,quantity X
pixel,autosample 1
pixel,subsample 2
pixel,size 1
misc,background #FFFFFF
misc,drawboundary 1
misc,margin 10
misc,width 640
misc,height 480
misc,crop 1
misc,zoom 0
misc,rotation 0

Figure 1: Sample default configuration script avf2ppm.def.

64

User (per-run) configuration files are specified on the command line with the -config
option. To create a user configuration file, make a copy of the default avf2ppm.def config-
uration file, and edit it as desired in a plain text editor. You may omit any entries that you
do not want to change from the default. (Each entry consists of a name + value pair, e.g.,
misc,width 640.) You may “layer” configuration files by specifying multiple user configu-
ration files on the command line. These are processed from left to right, with the last value
set for each entry taking precedence.

15.2 Bitmap File Format Conversion: any2ppm

The any2ppm program converts bitmap files of various formats into the Portable Pixmap
(PPM) P3 (text) format. Supported input formats are PPM, BMP, and GIF. (Note:
OOMMEF support for BMP requires Tk 8.0 or later.)

Launching

The any2ppm launch command is:

tclsh oommf.tcl any2ppm [standard options] [-noinfo] \
[-o outfile] [infile ...]

where
-noinfo Suppress writing of progress information to stderr.

-0 outfile Write output to outname; use “-” to pipe output to stdout. The default is to
create a new file by stripping the extension, if any, off of each input filename, and
appending .ppm. If the generated filename already exists, a “-000” or “-001” ... suffix
is appended.

infile ... List of input files to process.

Tk Requirement: any2ppm uses the Tk image command in its processing. This
requires that Tk be properly initialized, which in particular means that a valid display must
be available. This is not a problem on Windows, where a desktop is always present, but
on Unix this means that an X server must be running. The Xuvfb virtual framebuffer can
be used if desired. (Xvfb is an X server distributed with X11R6 that requires no display
hardware or physical input devices.)

65

15.3 Vector Field File Format Conversion: avf2ovf

The avf2ovf program converts vector field files from any of the recognized formats (OVF,
VIO; see Sec. 17.3) into the OVF 1.0 format.

Launching
The avf2ovf launch command is:

tclsh oommf.tcl avf2ovf [standard options] [-format <text|b4|b8>] \
[-grid <reglirreg>] infile >outfile

where

-format <text|b4|b8> Specify output data format. The default is ASCII text; b4 selects
4-byte binary, b8 selects 8-byte binary. (The OVF format has an ASCII text header
in all cases.)

-grid <reglirreg> Specify output grid structure. The default is reg, which will output
a regular (rectangular) grid if the input is recognized as a regular grid. The option
-grid irreg forces irregular mesh style output.

infile Name of input file to process. Must be one of the recognized formats, OVF 0.0, OVF
1.0, or VIO.

>outfile Avf2ovf writes its output to stdout. Use the redirection operator “>" to send the
output to a file.

The -format text and -grid irreg options are useful for preparing files for import
into non-OOMMEF applications, because all non-data lines are readily identified by a leading
“#,” and each data line is a 6-tuple consisting of the node location and vector value. Pay
attention, however, to the scaling of the vector value as specified by “# valueunit” and
“# valuemultiplier” header lines.

For output format details, see the OVF file description (Sec. 17.3.1).

15.4 Calculating H Fields from Magnetization: mag2hfield

The mag2hfield utility takes a micromagnetic problem specification file (.mif, see Sec. 17.1)
and a magnetization file (.omf, see Sec. 17.3) and uses the mmSolve2D (Sec. 9) computation
engine to generate files for the resulting component (magnetostatic, exchange, crystalline
anisotropy) and total H fields. The main use of this utility to study the fields in a simulation
using magnetization files generated by an earlier mmSolve2D run.

66

Launching

The mag2hfield launch command is:

tclsh oommf.tcl mag2hfield [standard options] [-fieldstep #] \
[-component [all,] [anis,] [applied,] [demag,] [exchange,] [total]] \
mif_file omf_file

where

-component [all,][anis,][applied,|[demag,][exchange,]|[total] Specify all field compo-
nents that are desired. Optional; default is total, which is the sum of the crystalline
anisotropy, applied, demagnetization (self-magnetostatic) and exchange fields.

-fieldstep # Applied field step index, following the schedule specified in the input MIF file
(0 denotes the initial field). Optional; default is 0.

mif file MIF micromagnetic problem specification file (.mif). Required.

omf file Magnetization state file. This can be in any of the formats accepted by the avfFile
record of the input MIF file. Required.

The H field output file format is determined by the Total Field Output Format record
of the input MIF file (Sec. 17.1). The output file names have the form basename-hanis.ohf,
basename-happlied.ohf, etc., where basename is the input .omf magnetization file name,
stripped of any trailing .omf or .ovf extension.

15.5 Platform-Independent Make: pimake

The application pimake is similar in operation to the Unix utility program make, but it
is written entirely in Tcl so that it will run anywhere Tcl is installed. Like make, pimake
controls the building of one file, the target, from other files. Just as make is controlled by
rules in files named Makefile or makefile, pimake is controlled by rules in files named
makerules.tcl.

Launching

The pimake launch command is:

tclsh oommf.tcl pimake [standard options] \
[-d] [-i] [-k] [target]

67

where

-d Print verbose information about dependencies.

-i Normally an error halts operation. When -1 is specified, ignore errors and try to continue
updating all dependencies of target.

-k Normally an error halts operation. When -k is specified, and an error is encountered,
stop processing dependencies which depend on the error, but continue updating other
dependencies of target.

target The file to build. May also be (and usually is) a symbolic target name. See below
for standard symbolic targets. By default, the first target in makerules.tcl is built.

There are several targets which may be used as arguments to pimake to achieve different
tasks. Each target builds in the current directory and all subdirectories. The standard targets
are:

upgrade Used immediately after unpacking a distribution, it removes any files which were
part of a previous release, but are not part of the unpacked distrubtion.

all Creates all files created by the configure target (see below). Compiles and links all the
executables and libraries. Constructs all index files.

configure Creates subdirectories with the same name as the platform type. Constructs a
port.h file which includes C++ header information specific to the platform.

objclean Removes the intermediate object