
OOMMF

User’s Guide

January 22, 2001

This manual documents release 1.2a1.

WARNING: In this alpha release, the documentation

may not be up to date.

Abstract

This manual describes OOMMF (Object Oriented Micromagnetic Framework), a
public domain micromagnetics program developed at the National Institute of Stan-
dards and Technology. The program is designed to be portable, flexible, and extensible,
with a user-friendly graphical interface. The code is written in C++ and Tcl/Tk. Tar-
get systems include a wide range of Unix platforms, Windows NT, and Windows 95/98.

http://www.nist.gov/
http://www.nist.gov/

Contents

Disclaimer iii

1 Overview of OOMMF 1

2 Installation 3
2.1 Requirements . 3
2.2 Basic Installation . 4

2.2.1 Download . 5
2.2.2 Check Your Platform Configuration 5
2.2.3 Compiling and Linking . 9
2.2.4 Installing . 10
2.2.5 Using OOMMF Software . 10
2.2.6 Reporting Problems . 10

2.3 Advanced Installation . 10
2.3.1 Reducing Disk Space Usage . 10
2.3.2 Local Customizations . 11
2.3.3 Managing OOMMF Platform Names 11
2.3.4 Microsoft Windows Options . 13

3 Quick Start: Example OOMMF Session 16

4 OOMMF Architecture Overview 20

5 Command Line Launching 22

6 OOMMF Launcher/Control Interface: mmLaunch 25

7 Micromagnetic Problem Editor: mmProbEd 27

8 Micromagnetic Problem File Source: FileSource 29

9 The 2D Micromagnetic Solver: mmSolve2D 31

10 OOMMF eXtensible Solver Interactive Interface: oxsii 39
10.1 Standard Oxs Ext Child Classes . 40

11 Data Table Display: mmDataTable 50

i

12 Data Graph Display: mmGraph 53

13 Vector Field Display: mmDisp 57

14 Data Archive: mmArchive 67

15 Documentation Viewer: mmHelp 69

16 Command Line Utilities 72
16.1 Bitmap File Format Conversion: any2ppm 72
16.2 Making Data Tables from Vector Fields: avf2odt 73
16.3 Vector Field File Format Conversion: avf2ovf 74
16.4 Making Bitmaps from Vector Fields: avf2ppm 75
16.5 Vector Field File Difference: avfdiff . 79
16.6 Calculating H Fields from Magnetization: mag2hfield 81
16.7 MIF Format Conversion: mifconvert . 82
16.8 Platform-Independent Make: pimake . 82

17 OOMMF Batch System 84
17.1 Solver Batch Interface: batchsolve . 84
17.2 Batch Scheduling System . 87

17.2.1 Master Scheduling Control: batchmaster 87
17.2.2 Task Control: batchslave . 88
17.2.3 Batch Task Scripts . 90
17.2.4 Sample task scripts . 92

18 File Formats 96
18.1 Problem specification format (MIF) . 96

18.1.1 MIF 1.1 . 96
18.1.2 MIF 2.0 . 105

18.2 Data table format (ODT) . 112
18.3 Vector field format (OVF) . 113

18.3.1 The OVF 1.0 format . 114
18.3.2 The OVF 0.0 format . 119

19 Troubleshooting 121

20 References 123

ii

21 Credits 125

iii

Disclaimer

This software was developed at the National Institute of Standards and Technology by
employees of the Federal Government in the course of their official duties. Pursuant to Title
17, United States Code, Section 105, this software is not subject to copyright protection and
is in the public domain.

OOMMF is an experimental system. NIST assumes no responsibility whatsoever for
its use by other parties, and makes no guarantees, expressed or implied, about its quality,
reliability, or any other characteristic. We would appreciate acknowledgement if the software
is used.

Commercial equipment and software referred to on these pages is identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.

iv

1 Overview of OOMMF

The goal of the OOMMF1 (Object Oriented Micromagnetic Framework) project in the Infor-
mation Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) is to develop a portable, extensible public domain micromagnetic program and asso-
ciated tools. This code will form a completely functional micromagnetics package, but will
also have a well documented, flexible programmer’s interface so that people developing new
code can swap their own code in and out as desired. The main contributors to OOMMF are
Mike Donahue and Don Porter.

In order to allow a programmer not familiar with the code as a whole to add modifications
and new functionality, we feel that an object oriented approach is critical, and have settled
on C++ as a good compromise with respect to availability, functionality, and portability.
In order to allow the code to run on a wide variety of systems, we are writing the interface
and glue code in Tcl/Tk. This enables our code to operate across a wide range of Unix
platforms, Windows NT, and Windows 95/98.

The code may actually be modified at 3 distinct levels. At the top level, individual
programs interact via well-defined protocols across network sockets. One may connect these
modules together in various ways from the user interface, and new modules speaking the
same protocol can be transparently added. The second level of modification is at the Tcl/Tk
script level. Some modules allow Tcl/Tk scripts to be imported and executed at run time,
and the top level scripts are relatively easy to modify or replace. At the lowest level, the
C++ source is provided and can be modified, although at present there is no documentation
detailing this process.

The first portion of OOMMF released was a magnetization file display program called
mmDisp. A working release2 of the complete OOMMF project is now available. This
includes a problem editor, a 2D micromagnetic solver, and several display widgets, including
an updated version of mmDisp. The solver can be controlled by an interactive interface
(Sec. 9), or through a sophisticated batch control system (Sec. 17).

The solver is based on a micromagnetic code that Mike Donahue and Bob McMichael
had previously developed. It utilizes a heavily damped Landau-Lifshitz ODE solver to relax
3D spins on a 2D mesh of square cells, using FFT’s to compute the self-magnetostatic
(demag) field. Anisotropy, applied field, and initial magnetization can be varied pointwise,
and arbitrarily shaped elements can be modeled. We are currently working on a full 3D
version of this code suitable for modeling layered materials.

1http://math.nist.gov/oommf/
2http://math.nist.gov/oommf/software.html

1

http://www.itl.nist.gov/
http://www.itl.nist.gov/
http://www.nist.gov/
http://math.nist.gov/~{}MDonahue
http://math.nist.gov/~{}DPorter
http://math.nist.gov/oommf/mmdisp/mmdisp.html
http://math.nist.gov/~{}MDonahue
mailto:rmcmichael@nist.gov
http://math.nist.gov/oommf/
http://math.nist.gov/oommf/software.html

If you want to receive e-mail notification of updates to this project, register your e-mail
address with the “µMAG Announcement” mailing list:

http://www.ctcms.nist.gov/˜rdm/email-list.html.

The OOMMF developers are always interested in your comments about OOMMF. See
the Credits (Sec. 21) for instructions on how to contact them.

2

http://www.ctcms.nist.gov/~{}rdm/email-list.html

2 Installation

2.1 Requirements

OOMMF software is written in C++ and Tcl. It uses the Tcl-based Tk Windowing Toolkit
to create graphical user interfaces that are portable to many varieties of Unix as well as
Microsoft Windows 95/98/NT.

Tcl and Tk must be installed before installing OOMMF. Tcl and Tk are available for free
download 3 from the Tcl Developer Xchange4 hosted by Ajuba Solutions5 . We recommend
the latest stable versions of Tcl and Tk concurrent with this release of OOMMF. OOMMF
requires at least Tcl version 7.5 and Tk version 4.1 on Unix platforms, and requires at least
Tcl version 7.6 and Tk version 4.2 on Microsoft Windows platforms. OOMMF software does
not support any alpha or beta versions of Tcl/Tk, and each release of OOMMF may not
work with later releases of Tcl/Tk. Check the release dates of both OOMMF and Tcl/Tk
to ensure compatibility.

A Tcl/Tk installation includes two shell programs. The names of these programs may
vary depending on the Tcl/Tk version and the type of platform. The first shell program
contains an interpreter for the base Tcl language. In the OOMMF documentation we refer
to this program as tclsh. The second shell program contains an interpreter for the base
Tcl language extended by the Tcl commands supplied by the Tk toolkit. In the OOMMF
documentation we refer to this program as wish. Consult your Tcl/Tk documentation to
determine the actual names of these programs on your platform (for example, tclsh80.exe
or wish4.2).

OOMMF applications communicate via TCP/IP network sockets. This means that
OOMMF requires support for networking, even on a stand-alone machine. At a minimum,
OOMMF must be able to access the loopback interface so that the host can talk to itself
using TCP/IP.

OOMMF applications that use Tk require a windowing system and a valid display. On
Unix systems, this means that an X server must be running. If you need to run OOMMF
applications on a Unix system without display hardware or software, you may need to start
the application with command line option -tk 0 (see Sec. 5) or use the Xvfb6 virtual frame
buffer to stand in for them.

The OOMMF source distribution unpacks into a directory tree containing about 500
files and directories, occupying about 7 MB of storage. Compiling and linking for each

3http://dev.scriptics.com/software/tcltk/choose.html
4http://dev.scriptics.com/
5http://www.ajubasolutions.com/
6http://www.sunworld.com/sunworldonline/swol-03-2000/swol-03-xvfb.html

3

http://dev.scriptics.com/software/tcltk/choose.html
http://dev.scriptics.com/
http://www.ajubasolutions.com/
http://www.sunworld.com/sunworldonline/swol-03-2000/swol-03-xvfb.html

platform consumes approximately an additional 7 MB of storage. The OOMMF distribution
containing Windows executables unpacks into a directory tree occupying about 8 MB of
storage. Note: On a non-compressed FAT16 file system on a large disk, OOMMF may
take up much more disk space. This is because on such systems, the minimum size of any
file is large, as much as 32 KB. Since this is much larger than many files in the OOMMF
distribution require, a great deal of disk space is wasted.

To build OOMMF software from source code, you will need a C++ compiler capable
of handling C++ templates, C++ exceptions, and (for the OOMMF eXtensible Solver) the
C++ Standard Template Library. You will need other software development utilities for your
platform as well. We do development and test builds on the following platforms, although
porting to others should not be difficult:

Platform Compilers
AIX VisualAge C++ (xlC), Gnu gcc
Alpha/Compaq Tru64 UNIX Compaq C++, Gnu gcc
Alpha/Linux Compaq C++, Gnu gcc
Alpha/Windows NT Microsoft Visual C++
HP-UX aC++
Intel/Linux Gnu gcc
Intel/Windows NT, 95, 98 Microsoft Visual C++,

Cygwin gcc, Borland C++
MIPS/IRIX 6 (SGI) MIPSpro C++, Gnu gcc
SPARC/Solaris Sun Workshop C++, Gnu gcc

System Notes:

Windows Versions of the Microsoft Visual C++ compiler earlier than 5.0 will not build
the OXS (3D) solver.

HP-UX The older HP cfront compiler will not build the OXS (3D) solver.

2.2 Basic Installation

Follow the instructions in the following sections, in order, to prepare OOMMF software for
use on your computer.

4

2.2.1 Download

The latest release of the OOMMF software may be retrieved from the OOMMF down-
load page7. Each release is available in two formats. The first format is a gzipped tar
file containing an archive of all the OOMMF source code. The second format is a .zip

compressed archive containing source code and pre-compiled executables for Microsoft Win-
dows 95/98/NT running on an x86-based microprocessor system. Each Windows binary
distribution is compatible with only a particular sequence of releases of Tcl/Tk. We release
one Windows binary distribution compatible with Tcl/Tk 8.0.x, one Windows binary dis-
tribution compatible with Tcl/Tk 8.2.x, and one Windows binary distribution compatible
with Tcl/Tk 8.3.x. Other release formats, e.g., pre-compiled executables for Microsoft Win-
dows NT running on a Compaq Alpha Systems RISC-based microprocessor system, and/or
compatible with Tcl/Tk version 7.6/4.2 or Tcl/Tk 8.1.x. may be made available on request.

For the first format, unpack the distribution archive using gunzip and tar:

gunzip -c oommf11b0_20000404.tar.gz | tar xvf -

For the other format(s), you will need a utility program to unpack the .zip archive. This
program must preserve the directory structure of the files in the archive, and it must be able
to generate files with names not limited to the traditional MSDOS 8.3 format. Some very
old versions of the pkzip utility do not have these properties. One utility program which is
known to work is UnZip8. Using your utility, unpack the .zip archive, e.g.

unzip oommf11b0_20000404.zip

For either distribution format, the unpacking sequence creates a subdirectory oommf

which contains all the files and directories of the OOMMF distribution. If a subdirectory
named oommf already existed (say, from an earlier OOMMF release), then files in the new
distribution overwrite those of the same name already on the disk. Some care may be needed
in that circumstance to be sure that the resulting mix of files from an old and a new OOMMF
distribution combine to create a working set of files.

2.2.2 Check Your Platform Configuration

After downloading and unpacking the OOMMF software distribution, all the OOMMF soft-
ware is contained in a subdirectory named oommf. Start a command line interface (a shell
on Unix, or the MS-DOS Prompt on Microsoft Windows), and change the working direc-
tory to the directory oommf. Find the Tcl shell program installed as part of your Tcl/Tk

7http://math.nist.gov/oommf/software.html
8http://ftp.freesoftware.com/pub/infozip/UnZip.html

5

http://math.nist.gov/oommf/software.html
http://ftp.freesoftware.com/pub/infozip/UnZip.html

installation. In this manual we call the Tcl shell program tclsh, but the actual name of the
executable depends on the release of Tcl/Tk and your platform type. Consult your Tcl/Tk
documentation.

In the root directory of the OOMMF distribution is a file named oommf.tcl. It is the
bootstrap application (Sec. 5) which is used to launch all OOMMF software. With the
command line argument +platform, it will print a summary of your platform configuration
when it is evaluated by tclsh. This summary describes your platform type, your C++
compiler, and your Tcl/Tk installation. As an example, here is the typical output on a
Linux/Alpha system:

$ tclsh oommf.tcl +platform

<24537> oommf.tcl 1.2.0.1 info:

OOMMF release 1.2.0.1

Platform Name: linalp

Tcl name for OS: Linux 2.2.16-3

C++ compiler: /usr/bin/g++

Tcl configuration file: /usr/local/lib/tclConfig.sh

tclsh: /usr/local/bin/tclsh8.3

Tcl release: 8.3.2 (config) 8.3.2 (running)

Tk configuration file: /usr/local/lib/tkConfig.sh

wish: /usr/local/bin/wish8.3

Tk release: 8.3.2 (config) 8.3.2 (running)

If oommf.tcl +platform doesn’t print a summary like that, it should instead print an
error message describing why it can’t. For example, if your Tcl installation is older than
release 7.5, the error message will report that fact. Follow whatever instructions are provided
to get oommf.tcl +platform to print a summary of platform configuration information.

The first line of the example summary reports that OOMMF recognizes the platform
by the name linalp. OOMMF software recognizes many of the most popular computing
platforms, and assigns each a platform name. The platform name is used by OOMMF in
index and configuration files and to name directories so that a single OOMMF installation
can support multiple platform types. If oommf.tcl +platform reports the platform name
to be “unknown”, then you will need to add some configuration files to help OOMMF assign
a name to your platform type, and associate with that name some of the key features of your
computer. See the section on “Managing OOMMF platform names” (Sec. 2.3.3) for further
instructions.

The second line reports what C++ compiler will be used to build OOMMF from its
C++ source code. If you downloaded an OOMMF release with pre-compiled binaries for
your platform, you may ignore this line. Otherwise, if this line reports “none selected”, or if

6

it reports a compiler other than the one you wish to use, then you will need to tell OOMMF
what compiler to use. To do that, you must edit the appropriate configuration file for your
platform. Continuing the example above, one would edit the file config/cache/linalp.tcl.
Editing instructions are contained within the file. On other platforms the name linalp in
config/cache/linalp.tcl should be replaced with the platform name OOMMF reports
for your platform. For example, on a Windows machine using an x86 processor, the corre-
sponding configuration file is config/cache/wintel.tcl.

The next three lines describe the Tcl configuration OOMMF finds on your platform. The
first line reports the name of the configuration file installed as part of Tcl, if any. Conven-
tional Tcl installations on Unix systems and within the Cygwin environment on Windows
have such a file, usually named tclConfig.sh. The Tcl configuration file records details
about how Tcl was built and where it was installed. On Windows platforms, this infor-
mation is recorded in the Windows registry, so it is normal to have oommf.tcl +platform

report “none found”. If oommf.tcl +platform reports “none found”, but you know that
an appropriate Tcl configuration file is present on your system, you can tell OOMMF where
to find the file by setting the environment variable OOMMF TCL CONFIG to its absolute
location. (For information about setting environment variables, see your operating system
documentation.) In unusual circumstances, OOMMF may find a Tcl configuration file which
doesn’t correctly describe your Tcl installation. In that case, use the environment variable
OOMMF TCL CONFIG to instruct OOMMF to use a different file that you specify, and
edit that file to include a correct description of your Tcl installation.

The second line describing your Tcl installation reports the absolute pathname of the
tclsh program. If this differs from the tclsh you used to evaluate oommf.tcl +platform,
there may be something wrong with your Tcl configuration file. Note that the same tclsh

program might be known by several absolute pathnames if there are symbolic links in your
Tcl installation. If oommf.tcl +platform reports that it cannot find a tclsh program,
yet you know where an appropriate one is installed on your system, you can tell OOMMF
where to find the tclsh program by setting the environment variable OOMMF TCLSH to
its absolute location.

The third line describing your Tcl installation reports its release number according to
two sources. First is the release number recorded in the Tcl configuration file. Second is
the release number of the tclsh program used to evaluate oommf.tcl +platform. If these
numbers do not match, it may indicate something is wrong with your Tcl configuration
file. If you have multiple releases of Tcl installed under a common root directory on your
computer, there can be only one Tcl configuration file. It is important that you use the Tcl
release that corresponds to the Tcl configuration file.

The next three lines describe the Tk configuration OOMMF finds on your platform. They
are analogous to the three lines describing the Tcl configuration. The environment variables

7

OOMMF TK CONFIG and OOMMF WISH may be used to tell OOMMF where to find the
Tk configuration file and the wish program, respectively.

Finally, the output of oommf.tcl +platform may include warnings about possible prob-
lems with your Tcl/Tk installation. For example, if you are missing important header files,
or if your Tcl/Tk installation is thread-enabled (which OOMMF does not support).

If oommf.tcl +platform indicates problems with your Tcl/Tk installation, it may be
easiest to re-install Tcl/Tk taking care to perform a conventional installation. OOMMF
deals best with conventional Tcl/Tk installations. If you do not have the power to re-install
an existing broken Tcl/Tk installation (perhaps you are not the sysadmin of your machine),
you might still install your own copy of Tcl/Tk in your own user space. In that case, if your
private Tcl/Tk installation makes use of shared libraries, take care that you do whatever is
necessary on your platform to be sure that your private tclsh and wish find and use your
private shared libraries instead of those from the system Tcl/Tk installation. This might
involve setting an environment variable (such as LD LIBRARY PATH). If you use a private
Tcl/Tk installation, you also want to be sure that there are no environment variables like
TCL LIBRARY or TK LIBRARY that still refer to the system Tcl/Tk installation.

Other Configuration Issues If you plan to compile and link OOMMF software from
source code, be sure the C++ compiler reported by oommf.tcl +platform is properly con-
figured. In particular, the Microsoft Visual C++ command line compiler, cl.exe, may
require the running of vcvars32.bat to set up the path and some environment variables.
This file is distributed as part of Visual C++. See your compiler documentation for details.

A few other configurations should be checked on Windows platforms. First, note that
absolute filenames on Windows makes use of the backslash (\) to separate directory names.
On Unix and within Tcl the forward slash (/) is used to separate directory names in an
absolute filename. In this manual we usually use the Tcl convention of forward slash as
separator. In portions of the manual pertaining only to MS Windows we use the backslash
as separator. There may be instructions in this manual which do not work exactly as written
on Windows platforms. You may need to replace forward slashes with backward slashes in
pathnames when working on Windows.

OOMMF software needs networking support that recognizes the host name localhost.
It may be necessary to edit a file which records that localhost is a synonym for the loop-
back interface (127.0.0.1). If a file named hosts exists in your system area (for example,
C:\Windows\hosts), be sure it includes an entry mapping 127.0.0.1 to localhost. If no
hosts file exists, but a hosts.sam file exists, make a copy of hosts.sam with the name
hosts, and edit the copy to have the localhost entry.

8

In recent releases of Tcl/Tk (version 8.0.3 and later) the directory which holds the tclsh

and wish programs also holds several *.dll files that OOMMF software needs to find to
run properly. Normally when the OOMMF bootstrap application (Sec. 5) or mmLaunch
(Sec. 6) is used to launch OOMMF programs, they take care of making sure the necessary
*.dll files can be found. As an additional measure, you might want to add the directory
which holds the tclsh and wish programs to the list of directories stored in the PATH
environment variable. All the directories in the PATH are searched for *.dll files needed
when starting an executable.

2.2.3 Compiling and Linking

If you downloaded a distribution with pre-compiled executables, you may skip this section.
The compiling and linking of the C++ portions of OOMMF software are guided by the

application pimake (Sec. 16.8) (“Platform Independent Make”) which is distributed as part
of the OOMMF release. To begin building OOMMF software with pimake, first change your
working directory to the root directory of the OOMMF distribution:

cd .../path/to/oommf

If you unpacked the new OOMMF release into a directory oommf which contained an
earlier OOMMF release, use pimake to build the target upgrade to clear away any source
code files which were in a former distribution but are not part of the latest distribution:

tclsh oommf.tcl pimake upgrade

Next, build the target distclean to clear away any old executables and object files which
are left behind from the compilation of the previous distribution:

tclsh oommf.tcl pimake distclean

Next, to build all the OOMMF software, run pimake without specifying a target:

tclsh oommf.tcl pimake

Note that on some platforms, you cannot successfully compile OOMMF software if there are
OOMMF programs running. Check that all OOMMF programs have terminated (including
those in the background) before trying to compile and link OOMMF.

When pimake calls on a compiler or other software development utility, the command line
is printed, so that you may monitor the build process. Assuming a proper configuration for
your platform, pimake should be able to compile and link all the OOMMF software without
error. If pimake reports errors, please first consult Troubleshooting (Sec. 19) to see if a fix
is already documented. If not, please send both the complete output from pimake and the
output from oommf.tcl +platform to the OOMMF developers when you e-mail to ask for
help.

9

2.2.4 Installing

The current OOMMF release does not support an installation procedure. For now, simply
run the executables from the directories in which they were unpacked/built.

2.2.5 Using OOMMF Software

To start using OOMMF software, run the OOMMF bootstrap application (Sec. 5). This
may be launched from the command line interface:

tclsh oommf.tcl

If you prefer, you may launch the OOMMF bootstrap application oommf.tcl using what-
ever graphical “point and click” interface your operating system provides. By default, the
OOMMF bootstrap application will start up a copy of the OOMMF application mmLaunch
(Sec. 6) in a new window.

2.2.6 Reporting Problems

If you encounter problems when installing or using OOMMF, please report them to the
OOMMF developers. See Troubleshooting (Sec. 19) for detailed instructions.

2.3 Advanced Installation

The following sections provide instructions for some additional installation options.

2.3.1 Reducing Disk Space Usage

To delete the intermediate files created when building the OOMMF software from source
code, use pimake (Sec. 16.8) to build the target objclean in the root directory of the
OOMMF distribution.

tclsh oommf.tcl pimake objclean

Running the strip utility on the OOMMF executable files should also reduce their size
somewhat.

10

2.3.2 Local Customizations

OOMMF software supports local customization of some of its features. All OOMMF pro-
grams load the file config/options.tcl, which contains customization commands as well
as editing instructions. As it is distributed, config/options.tcl directs those programs
that load it to also load the file config/local/options.tcl, if it exists. Because future
OOMMF releases may overwrite the file config/options.tcl, permanent customizations
should be made by copying config/options.tcl to config/local/options.tcl and edit-
ing the copy. It is recommended that you leave in the file config/local/options.tcl only
the customization commands necessary to change those options you wish to modify. Remove
all other options so that overwrites by subsequent OOMMF releases are allowed to change
the default behavior.

Notable available customizations include the choice of which network port the host service
directory application (Sec. 4) uses, and the choice of what program is used for the display of
help documentation. By default, OOMMF software uses the application mmHelp (Sec. 15),
which is included in the OOMMF release, but the help documentation files are standard
HTML, so any web browser (for example, Netscape Navigator or Microsoft Internet Explorer)
may be used instead. Complete instructions are in the file config/options.tcl.

2.3.3 Managing OOMMF Platform Names

OOMMF software classifies computing platforms into different types using the scripts in the
directory config/names relative to the root directory of the OOMMF distribution. Each
type of computing platform is assigned a unique name. These names are used as directory
names and in index and configuration files so that a single OOMMF installation may contain
platform-dependent sections for many different types of computing platforms.

To learn what name OOMMF software uses to refer to your computing platform, run

tclsh oommf.tcl +platform

in the OOMMF root directory.

Changing the name OOMMF assigns to your platform First, use pimake (Sec. 16.8)
to build the target distclean to clear away any compiled executables built using the old
platform name.

tclsh oommf.tcl pimake distclean

Then, to change the name OOMMF software uses to describe your platform from foo to
bar, simply rename the file

11

config/names/foo.tcl to config/names/bar.tcl

and

config/cache/foo.tcl to config/cache/bar.tcl.

After renaming your platform type, you should recompile your executables using the new
platform name.

Adding a new platform type If oommf.tcl +platform reports the platform name
unknown, then none of the scripts in config/names/ recognizes your platform type. As
an example, to add the platform name foo to OOMMF’s vocabulary of platform names,
create the file config/names/foo.tcl. The simplest way to proceed is to copy an existing
file in the directory config/names and edit it to recognize your platform.

The files in config/names include Tcl code like this:

Oc_Config New _ \

[string tolower [file rootname [file tail [info script]]]] {

In this block place the body of a Tcl proc which returns 1

if the machine on which the proc is executed is of the

platform type identified by this file, and which returns 0

otherwise.

#

The usual Tcl language mechanism for discovering details

about the machine on which the proc is running is to

consult the global Tcl variable ’tcl_platform’. See the

existing files for examples, or contact the OOMMF

developers for further assistance.

}

After creating the new platform name file config/names/foo.tcl, you also need to
create a new platform cache file config/cache/foo.tcl. A reasonable starting point is to
copy the file config/cache/unknown.tcl for editing. Contact the OOMMF developers for
assistance.

Please consider contributing your new platform recognition and configuration files to the
OOMMF developers for inclusion in future releases of OOMMF software.

12

Resolving platform name conflicts If the script oommf.tcl +platform reports “Mul-
tiple platform names are compatible with your computer”, then there are multiple files in the
directory config/names/ that return 1 when run on your computer. For each compatible
platform name reported, edit the corresponding file in config/names/ so that only one of
them returns 1. Experimenting using tclsh to probe the Tcl variable tcl platform should
assist you in this task. If that fails, you can explicitly assign a platform type corresponding
to your computing platform by matching its hostname. For example, if your machine’s host
name is foo.bar.net:

Oc_Config New _ \

[string tolower [file rootname [file tail [info script]]]] {

if {[string match foo.bar.net [info hostname]]} {

return 1

}

Continue with other tests...

}

Contact the OOMMF developers if you need further assistance.

2.3.4 Microsoft Windows Options

This section lists installation options for Microsoft Windows.

Adding an OOMMF shortcut to your desktop Right mouse click on the desktop
to bring up the configuration dialog, and select New|Shortcut. Enter the command line
necessary to bring up OOMMF, e.g.,

tclsh83 c:\oommf\oommf.tcl

Click Next> and enter OOMMF for the shortcut name. Select Finish.
At this point the shortcut will appear on your desktop with either the tclsh or wish icons.

Right mouse click on the icon and select Properties. Select the ShortCut tab, and bring up
Change Icon. . . Under File Name: enter the OOMMF icon file, e.g.,

C:\oommf\oommf.ico

Click OK. Back on the Shortcut tab, change the Run: selection to Minimized. Click OK
to exit the Properties dialog box. Double clicking on the OOMMF icon should now bring
up the OOMMF application mmLaunch.

13

Using the Cygwin toolkit The Cygwin Project9 is a free port of the GNU development
environment to Windows NT, 95, and 98, which includes the GNU C++ compiler gcc and
a port of Tcl/Tk. OOMMF has been tested against the Beta 20.1 release of Cygwin, and
sample config/names/cygtel.tcl and config/cache/cygtel.tcl files are included in the
OOMMF distribution. Use the cygtclsh80.exe program as your tclsh program when
configuring, building, and launching OOMMF software.

Note that OOMMF software determines whether it is running with the Cygwin versions
of Tcl/Tk by examining the environment variables OSTYPE and TERM. If either is set to
a value beginning with cygwin, the Cygwin environment is assumed. If you are using the
Cygwin environment with a different values for both OSTYPE and TERM, you will have to
modify config/names/cygtel.tcl accordingly.

Using Borland C++ OOMMF has been successfully built and tested using the Bor-
land C++ command line compiler10 version 5.5. However, a couple preparatory steps are
necessary before building OOMMF with this compiler.

1. Create Borland compatible Tcl and Tk libraries.

The import libraries distributed with Tcl/Tk, release 8.0.3 and later, are not compat-
ible with the Borland C++ linker. However, the command line utility implib can
be used to create suitable libraries from the Tcl/Tk DLL’s. In the Tcl/Tk library
directory (typically "C:/Program Files/Tcl/lib"), issue a command of the form

implib -a tcl83bc.lib ..\bin\tcl83.dll

to create the Borland compatible import library tcl83bc.lib. Repeat with “tk”
in place of “tcl” to create tk83bc.lib. The “-a” switch requests implib to add a
leading underscore to function names. This is sufficient for the DLL’s shipped with
Tcl/Tk 8.3, but other releases may require some additional tweaking. You can use the
Borland command line tool impdef to create a module definition file from each DLL,
add leading underscores manually as needed, and add the module definition file to the
implib command line.

2. Edit config/cache/wintel.tcl.

At a minimum, you will have to change the program compiler c++ value to point to the
Borland C++ compiler. The sample wintel.tcl cache file assumes the librarian tlib

and the linker ilink32 are in the execution path, and that the Borland compatible

9http://sourceware.cygnus.com/cygwin/
10http://www.inprise.com/bcppbuilder/freecompiler/

14

http://sourceware.cygnus.com/cygwin/
http://www.inprise.com/bcppbuilder/freecompiler/

import libraries made above are in the Tcl/Tk library directory. If this is not the case
then you will have to make the appropriate additional modifications. (Depending on
your linker, you may need to add the “-o” switch to the linker command, to force
ordinal usage of the Borland compatible Tcl/Tk libraries produced in the previous
step.)

After this, continue with the instructions in Sec. 2.2.3, Compiling and Linking.

Setting the TCL LIBRARY environment variable If you encounter difficulties dur-
ing OOMMF start up, you may need to set the environment variable TCL LIBRARY.

On Windows NT Bring up the Control Panel (e.g., by selecting Settings|Control
Panel off the Start menu), and select System. Go to the Environment tab, and enter
TCL LIBRARY as the Variable, and the name of the directory containing init.tcl for the
Value, e.g.,

%SystemDrive%\Program Files\Tcl\lib\tcl8.0

Click Set and OK to finish.

On Windows 95 Edit the file autoexec.bat. Add a line such as the following:

set TCL_LIBRARY=C:\Program Files\Tcl\lib\tcl8.0

Checking .tcl file association on Windows NT As part of the Tcl/Tk installation,
files with the .tcl extension are normally associated with the wish application. This allows
Tcl scripts to be launched from Windows Explorer by double-clicking on their icon, or from
the NT command line without specifying the tclsh or wish shells. If this is not working,
you may check your installation from the NT command line as follows. First, run the
command assoc .tcl. This should return the file type associated with the .tcl extension,
e.g., TclScript. Next, use the ftype command to check the command line associated with
that file type, e.g.,

C:\> ftype TclScript

"C:\Program Files\Tcl\bin\wish83.exe" "%1" %2 %3 %4 %5 %6 %7 %8 %9

Note that the quotes are required as shown to protect spaces in pathnames.

15

3 Quick Start: Example OOMMF Session

STEP 1: Start up the mmLaunch window.

• At the command prompt, when you are in the OOMMF root directory, type

tclsh oommf.tcl

(The name of the Tcl shell, rendered here as tclsh, may vary between systems. This
matter is discussed in Sec. 2.1.) Alternatively, you may launch oommf.tcl using what-
ever “point and click” interface is provided by your operating system.

• This will bring up a small window labeled mmLaunch. It will come up in background
mode, so you will get another prompt in your original window, even before the mm-
Launch window appears.

STEP 2: Gain access to other useful windows.

• On mmLaunch window, check the localhost box, causing a menu of user account boxes
to appear. Then check the box corresponding to the account you want to compute on.
This gives a menu of options:

– mmProbEd: to grab/modify a problem

– mmSolve2D: to control the solver

– mmDisp: to display vector fields

– mmGraph: to form x-y plots

– mmDataTable: to display current values of variables

– mmArchive: to auto-save vector field data (primitive)

• Click on mmDisp, mmGraph, and/or mmDataTable, depending on what form of
output you want.

STEP 3: Load a problem.

• On mmLaunch window, click on the mmProbEd button.

• On mmProbEd window, make menu selection File|Open. . . An Open File dialog
window will appear.

• On this window:

– Double click in the Path subwindow to change directories. Several sample problems
can be found in the directory oommf/app/mmpe/examples.

16

– To load a problem, double click on a *.mif file (e.g., prob1.mif) from the list above
the Filter: subwindow.

– Modify the problem as desired by clicking on buttons from the main mmProbEd
window (e.g., Material Parameters), and fill out the pop-up forms. A completely
new problem may be defined this way.

STEP 4: Initialize the solver.

• On mmLaunch window, click on the mmSolve2D button to launch an instance of the
program mmSolve2D.

• Wait for the new solver instance to appear in the Threads column in the mmLaunch
window.

• Check the box next to the mmSolve2D entry in the Threads column. A window
containing an mmSolve2D interface will appear.

• On mmSolve2D window:

– Check Problem Description under Inputs.

– Check mmProbEd under Source Threads.

– Click LoadProblem.

– A status line will indicate the problem is loading.

– When the problem is fully loaded, more buttons appear.

– Check Scheduled Outputs.

– For each desired output (TotalField, Magnetization, and/or DataTable), specify
the frequency of update:

∗ Check desired output. This will exhibit the possible output destinations in Des-
tination Threads. Output applications such as mmDisp, mmGraph, and/or
mmDataTable must be running to appear in this list.

∗ Check the box next to the desired Destination Thread. This will exhibit Sched-
ule options.

∗ Choose a schedule:

· Iteration: fill in number and check the box.

· ControlPoint: fill in number and check the box.

· Interactive: whenever you click corresponding Interactive output button.

STEP 5: Start the calculation.

• On the mmSolve2D window, start the calculation with Run or Relax.

17

• If you requested mmDataTable output, check the boxes for the desired quantities on the
mmDataTable window under the Data menu, so that they appear and are updated
as requested in your schedule.

• Similarly, check the box for the desired X, Y1, and Y2 variables on the mmGraph
window(s) under the X, Y1 and Y2 menus.

STEP 6: Saving results.

• Vector field data (magnetization and effective field) may be interactively written to disk
using mmDisp, or may be automatically saved via scheduled output to mmArchive.
For example, to save the magnetization state at each control point, start up an instance
of mmArchive and select the ControlPoint check box for mmArchive on the Mag-
netization schedule in the solver. This may be done before starting the calculation.
(Control points are points in the simulation where the applied field is stepped. These
are typically equilibrium states, but depending on the input *.mif file, may be triggered
by elapsed simulation time or iteration count.)

• DataTable data may be saved using mmGraph. Schedule output from the solver to
mmGraph as desired, and use either the interactive or automated save functionality of
mmGraph (Sec. 12). You can setup the solver data scheduling before the calculation is
started, but must wait for the first data point to configure mmGraph before saving any
data. As a workaround, you may configure mmGraph by sending it the initial solver
state interactively, and then use the Options|clear Data menu item in mmGraph to
remove the initializing data point. Alternatively, you may send scheduled output from
the solver to mmArchive, which will automatically save all the data it receives.

STEP 7: Perform midcourse controls as desired.

• On the mmSolve2D window, buttons can stop and restart the calculation:

– Reset: Return to beginning of problem.

– LoadProblem: Restart with a new problem.

– Run: Apply a sequence of fields until all complete.

– Relax: Run the ODE at the current applied field until the next control point is
reached.

– Pause: Click anytime to stop the solver. Restart with Run or Relax.

– Field-: Apply the previous field again.

– Field+: Apply the next field in the list.

• Output options can be changed and new output windows opened.

18

STEP 8: Exit OOMMF.

• On the mmSolve2D window, terminate the simulation with Exit.

• Terminate each mmArchive instance by hitting the Exit button in its user interface
window.

• Use the File|Exit menu on each remaining window to exit.

19

4 OOMMF Architecture Overview

Before describing each of the applications which comprise the OOMMF software, it is helpful
to understand how these applications work together. OOMMF is not structured as a single
program. Instead it is a collection of programs, each specializing in some task needed as
part of a micromagnetic simulation system. An advantage of this modular architecture is
that each program may be improved or even replaced without a need to redesign the entire
system. Because the state of the art in micromagnetic simulation is continuing to evolve,
this flexibility is essential for the longevity of a micromagnetic simulation system.

The OOMMF programs work together by providing services to one another. The pro-
grams communicate over Internet (TCP/IP) connections, even when the programs are run-
ning on a common host. An advantage of this design is that distributed operation of OOMMF
programs over a networked collection of hosts is supported in the basic design, and will be
available in a future release.

When two OOMMF applications are in the relationship that one is requesting a service
from the other, it is convenient to introduce some clarifying terminology. Let us refer to
the application that is providing a service as the “server application” and the application
requesting the service as the “client application.” Note that a single application can be both
a server application in one service relationship and a client application in another service
relationship.

Each server application provides its services on a particular Internet port, and needs to
inform potential client applications how to obtain its service. Each client application needs
to be able to look up possible providers of the service it needs. The intermediary which
brings server applications and client applications together is another application called the
“account service directory.” There may be at most one account service directory application
running under the user ID of each user account on a host. Each account service directory
keeps track of all the services provided by OOMMF server applications running under its
user account on its host and the corresponding Internet ports at which those services may be
obtained. OOMMF server applications register their services with the corresponding account
service directory application. OOMMF client applications look up service providers running
under a particular user ID in the corresponding account server directory application.

The account service directory applications simplify the problem of matching servers and
clients, but they do not completely solve it. OOMMF applications still need a mechanism
to find out how to obtain the service of the account service directory applications! Another
application, called the “host service directory” serves this function. Only one copy of the
host service directory application runs on each host. Its sole purpose is to tell OOMMF
applications where to obtain the services of account service directories on that host. Because
only one copy of this application runs per host, it can provide its service on a well-known

20

port which is configured into the OOMMF software. By default, this is port 15136. OOMMF
software can be customized (Sec. 2.3.2) to use a different port number.

The account service directory applications perform another task as well. They launch
other programs under the user ID for which they manage service registration. The user
controls the launching of programs through the interface provided by the application mm-
Launch (See Sec. 6), but it is the account service directory application that actually spawns
a subprocess for the new application. Because of this architecture, most OOMMF applica-
tions are launched as child processes of an account service directory application. These child
processes inherit their environment from their parent account service directory application,
including their working directory, and other key environment variables, such as DISPLAY.
Each account service directory application sets its working directory to the root directory
of the OOMMF distribution. Future releases of OOMMF software will likely be based on a
revised architecture which alleviates these restrictions.

These service directory applications are vitally important to the operation of the total
OOMMF micromagnetic simulation system. However, it would be easy to overlook them.
They act entirely “behind the scenes” without a user interface window. Furthermore, they
are never launched by the user. When any server application needs to register its service, if
it finds that these service directory applications are not running, it launches new copies of
them. In this way the user can be sure that if any OOMMF server applications are running,
then so are the service directory applications needed to direct clients to its service. After all
server applications terminate, and there are no longer any services registered with a service
directory application, it terminates as well.

In the sections which follow, the OOMMF applications are described in terms of the
services they provide and the services they require.

21

5 Command Line Launching

Some of the OOMMF applications are platform-independent Tcl scripts. Some of them
are Tcl scripts that require special platform-dependent interpreters. Others are platform-
dependent, compiled C++ applications. It is likely that some of them will change status in
later releases of OOMMF. Each of these types of application requires a different command line
for launching. Rather than require all OOMMF users to manage this complexity, we provide
a pair of programs that provide simplified interfaces for launching OOMMF applications.

The first of these is used to launch OOMMF applications from the command line. Because
its function is only to start another program, we refer to this program as the “bootstrap
application.” The bootstrap application is the Tcl script oommf.tcl. In its simplest usage,
it takes a single argument on the command line, the name of the application to launch. For
example, to launch mmGraph (Sec. 12), the command line is:

tclsh oommf.tcl mmGraph

The search for an application matching the name is case-insensitive. (Here, as elsewhere in
this document, the current working directory is assumed to be the OOMMF root directory.
For other cases, adjust the pathname as appropriate.) As discussed in Sec. 2.1, the name of
the Tcl shell, rendered here as tclsh, may vary between systems.

If no command line arguments are passed to the bootstrap application, by default it will
launch the application mmLaunch (Sec. 6).

Any command line arguments to the bootstrap application which begin with the char-
acter + modify its behavior. For a summary of all command line options recognized by the
bootstrap application, run:

tclsh oommf.tcl +help

The command line arguments +bg and +fg control how the bootstrap behaves after
launching the requested application. It can exit immediately after launching the requested
application in background mode (+bg), or it can block until the launched application ex-
its (+fg). Each application registers within the OOMMF system whether it prefers to be
launched in foreground or background mode. If neither option is requested on the command
line, the bootstrap launches the requested application in its preferred mode.

The first command line argument which does not begin with the character + is interpreted
as a specification of what application should be launched. As described above, this is usually
the simple name of an application. When a particular version of an application is required,
though, the bootstrap allows the user to include that requirement as part of the specification.
For example:

22

tclsh oommf.tcl "mmGraph 1.1"

will guarantee that the instance of the application mmGraph it launches is of at least version
1.1. If no copy of mmGraph satisfying the version requirement can be found, an error is
reported.

The rest of the command line arguments which are not recognized by the bootstrap are
passed along as arguments to the application the bootstrap launches. Since the bootstrap
recognizes command line arguments which begin with + and most other applications recognize
command line arguments which being with -, confusion about what options are provided to
what programs can be avoided. For example,

tclsh oommf.tcl +help mmGraph

prints out help information about the bootstrap and exits without launching mmGraph.
However,

tclsh oommf.tcl mmGraph -help

launches mmGraph with the command line argument -help. mmGraph then display its own
help message.

All the OOMMF applications accept the standard options listed below. Some of the
OOMMF applications accept additional arguments when launched from the command line,
as documented in the corresponding sections of this manual. When an option argument is
specified as <0|1>, 0 typically means off, no or disable, and 1 means on, yes or enable.

-version Display the version of the application and exit.

-help Display a help message and exit.

-tk <0|1> Disable or enable Tk. Tk must be enabled for an application to display graph-
ical widgets. However, when Tk is enabled, on many platforms the application is
dependent on an X Windows server. If the X Windows server dies, it will kill the
application. Long-running applications which do not inherently use display widgets
support disabling of Tk with -tk 0. Other applications which must use display wid-
gets are unable to run with the option -tk 0. To run those applications that require
-tk 1 on a Unix system with no display, one might use Xvfb 11 .

-cwd directory Set the current working directory of the application.

11http://www.sunworld.com/sunworldonline/swol-03-2000/swol-03-xvfb.html

23

http://www.sunworld.com/sunworldonline/swol-03-2000/swol-03-xvfb.html

-console Display a console widget in which Tcl commands may be interactively typed into
the application. Useful for debugging.

In addition, those applications which enable Tk accept the Tk options like -display.
See the Tk documentation.

The bootstrap application should be infrequently used by most users. The application
mmLaunch (Sec. 6) provides a more convenient graphical interface for launching applica-
tions. The main uses for the bootstrap application are launching mmLaunch, launching
pimake, launching programs which make up the OOMMF Batch System (Sec. 17) and other
programs which are inherently command line driven, and in circumstances where the user
wishes to precisely control the command line arguments passed to an OOMMF application
or the environment in which an OOMMF application runs.

Platform Issues

The Tcl script oommf.tcl begins with the lines:

#!/bin/sh

\

exec tclsh "$0" ${1+"$@"}

On most Unix platforms, if oommf.tcl is marked executable, the interpreter tclsh (on the
execution path) will be invoked to interpret the script. If the Tcl shell program cannot
be invoked by the name tclsh on your computer, edit the first lines of oommf.tcl to use
the proper name. Better still, use symbolic links or some other means to make the Tcl
shell program available by the name tclsh. The latter solution will not be undone by file
overwrites from OOMMF upgrades.

If in addition, the directory .../path/to/oommf is in the execution path, the command
line can be as simple as:

oommf.tcl appName

from any working directory.
On Windows platforms, because oommf.tcl has the file extension .tcl, it is normally

associated by Windows with the wish interpreter. The oommf.tcl script has been specially
written so that either tclsh or wish is a suitable interpreter. This means that simply
double-clicking on an icon associated with the file oommf.tcl (say, in Windows Explorer)
will launch the bootstrap application with no arguments. This will result in the default
behavior of launching the application mmLaunch, which is suitable for launching other
OOMMF applications. (If this doesn’t work, refer back to the Windows Options section in
the installation instructions, Sec. 2.3.4.)

24

6 OOMMF Launcher/Control Interface: mmLaunch

Overview

The application mmLaunch launches, monitors, and controls other OOMMF applications.
It is the OOMMF application that is most closely connected to the account service directory
and host service directory applications that run behind the scenes. It also provides user
interfaces to any applications, notably mmSolve2D (Sec. 9), that do not have their own
user interface window.

Launching

mmLaunch should be launched using the bootstrap application (Sec. 5). The command
line is

tclsh oommf.tcl mmLaunch [standard options]

Controls

Upon startup, mmLaunch displays a panel of checkbuttons, one for each host service
directory to which it is connected. In the current release of OOMMF there is only one

25

checkbutton—localhost. Future releases of mmLaunch will be able to connect to remote
hosts as well. If there is no host service directory running on the localhost when mm-
Launch is launched, mmLaunch will start one. In that circumstance, there may be some
delay before the localhost check button appears.

Toggling the localhost checkbutton toggles the display of an interface to the host service
directory. The host service directory interface consists of a row of checkbuttons, one for each
account service directory registered with the host service directory. Each checkbutton is
labeled with the user ID of the corresponding account service directory. For most users, there
will be only one checkbutton, labeled with the user’s own account ID, except on Windows,
where the dummy account ID oommf is displayed instead. If there is no account service
directory running for the account under which mmLaunch was launched, mmLaunch will
start one. In that circumstance, there may be some delay before the account checkbutton
appears.

Toggling an account checkbutton toggles the display of an interface to the corresponding
account service directory. The account service directory interface consists of two columns.
The Programs column contains buttons labeled with the names of OOMMF applications
that may be launched under the account managed by this account service directory. Clicking
on one of these buttons launches the corresponding application. Only one click is needed,
though there will be some delay before the launched application displays a window to the
user. Multiple clicks will launch multiple copies of the application. Note: The launching is
actually handled by the account service directory application (Sec. 4), which sets the initial
working directory to the OOMMF root directory.

The Threads column is a list of all the OOMMF applications currently running under
the account that are registered with the account service directory. The list includes both
the application name and an ID number by which multiple copies of the same application
may be distinguished. This ID number is also displayed in the title bar of the corresponding
application’s user interface window. When an application exits, its entry is automatically
removed from the Threads list.

Any of the running applications that do not provide their own interface window will be
displayed in the Threads list with a checkbutton. The checkbutton toggles the display of
an interface which mmLaunch provides on behalf of that application. The only OOMMF
applications currently using this service are mmSolve2D (Sec. 9), mmArchive (Sec. 14),
and batchsolve (Sec. 17.1). These interfaces are described in the documentation for the
corresponding applications.

The menu selection File|Exit terminates the mmLaunch application. The menu Help
provides the usual help facilities.

26

7 Micromagnetic Problem Editor: mmProbEd

Overview

The application mmProbEd provides a user interface for creating and editing micromag-
netic problem descriptions in the Micromagnetic Input Format (MIF) (Sec. 18.1). mm-
ProbEd also acts as a server, supplying problem descriptions to running micromagnetic
solvers.

Launching

mmProbEd may be started either by selecting the mmProbEd button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmProbEd [standard options] [-net <0|1>]

-net <0|1> Disable or enable a server which provides problem descriptions to other appli-
cations. By default, the server is enabled. When the server is disabled, mmProbEd
is only useful for editing problem descriptions and saving them to files.

27

Inputs

The menu selection File|Open... displays a dialog box for selecting a file from which to load
a MIF problem description. Several example files are included in the OOMMF release in
the directory app/mmpe/examples. At startup, mmProbEd loads the problem contained in
app/mmpe/init.mif as an initial problem. Note: When loading a file, mmProbEd discards
comments and records it does not understand. Use the FileSource application (Sec.8) to
serve unmodified problem descriptions.

Outputs

The menu selection File|Save as... displays a dialog box for selecting/entering a file in which
the problem description currently held by mmProbEd is to be saved. Because the internal
data format use by mmProbEd is an unordered array that does not include comments (or
unrecognized records), the simple operation of reading in a MIF file and then writing it back
out may alter the file.

Each instance of mmProbEd contains exactly one problem description at a time. When
the option -net 1 is active (the default), each also services requests from client applications
(typically solvers) for the problem description it contains.

Controls

The main panel in the mmProbEd window contains buttons corresponding to the sections
in a MIF problem description. Selecting a button brings up another window through which
the contents of that section of a problem description may be edited. The MIF sections and
the elements they contain are described in detail in the MIF (Sec. 18.1) documentation.
Only one editing window is displayed at a time. The windows may be navigated in order
using their Next or Previous buttons.

PLEASE NOTE: The material parameter values provided for the symbolic material types
of Iron, Nickel, etc. should not be taken as standard reference values for these materials.
These values are only approximate. They are included for convenience, and as examples
for users who wish to supply their own material types with symbolic names. To introduce
additional material types, edit the file oommf/app/mmpe/materials, appending your new
entries in the same format as the example materials.

The menu selection File|Exit terminates the mmProbEd application. The menu Help
provides the usual help facilities.

28

8 Micromagnetic Problem File Source: FileSource

Overview

The application FileSource provides the same service as mmProbEd (Sec. 7), supplying
a MIF description of a micromagnetic problem to a solver. As the MIF specification evolves,
mmProbEd may lag behind. There may be new fields in the MIF specification that mm-
ProbEd is not capable of editing, or which mmProbEd may not pass on to solvers after
loading them in from a file. To make use of such fields, a MIF file may need to be edited “by
hand” using a general purpose text editor. FileSource may then be used to supply the MIF
problem description contained in a file to a solver without danger of corrupting its contents.

Launching

FileSource must be launched from the command line. You may specify on the command
line the MIF problem description file it should serve to client applications. The command
line is

tclsh oommf.tcl FileSource [standard options] [filename]

Although FileSource does not appear on the list of Programs that mmLaunch offers
to launch, running copies do appear on the list of Threads since they do provide a service
registered with the account service directory.

Inputs

FileSource takes its MIF problem description from the file named on the command line,
or from a file selected through the File|Open dialog box. No checking of the file contents
against the MIF specification is performed. The file contents are passed uncritically to any
client application requesting a problem description. Those client applications should raise
errors when presented with invalid problem descriptions.

29

Outputs

Each instance of FileSource provides the contents of exactly one file at a time. The file
name is displayed in the FileSource window to help the user associate each instance of
FileSource with the data file it provides. Each instance of FileSource accepts and services
requests from client applications (typically solvers) for the contents of the file it exports.

The contents of the file are read at the time of the client request, so if the contents of
a file change between the time of the FileSource file selection and the arrival of a request
from a client, the new contents will be served to the client application.

Controls

The menu selection File|Exit terminates the FileSource application. The Help menu pro-
vides the usual help facilities.

30

9 The 2D Micromagnetic Solver: mmSolve2D

Overview

The application mmSolve2D is a micromagnetic computation engine capable of solving
problems defined on two-dimensional square grids of three-dimensional spins. Within the
OOMMF architecture (see Sec. 4), mmSolve2D is both a server and a client application.
mmSolve2D is a client of problem description server applications, data table display and
storage applications, and vector field display and storage applications. mmSolve2D is the
server of a solver control service for which the only client is mmLaunch (Sec. 6). It is
through this service that mmLaunch provides a user interface window (shown above) on
behalf of mmSolve2D.

Launching

mmSolve2D may be started either by selecting the mmSolve2D button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmSolve2D [standard options] [-restart <0|1>]

-restart <0|1> Affects the behavior of the solver when a new problem is loaded. Default
value is 0. When launched with -restart 1, the solver will look for basename.log

and basename*.omf files to restart a previous run from the last saved state (where

31

basename is the “Base Output Filename” specified in the input MIF problem specifi-
cation file (Sec. 18.1)). If these files cannot be found, then a warning is issued and the
solver falls back to the default behavior (-restart 0) of starting the problem from
scratch. The specified -restart setting holds for all problems fed to the solver, not
just the first. (There is currently no interactive way to change the value of this switch.)

Since mmSolve2D does not present any user interface window of its own, it depends on
mmLaunch to provide an interface on its behalf. The entry for an instance of mmSolve2D
in the Threads column of any running copy of mmLaunch has a checkbutton next to it.
This button toggles the presence of a user interface window through which the user may
control that instance of mmSolve2D. The user interface window is divided into panels,
providing user interfaces to the Inputs, Outputs, and Controls of mmSolve2D.

Note on Tk dependence: If a problem is loaded that uses a bitmap mask file (Sec. 18.1.1),
and if that mask file is not in the PPM P3 (text) format, then mmSolve2D will launch
any2ppm (Sec. 16.1) to convert it into the PPM P3 format. Since any2ppm requires
Tk, at the time the mask file is read a valid display must be available. See the any2ppm
documentation for details.

Inputs

The top panel of the user interface window may be opened and closed by toggling the
Inputs checkbutton. When open, the Inputs panel reveals two subpanels. The left subpanel
contains a list of the inputs required by mmSolve2D. There is only one item in the list:
ProblemDescription. When ProblemDescription is selected, the right subpanel (labeled
Source Threads) displays a list of applications that can supply a problem description. The
user selects from among the listed applications the one from which mmSolve2D should
request a problem description.

Outputs

When mmSolve2D has outputs available to be controlled, a Scheduled Outputs check-
button appears in the user interface window. Toggling the Scheduled Outputs checkbutton
causes a bottom panel to open and close in the user interface window. When open, the
Scheduled Outputs panel contains three subpanels. The Outputs subpanel is filled with a
list of the types of output mmSolve2D can generate while solving the loaded problem. The
three elements in this list are TotalField, for the output of a vector field representing the
total effective field, Magnetization, for the output of a vector field representing the current

32

magnetization state of the grid of spins, and DataTable, for the output of a table of data
values describing other quantities of interest calculated by mmSolve2D.

Upon selecting one of the output types from the Outputs subpanel, a list of applications
appears in the Destination Threads subpanel which provide a display and/or storage service
for the type of output selected. The user may select from this list those applications to which
the selected type of output should be sent.

For each application selected, a final interface is displayed in the Schedule subpanel.
Through this interface the user may set the schedule according to which the selected type
of data is sent to the selected application for display or storage. The schedule is described
relative to events in mmSolve2D. An Iteration event occurs at every step in the solution
of the ODE. A ControlPoint event occurs whenever the solver determines that a control
point specification is met. (Control point specs are discussed in the Experiment parameters
paragraph in the MIF documentation (Sec. 18.1), and are triggered by solver equilibrium,
simulation time, and iteration count conditions.) An Interactive event occurs for a partic-
ular output type whenever the corresponding “Interactive Outputs” button is clicked in the
Runtime Control panel. The Interactive schedule gives the user the ability to interactively
force data to be delivered to selected display and storage applications. For the Iteration and
ControlPoint events, the granularity of the output delivery schedule is under user control.
For example, the user may elect to send vector field data describing the current magnetiza-
tion state to an mmDisp instance for display every 25 iterations of the ODE, rather than
every iteration.

The quantities included in DataTable output produced by mmSolve2D include:

• Iteration: The iteration count of the ODE solver.

• Field Updates: The number of times the ODE solver has calculated the effective
field.

• Sim Time (ns): The elapsed simulated time.

• Time Step (ns): The interval of simulated time spanned by the last step taken in
the ODE solver.

• Step Size: The magnitude of the last step taken by the ODE solver as a normalized
value. (This is currently the time step in seconds, multiplied by the gyromagnetic ratio
times the damping coefficient times Ms.)

• Bx, By, Bz (mT): The x, y, and z components of the nominal applied field (see
Sec. 18.1.1, Experimental parameters paragraph).

33

• B (mT): The magnitude of the nominal applied field (always non-negative).

• |m x h|: The maximum of the point-wise quantity ‖M×Heff‖/M2
s over all the spins.

This “torque” value is used to test convergence to an equilibrium state (and raise
control point –torque events).

• Mx/Ms, My/Ms, Mz/Ms: The x, y, and z components of the average magnetiza-
tion of the magnetically active elements of the simulated part.

• Total Energy (J/m3): The total average energy density for the magnetically active
elements of the simulated part.

• Exchange Energy (J/m3): The component of the average energy density for the
magnetically active elements of the simulated part due to exchange interactions.

• Anisotropy Energy (J/m3): The component of the average energy density for
the magnetically active elements of the simulated part due to crystalline and surface
anisotropies.

• Demag Energy (J/m3): The component of the average energy density for the mag-
netically active elements of the simulated part due to self-demagnetizing fields.

• Zeeman Energy (J/m3): The component of average energy density for the mag-
netically active elements of the simulated part due to interaction with the applied
field.

• Max Angle: The maximum angle (in degrees) between the magnetization orientation
of any pair of neighboring spins in the grid. (The neighborhood of a spin is the same
as that defined by the exchange energy calculation.)

In addition, the solver automatically keeps a log file that records the input problem specifi-
cation and miscellaneous runtime information. The name of this log file is basename.log,
where basename is the “Base Output Filename” specified in the input problem specification.
If this file already exists, then new entries are appended to the end of the file.

Controls

The middle section of the user interface window contains a series of buttons providing user
control over the solver. After a problem description server application has been selected, the
LoadProblem button triggers a fetch of a problem description from the selected server. The
LoadProblem button may be selected at any time to (re-)load a problem description from

34

the currently selected server. After loading a new problem the solver goes automatically
into a paused state. (If no problem description server is selected when the LoadProblem
button is invoked, nothing will happen.) The Reset button operates similarly, except that
the current problem specifications are used.

Once a problem is loaded, the solver can be put into any of three states: run, relax
and pause. Selecting Relax puts the solver into the “relax” state, where it runs until a
control point is reached, after which the solver pauses. If the Relax button is reselected
after reaching a control point, then the solver will simply re-pause immediately. The Field+
or Field- button must be invoked to change the applied field state. (Field state schedules
are discussed below.) The Run selection differs in that when a control point is reached, the
solver automatically steps the nominal applied field to the next value, and continues. In
“run” mode the solver will continue to process until there are no more applied field states in
the problem description. At any time the Pause button may be selected to pause the solver.
The solver will stay in this state until the user reselects either Run or Relax. The current
state of the solver is indicated in the Status line in the center panel of the user interface
window.

The problem description (in MIF format) specifies a fixed applied field schedule (see
Sec. 18.1.1, Experimental parameters paragraph). This schedule defines an ordered list of
applied fields, which the solver in “run” mode steps through in sequence. The Field- and
Field+ buttons allow the user to interactively adjust the applied field sequence. Each click
on the Field+ button advances forward one step through the specified schedule, while Field-
reverses that process. In general, the step direction is not related to the magnitude of the
applied field. Also note that hitting these buttons does not generate a “ControlPoint” event.
In particular, if you are manually accelerating the progress of the solver through a hysteresis
loop, and want to send non-ControlPoint data to a display or archive widget before advancing
the field, then you must use the appropriate “Interactive Output” button.

The second row of buttons in the interaction control panel, TotalField, Magnetization
and DataTable, allow the user to view the current state of the solver at any time. These
buttons cause the solver to send out data of the corresponding type to all applications for
which the “Interactive” schedule button for that data type has been selected, as discussed
in the Outputs section above.

At the far right of the solver controls is the Exit button, which terminates mmSolve2D.
Simply closing the user interface window does not terminate mmSolve2D, but only closes
the user interface window. To kill the solver the Exit button must be pressed.

35

Details

Given a problem description, mmSolve2D integrates the Landau-Lifshitz equation [7, 9]

dM

dt
= −γM×Heff −

γα

Ms

M× (M×Heff) , (1)

where

M is the pointwise magnetization (A/m),

Heff is the pointwise effective field (A/m),

γ is the gyromagnetic ratio (m/(A·s)),
α is the damping coefficient (dimensionless).

The effective field is defined as

Heff = −µ−1
0

∂E

∂M
.

The average energy density E is a function of M specified by Brown’s equations [4], includ-
ing anisotropy, exchange, self-magnetostatic (demagnetization) and applied field (Zeeman)
terms.

The micromagnetic problem is impressed upon a regular 2D grid of squares, with 3D
magnetization spins positioned at the centers of the cells. Note that the constraint that the
grid be composed of square elements takes priority over the requested size of the grid. The
actual size of the grid used in the computation will be the nearest integral multiple of the
grid’s cell size to the requested size. It is important when comparing the results from grids
with different cell sizes to account for the possible change in size of the overall grid. At
present, Neumann boundary conditions are assumed.

The anisotropy and applied field energy terms are calculated assuming constant magne-
tization in each cell. The exchange energy is calculated using the eight-neighbor bilinear
interpolation described in [5]. The more common four-neighbor scheme is available as a
compile-time option. See the file app/mmsolve/magelt.cc for details.

The self-magnetostatic field is calculated as the convolution of the magnetization against a
kernel that describes the cell to cell magnetostatic interaction. The convolution is evaluated
using fast Fourier transform (FFT) techniques. Several kernels are supported; these are
selected as part of the problem description in MIF format; for details see Sec. 18.1.1: Demag
specification. Each kernel represents a different interpretation of the discrete magnetization.
The recommended model is ConstMag, which assumes the magnetization is constant in each
cell, and computes the average demagnetization field through the cell using formulae from
[12] and [2].

36

The Landau-Lifshitz ODE (1) is integrated using a second order predictor-corrector tech-
nique of the Adams type. The right side of (1) at the current and previous step is extrapo-
lated forward in a linear fashion, and is integrated across the new time interval to obtain a
quadratic prediction for M at the next time step. (At each stage the spins are renormalized
to Ms before evaluating the energy and effective fields.) The right side of (1) is evaluated
at the predicted M, which is then combined with the value at the current step to produce a
linear interpolation of dM/dt across the new interval. This is then integrated to obtain the
final estimate of M at the new step. The local (one step) error of this procedure should be
O(∆t3).

The step is accepted if the total energy of the system decreases, and the maximum error
between the predicted and final M is smaller than a nominal value. If the step is rejected,
then the step size is reduced and the integration procedure is repeated. If the step is accepted,
then the error between the predicted and final M is used to adjust the size of the next step.
No fixed ratio between the previous and current time step is assumed.

A fourth order Runge-Kutta solver is used to prime the predictor-corrector solver, and is
used as a backup in case the predictor-corrector fails to find a valid step. The Runge-Kutta
solver is not selectable as the primary solver at runtime, but may be so selected at compile
time by defining the RUNGE KUTTA ODE macro. See the file app/mmsolve/grid.cc for all
details of the integration procedure.

For a given applied field, the integration continues until a control point (cf. Experiment
parameters paragraph in Sec. 18.1) is reached. A control point event may be raised by the
ODE iteration count, elapsed simulation time, or by the maximum value of ‖M×Heff‖/M

2
s

dropping below a specified control point –torque value (implying an equilibrium state has
been reached).

Depending on the problem size, mmSolve2D can require a good deal of working memory.
The exact amount depends on a number of factors, but a reasonable estimate is 5 MB +
1500 bytes per cell. For example, a 1 µm × 1 µm part discretized with 5 nm cells will require
approximately 62 MB.

Known Bugs

mmSolve2D requires the damping coefficient to be non-zero. See the MIF documentation
(Sec. 18.1) for details on specifying the damping coefficient.

When multiple copies of mmLaunch are used, each can have its own interface to a
running copy of mmSolve2D. When the interface presented by one copy of mmLaunch
is used to set the output schedule in mmSolve2D, those settings are not reflected in the
interfaces presented by other copies of mmLaunch. For example, although the first interface
sets a schedule that DataTable data is to be sent to an instance of mmGraph every third

37

Iteration, there is no indication of that schedule presented to the user in the second interface
window. It is unusual to have more than one copy of mmLaunch running simultaneously.
However, this bug also appears when one copy of mmLaunch is used to load a problem
and start a solver, and later a second copy of mmLaunch is used to monitor the status of
that running solver.

A bug in the network traffic handling code of Tcl on Windows 95 and Windows 98 systems
can sometimes interfere with communications between the control interface of mmSolve2D
and the actual computation engine. If mmSolve2D is sending out data to two or more data
display services every iteration, the network traffic used to send out that data can “crowd
out” the receipt of control messages from the control interface. You may observe this as
a long delay between the time you click the Pause button and the time the solver stops
iterating. This bug first appeared in Tcl release 8.0.3, and remained through Tcl release
8.1.1. It is fixed in Tcl releases 8.2 and later, which we recommend for OOMMF users on
Windows 95 or Windows 98 systems. Other platforms do not have this problem.

38

10 OOMMF eXtensible Solver Interactive Interface:

oxsii

Overview

The application oxsii is a micromagnetic computation engine capable of solving problems de-
fined on three-dimensional rectangular grids of three-dimensional spins. Within the OOMMF
architecture (see Sec. 4), oxsii is both a server and a client application. oxsii is a client
of problem description server applications, data table display and storage applications, and
vector field display and storage applications. oxsii is the server of a solver control service for
which the only client is mmLaunch (Sec. 6). It is through this service that mmLaunch
provides a user interface window (shown above) on behalf of oxsii.

Launching

oxsii may be started either by selecting the oxsii button on mmLaunch, or from the command
line via

tclsh oommf.tcl oxsii [standard options]

Since oxsii does not present any user interface window of its own, it depends on mm-
Launch to provide an interface on its behalf. The entry for an instance of oxsii in the
Threads column of any running copy of mmLaunch has a checkbutton next to it. This

39

button toggles the presence of a user interface window through which the user may control
that instance of oxsii.

Inputs

Unlike mmSolve2D (Sec. 9), oxsii loads problem specifications directly from disk (via the
File|Load... menu selection), rather than through mmProbEd (Sec. 7) or FileSource
(Sec. 8). Also, input files for oxsii must be in the MIF 2.0 (Sec. 18.1.2) format, as opposed to
the older MIF 1.1 (Sec. 18.1.1) format used by the 2D solver. There are sample MIF 2.0 files
in the directory oommf/app/oxs/examples. The command line tool mifconvert (Sec. 16.7)
can be used as an aid for converting MIF 1.1 files to the MIF 2.0 format, although at present
the conversion is not complete, and some hand editing of the files will likely be necessary.
MIF files may be edited with any plain text editor.

Outputs

To send output, first highlight one of the selections under the “Output” heading in the Oxsii
interface, then make a selection under the “Destination” heading. Outputs may be scheduled
by the step, stage, or may be sent out interactively by pressing the Send button.

Controls

Awaiting Construction.

Details

Awaiting Construction.

Known Bugs

Awaiting Construction.

10.1 Standard Oxs Ext Child Classes

An OXS simulation is built as a collection of Oxs Ext (OXS Extension) objects. These are
defined via Specify blocks in the input MIF 2.0 file (Sec. 18.1.2). The reader will find the
sample file presented in Fig. 5 of that section to be a helpful adjuct to the material presented
below.

This section describes the Oxs Ext classes available in the standard OOMMF distribution,
including documentation of their Specify block initialization strings. Standard Oxs Ext

objects can be identified by the Oxs prefix in their names. Additional Oxs Ext objects may
be available on your system. Check local documentation for details.

40

For presentation purposes, the Oxs Ext classes are organized into 6 categories: regions,
meshes, energies, evolvers, drivers, and field initializers.

Regions

Regions describe geometric volumes of space. OXS recognizes “sections,” which define single
regions of space, and “atlases,” which are conceptually collections of sections. At present
only one type of each is supported:

Oxs RectangularSection: An axes parallel rectangular parallelepiped. The specify block
has the form

Specify Oxs RectangularSection:name {
xrange {xmin xmax}
yrange {ymin ymax}
zrange {zmin zmax}

}

where xmin, xmax, . . . are coordinates in meters.

Oxs SectionAtlas: An ordered list of sections. The specify block has the form

Specify Oxs SectionAtlas:name {
section-1-name {section-type {

section-initialize-block
} }
section-2-name {section-type {

section-initialize-block
} }

...

final-section-name {section-type {
section-initialize-block

} }
}

At present there is only one section type, so all the section-type fields above will be
Oxs RectangularSection.

Given a point, Oxs SectionAtlas returns the name of the first section in its list that
contains that point. The final section in the list must be sized so as to contain all the

41

preceding sections. For this reason, it is common to set final-section-name to world,
though this is not required.

Meshes

Meshes define the discretization impressed on the simulation. There should be exactly one
mesh declared in a MIF 2.0 file. The only standard mesh available at present is

Specify Oxs RectangularMesh:name {
cellsize {xstep ystep zstep}
atlas atlas reference

}

This creates an axes parallel rectangular mesh across the entire space covered by atlas reference
(i.e., the final or “world” section of the atlas). The mesh sample rates along each axis are
specified by xstep, ystep, and zstep. The mesh is cell-based, with the center of the first
cell one half step in from the minimal extremal point (xmin,ymin,ymax) specified by at-
las reference. The name is commonly set to “mesh”, so the mesh object can be referred to
by other Oxs Ext objects by the short name “:mesh”.

Energies

The following energy terms are available. There is no limitation on the number of each
specified in the input MIF file. Many of these terms have spatially varying parameters that
are initialized via Field Initializer objects embedded in their Specify initialization block.

Oxs UniaxialAnisotropy: Uniaxial magneto-crystalline anisotropy. Specify block takes
2 parameters, crystalline anisotropy constant K1 (in J/m3) and anisotropy direction
axis. The axis direction is an easy axis if K1>0, or is the normal to the easy plane
if K1 < 0. Both may be varied cellwise across the mesh. The first is initialized with
an embedded Scalar Field Initializer, and the second with an embedded Vector Field
Initializer. The axis directions should be unit vectors. The energy computed by this
term is non-negative in all cases.

Oxs CubicAnisotropy: Cubic magneto-crystalline anisotropy. Specify block takes 3 pa-
rameters, crystalline anisotropy constant K1 (in J/m3) and anisotropy directions axis1
and axis2. The axis directions are easy axes if K1>0, or hard axes if K1<0. All may
be varied cellwise across the mesh. K1 is initialized with an embedded Scalar Field
Initializer, and the axis directions embedded Vector Field Initializers. The axis di-
rections should be unit vectors. The second axis, axis2, will be adjusted if necessary

42

to be orthogonal to axis1. For each cell, if K1>0 then the computed energy will be
non-negative, else if K1<0 then the computed energy will be non-positive.

Oxs Exchange6Ngbr: Standard 6-neighbor exchange energy. The exchange energy den-
sity contribution from cell i is given by

Ei =
∑
j∈Ni

Aij
mi · (mi −mj)

∆2
ij

where Ni is the set consisting of the 6 cells nearest to cell i, Aij is the exchange
coefficient between cells i and j in J/m, and ∆ij is the discretization step size from cell
i to cell j (in meters).

The Specify block for this term has the form

Specify Oxs Exchange6Ngbr:name {
default A value
atlas atlas reference
A {

{region-1 region-1 A11 }
{region-1 region-2 A12 }
...

{region-m region-n Amn }
}

}

The A block specifies Aij values on a region by region basis, where the regions are
those declared by atlas reference. This allows for specification of A both inside a given
region (e.g., Aii) and along interfaces between regions (e.g., Aij). By symmetry, if Aij is
specified, then the same value is automatically assigned to Aji as well. The default A

value is applied to any otherwise unassigned Aij.

Oxs UniformExchange: Similar to Oxs Exchange6Ngbr, except the exchange constant A
is uniform across all space. The Specify block is very simple, consisting of the label A
and the desired exchange coefficient value in J/m. Since A is not spatially varying, it is
initialized with a simple constant, as opposed to an embedded Field Initializer object.

Oxs UZeeman: Uniform (homogeneous) applied field energy. The specify block for this
term takes an optional Hscale entry, and a required field range list Hrange. The
field range list should be a compound list, with each sublist consisting of 7 elements:

43

the first 3 denote the start field for the range, the next 3 denote the end field for the
range, and the last element specifies the number of (linear) steps through the range.
If the step count is 0, then the range consists of the start field only. If the step count
is bigger than 0, then the start field is skipped over if and only if it is the same field
that ended the previous range (if any).

The fields specified in the range entry are nominally in A/m, but these values are
multiplied by Hscale, which may be used to effectively change the units. For example,

Specify Oxs UZeeman {
Hscale 795.77472

Hrange {
{ 0 0 0 10 0 0 2 }
{ 10 0 0 0 0 0 1 }

}
}

The applied field steps between 0 mT, 5 mT, 10 mT and back to 0 mT. (Note that
795.77472=0.001/µ0.)

Oxs FixedZeeman: Non-uniform, non-time varying applied field. This can be used to
simulate a biasing field. The specify block holds one parameter, which defines the
field:

Specify Oxs FixedZeeman:name {
field { vector field initializer }

}

Oxs Demag: Standard demagnetization energy term, which is built on the assumption that
the magnetization is constant in each cell, and computes the average demagnetization
field through the cell using formulae from [2, 12] and convolution via the Fast Fourier
Transform. The Specify initialization string should be an empty string, typically
denoted by {}.

Oxs SimpleDemag: This is the same as the Oxs Demag object, except that the imple-
mentation does not use any of the of the symmetries inherent in the demagnetization
kernel, or special properties of the Fourier Transform when applied to a real (non-
complex) function. As a result, the source code for this implementation is consider-
ably simpler than for Oxs Demag, but the run time performance and memory usage
are poorer. Oxs SimpleDemag is included for validation checks, and as a base for

44

user-defined demagnetization implementations. The Specify initialization string for
Oxs SimpleDemag is the same as for Oxs Demag.

Evolvers

Evolvers are responsible for updating the magnetization configuration from one step to the
next. There is currently one evolver in the standard distribution, Oxs EulerEvolve. This
implements a simple first order forward Euler method with step size control to the Landau-
Lifshitz ODE [7, 9]:

dM

dt
= −γM×Heff −

γα

Ms

M× (M×Heff) . (2)

The Specify block takes one required parameter, alpha, which is the Landau-Lifshitz damp-
ing parameter above. There are also three optional parameters, gamma, which is the gyro-
magnetic ratio in m/(A.s), start dm, which is the size of the maximal initial step in reduced
magnetization units, i.e., radians, and do precess, which is 1 or 0 depending on whether
precession is enabled or not (respectively). The default value for gamma is 2.21 × 105, for
start dm is 0.01, and for do precess is 1.

Drivers

The driver is responsible for coordinating the action of the evolver on the simulation as a
whole. The only driver at present is Oxs StandardDriver. The specify block has the form

Specify Oxs StandardDriver:name {
evolver evolver reference
mesh mesh reference
min timestep minimum time step
max timestep maximum time step
stopping dm dt stopping criterion
number of stages stage count
stage iteration limit stage iteration count
total iteration limit total iteration count
Ms { scalar field initializer }
m0 { vector field initializer }

}

evolver should be a reference to a previously declared evolver, and mesh should be a
reference to a previously declared mesh. min timestep and max timestep are the min-

45

imum and maximum time step size allowed during Landau-Lifshitz ODE evolution, in sec-
onds. A stage is considered complete when |Ṁ/Ms| drops below stopping dm dt (in
degrees/nanosecond), or when the number of steps taken on the current problem reaches
stage iteration limit. stage iteration limit is an optional integer parameter, with default
value of 0, which is interpreted to mean no iteration limit. Similarly, a simulation as a whole
is considered complete when either the stage count reaches number of stages or the total
number of steps taken reaches total iteration limit. Both of these are optional parameters
with default value 0, meaning no limit. Ms specifies the saturation magnetization distribu-
tion, in A/m. m0 is the initial spin configuration. These should be unit vectors, specified
using an embedded vector field initializer object.

Field Initializers

Field initializers are objects that produce output (either scalar or vector) as a function
of position. These are typically used as embedded objects inside Specify blocks of other
Oxs Ext objects, to initialize spatially varying quantities, such as material parameters or
initial magnetization spin configurations. Units on the returned values will be dependent
upon the context in which they are used.

Scalar field initializer objects are documented first. Vector field initializers are considered
farther below.

Oxs UniformScalarFieldInit: Returns the same constant value regardless of the import
position. The Specify block takes one parameter, value, which is the returned con-
stant value.

Oxs AtlasScalarFieldInit: Defines values that are constant across individual regions of a
previously defined Oxs Atlas. The Specify block looks like

Specify Oxs AtlasScalarFieldInit {
atlas atlas reference
default value value
values {

{region1 name value1 }
{region2 name value2 }
...

}
}

46

The specified atlas is used to map cell locations to regions, and the corresponding value
from the values subblock is assigned to that cell. If a cell’s region is not included in
the values subblock, then the default value is used.

Oxs ScriptScalarFieldInit: Returns a value dependent on a Tcl script, which should be
defined elsewhere in the MIF file. The one Specify initialization string parameter is
script, which is the name of the associated Tcl procedure. That procedure should be
coded to take 9 arguments, the 3 coordinates of the current query position, followed by
the 3 coordinates of bounding box minimum corner point, and lastly the 3 coordinates
of bounding box maximum corner point. For example,

proc Ellipsoid { x y z xmin ymin zmin xmax ymax zmax } {

set xcenter [expr ($xmax-$xmin)/2.]

set ycenter [expr ($ymax-$ymin)/2.]

set zcenter [expr ($zmax-$zmin)/2.]

set xrad [expr $x/$xcenter -1]

set yrad [expr $y/$ycenter -1]

set zrad [expr $z/$zcenter -1]

set test [expr $xrad*$xrad+$yrad*$yrad+$zrad*$zrad]

if {$test>1.0} {return 0}

return 8.6e5

}

Specify Oxs_ScriptScalarFieldInit {

script Ellipsoid

}

This Oxs ScriptScalarFieldInit returns 8.6×105 if the import (x,y,z) lies inside the
ellipsoid inscribed inside the axes parallel parallelepiped defined by (xmin,ymin,zmin)
and (xmax,ymax,zmax), and 0 otherwise.

The available vector field initializers are:

Oxs UniformVectorFieldInit: Returns the same constant value regardless of the import
position. The Specify block takes one required parameter, vector, which is a 3-
element list of the vector to return, and one optional parameter, norm, which if
specified adjusts the size of export vector to be of the specified magnitude. For example,

Specify Oxs UniformVectorFieldInit {
norm 1

47

vector { 1 1 1 }
}

This returns the unit vector (a, a, a), where a = 1/
√

3, regardless of the import position.

Oxs AtlasVectorFieldInit: Defines vector values that are constant across individual re-
gions of a previously defined Oxs Atlas. The Specify block looks like

Specify Oxs AtlasVectorFieldInit {
atlas atlas reference
default value {vx vy vz }
values {

{region1 name v1x v1y v1z }
{region2 name v2x v2y v2z }
...

}
}

Interpretation is analogous to the Oxs AtlasScalarFieldInit specify block, except
here the values are 3 dimensional vectors rather than scalars.

Oxs ScriptVectorFieldInit: This is conceptually similar to the scalar field initializer ob-
ject, Oxs ScriptScalarFieldInit, except that the script should return a vector (as a
3 element list) rather than a scalar. In addition to the script parameter, the Specify

string for Oxs ScriptVectorFieldInit also accepts an optional parameter norm. If
specified, then the return values from the script are size adjusted to the specified mag-
nitude. The following example produces a vortex-like unit vector field, with an interior
core region pointing parallel to the z-axis.

proc Vortex { x y z xmin ymin zmin xmax ymax zmax } {

set xcenter [expr ($xmax-$xmin)/2.]

set ycenter [expr ($ymax-$ymin)/2.]

set xrad [expr $x-$xcenter]

set yrad [expr $y-$ycenter]

set normsq [expr $xrad*$xrad+$yrad*$yrad]

if {$normsq <= $xcenter*$ycenter*0.05} {return "0 0 1"}

return [list [expr -1*$yrad] $xrad 0]

}

Specify Oxs_ScriptVectorFieldInit {

48

script Vortex

norm 1

}

Oxs FileVectorFieldInit: Initializes a vector field from a file. The Specify block takes
one required parameter file, and one optional parameter norm. The file should contain
a vector field in one of the formats recognized by avf2ovf (Sec. 16.3). The file will be
scaled and sub-sampled as necessary to match the current mesh. If the norm parameter
is given, then each vector will be renormalized to the specified magnitude.

Oxs RandomVectorFieldInit: Initializes a vector field which varies spatially in a ran-
dom fashion. The Specify block takes two required parameters, min norm and
max norm. The vectors produced will have magnitude between these two specified
values. If min norm = max norm, then the samples are uniformly distributed on the
sphere of radius = min norm. Otherwise, first a uniformly distributed sample is chosen
on the unit sphere, and then the magnitude is adjusted to a size drawn uniformly from
the interval [min norm,max norm].

Oxs PlaneRandomVectorFieldInit: Similar to Oxs RandomVectorFieldInit, except that
all samples are drawn from a plane rather than 3-space. In addition to min norm and
max norm, the Specify block for Oxs PlaneRandomVectorFieldInit also requires
the parameter plane normal. This parameter takes as its value a list of 3 elements,
representing a vector orthogonal to the plane from which the random vectors are to be
drawn.

49

11 Data Table Display: mmDataTable

Overview

The application mmDataTable provides a data display service to its client applications.
It accepts data from clients and displays it in a window. Its typical use is to display the
evolving values of quantities computed by a micromagnetic solver program.

Launching

mmDataTable may be started either by selecting the mmDataTable button on mm-
Launch, or from the command line via

tclsh oommf.tcl mmDataTable [standard options] [-net <0|1>]

50

-net <0|1> Disable or enable a server which allows the data displayed by mmDataTable
to be updated by another application. By default, the server is enabled. When the
server is disabled, mmProbEd is only useful if it is embedded in another application.

Inputs

The client application(s) that send data to mmDataTable for display control the flow of
data. The user, interacting with the mmDataTable window, controls how the data is
displayed. Upon launch, mmDataTable displays only a menubar. Upon user request, a
display window below the menubar displays data values.

Each message from a client contains a list of (name, value, units) triples containing data
for display. For example, one element in the list might be {Magnetization 800000 A/m}.
mmDataTable stores the latest value it receives for each name. Earlier values are discarded
when new data arrives from a client.

Outputs

mmDataTable does not support any data output or storage facilities. To save tabular
data, use the mmGraph (Sec. 12) or mmArchive (Sec. 14) applications.

Controls

The Data menu holds a list of all the data names for which mmDataTable has received
data. Initially, mmDataTable has received no data from any clients, so this menu is empty.
As data arrives from clients, the menu fills with the list of data names. Each data name
on the list lies next to a checkbutton. When the checkbutton is toggled from off to on, the
corresponding data name and its value and units are displayed at the bottom of the display
window. When the checkbutton is toggled from on to off, the corresponding data name is
removed from the display window. In this way, the user selects from all the data received
what is to be displayed. Selecting the dashed rule at the top of the Data menu detaches it
so the user may easily click multiple checkbuttons.

Displayed data values can be individually selected (or deselected) with a left mouse button
click on the display entry. Highlighting is used to indicated which data values are currently
selected. The Options menu also contains commands to select or deselect all displayed
values. The selected values can be copied into the cut-and-paste (clipboard) buffer with the
CTRL-c key combination, or the Options|Copy menu command.

The data value selection mechanism may also be used in data value formatting con-
trol. The Options|Format menu command brings up a Format dialog box to change the

51

justification and format specification string. (The latter is the conversion string passed to
the Tcl format command, which uses the C printf format codes.) If the Adjust:Selected
radiobutton is active, then the specification will be applied to only the currently selected
(highlighted) data values. Alternately, if Adjust:All is active, then the specification will be
applied to all data values, and will additionally become the default specification.

A right mouse button click on a display entry will select that entry, and bring up the
Format with the justification and format specifications of the selected entry. These specifi-
cations, with any revisions, may then be applied to all of the selected entries.

The menu selection File|Reset reinitializes the mmDataTable application to its original
state, clearing the display and the Data menu. The menu selection File|Exit terminates the
application. The menu Help provides the usual help facilities.

52

12 Data Graph Display: mmGraph

Overview

The application mmGraph provides a data display service similar to that of mmDataT-
able (Sec. 11). The usual data source is a running solver, but rather than the textual output
provided by mmDataTable, mmGraph produces 2D line plots. mmGraph also stores
the data it receives, so it can produce multiple views of the data and can save the data to
disk. Postscript output is also supported.

Launching

mmGraph may be started either by selecting the mmGraph button on mmLaunch or
from the command line via

tclsh oommf.tcl mmGraph [standard options] [-net <0|1>]

53

-net <0|1> Disable or enable a server which allows the data displayed by mmGraph to
be updated by another application. By default, the server is enabled. When the server
is disabled, mmGraph may only input data from a file.

Inputs

Input to mmGraph may come from either a file in the ODT format (Sec. 18.2), or, when
-net 1 (the default) is active, from a client application (typically a running solver). The
File|Open. . . dialog box is used to select an input file. Receipt of data from client applica-
tions is the same as for mmDataTable (Sec. 11). In either case, input data are appended
to any previously held data.

Curve breaks (i.e., separation of a curve into disjoint segments) are recorded in the data
storage buffer via curve break records. These records are generated whenever a Table Start

or a Table End record is read from an ODT file, when an empty data record is received from
a client application, or when requested by the user using the mmGraph Options|Break
menu option.

Outputs

Unlike mmDataTable, mmGraph internally stores the data sent to it. This data may
be written to disk via the File|Save As... dialog box. If the file specified already exists,
then mmGraph output is appended to that file. The output is in the tabular ODT format
described in Sec. 18.2. The data are segmented into separate Table Start/Table End blocks
across each curve break record.

By default, all data currently held by mmGraph is written, but the Save: Selected
Data option presented in the File|Save As... dialog box causes the output to be restricted
to those curves currently selected for display. In either case, the graph display limits do not
affect the output.

The save operation writes records that are held by mmGraph at the time the File|Save
As... dialog box OK button is invoked. Additionally, the Auto Save option in this dialog
box may be used to automatically append to the specified file each new data record as it is
received by mmGraph. The appended fields will be those chosen at the time of the save
operation, i.e., subsequent changing of the curves selected for display does not affect the
automatic save operation. The automatic save operation continues until either a new output
file is specified, the Options|Stop autosave control is invoked, or mmGraph is terminated.

The File|Print... dialog is used to produce a Postscript file of the current graph. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry
with the appropriate pipe command, e.g., |lpr. (The exact form is system dependent.)

54

Controls

Graphs are constructed by selecting any one item off the X-axis menu, and any number of
items off the Y1-axis and Y2-axis menus. The y1-axis is marked on the left side of the graph;
the y2-axis on the right. These menus may be detached by selecting the dashed rule at the
top of the list. Sample results are shown in the figure at the start of this section.

When mmGraph is first launched, all the axis menus are empty. They are dynamically
built based on the data received by mmGraph. By default, the graph limits and labels are
automatically set based on the data. The x-axis label is set using the selected item data
label and measurement unit (if any). The y-axes labels are the measurement unit of the first
corresponding y-axis item selected.

The Options|Configure... dialog box allows the user to override default settings. To
change the graph title, simply enter the desired title into the Title field. To set the axis
labels, deselect the Auto Label option in this dialog box, and fill in the X Label, Y1 Label
and Y2 Label fields as desired. The axis limits can be set in a similar fashion. In addition,
if an axis limit is left empty, a default value (based on all selected data) will be used.

The size of the margin surrounding the plot region is computed automatically. Larger
margins may be specified by filling in the appropriate fields in the Margin Requests section.
Units are pixels. Requested values smaller than the computed (default) values are ignored.

As mentioned earlier, mmGraph stores in memory all data it receives. Over the course
of a long run, the amount of data stored can grow to many megabytes. This storage can
be limited by specifying a positive (> 0) value for the Point buffer size entry in the Op-
tions|Configure... dialog box. The oldest records are removed as necessary to keep the
total number of records stored under the specified limit. A zero value for Point buffer size
is interpreted as no limit. (The storage size of an individual record depends upon several
factors, including the number of items in the record and the version of Tcl being used.) Data
erasures may not be immediately reflected in the graph display.

At any time, the point buffer storage may be completely emptied with the Options|clear
Data command. The Options|stop Autosave selection will turn off the auto save feature,
if currently active. Also on this menu is Options|Rescale, which autoscales the graph axis
limits from the selected data. This command ignores but does not reset the “Auto Scale”
settings in the Options|Configure... dialog box. The Options|Break item inserts a curve
break record into the point buffer, causing a break in each curve after the current point.
This option may be useful if mmGraph is being fed data from multiple sources.

The Options|Key selection toggles the key (legend) display on and off. The key may
also be repositioned by dragging with the left mouse button. If curves are selected off both
the y1 and y2 menus, then a horizontal line in the key separates the two sets of curves, with
the labels for the y1 curves on top.

55

The last command on the options menu is Options|Smooth. If smoothing is disabled,
then the data points are connected by straight line segments. If enabled, then each curve
is rendered as a set of parabolic splines, which do not in general pass through the data
points. This is implemented using the --smooth 1 option to the Tcl canvas create line

command; see that documentation for details.
A few other controls are also available only through the mouse. If the mouse pointer

is positioned over a drawn item in the graph, holding down the left mouse button will
bring up the coordinates of that point, with respect to the y1-axis. Similarly, depressing
the right mouse button, or alternatively holding down the shift key while pressing the left
mouse button will bring up the coordinates of the point with respect to the y2-axis. The
coordinates displayed are the coordinates of a point on a drawn line, which are not necessarily
the coordinates of a plotted data point. (The data points are plotted at the endpoints of
each line segment.) The coordinate display is cleared when the mouse button is released.

One vertical and one horizontal rule (line) are also available. Initially, these rules are
tucked and hidden against the left and bottom graph axes, respectively. Either may be
repositioned by dragging with the left or right mouse button.

The menu selection File|Exit terminates the mmGraph application. The menu Help
provides the usual help facilities.

Details

The axes menus are configured based on incoming data. As a result, these menus are initially
empty. If a graph widget is scheduled to receive data only upon control point events in the
solver, it may be a long time after starting a problem in the solver before the graph widget
can be configured. Because mmGraph keeps all data up to the limit imposed by the Point
buffer size, data loss is usually not a problem. Of more importance is the fact that automatic
data saving can not be set up until the first data point is received. As a workaround, the
solver initial state may be sent interactively as a dummy point to initialize the graph widget
axes menus. (You may turn off the Interactive schedule connection after sending this data
point.) Select the desired quantities off the axes menus, and use the Options|clear Data
command to remove the dummy point from mmGraph’s memory. The File|Save As...
dialog box may then be used—with the Auto Save option enabled—to write out an empty
table with proper column header information. Subsequent data will be written to this file
as it arrives.

56

13 Vector Field Display: mmDisp

Overview

The application mmDisp displays two-dimensional spatial distributions of three-dimensional
vectors (i.e., vector fields). It can load vector fields from files in a variety of formats, or it
can accept vector field data from a client application, typically a running solver. mmDisp
offers a rich interface for controlling the display of vector field data, and can also save the
data to a file and produce Postscript print output.

Launching

mmDisp may be started either by selecting the mmDisp button on mmLaunch, or from
the command line via

tclsh oommf.tcl mmDisp [standard options] [-net <0|1>] [filename]

-net <0|1> Disable or enable a server which allows the data displayed by mmDisp to be
updated by another application. By default, the server is enabled. When the server is
disabled, mmDisp may only input data from a file.

57

If a filename is supplied on the command line, mmDisp takes it to be the name of a file
containing vector field data for display. That file will be opened on startup.

Inputs

Input to mmDisp may come from either a file or from a client application (typically a
running solver), in any of the vector field formats described in Sec. 18.3. Other file formats
can also be supported if a translation filter program is available.

Client applications that send data to mmDisp control the flow of data. The user,
interacting with the mmDisp window, determines how the vector field data are displayed.

File input is initiated through the File|Open. . . dialog box. Several example files are
included in the OOMMF release in the directory app/mmdisp/examples. When the Browse
button is enabled, the “Open File” dialog box will remain open after loading a file, so that
multiple files may be displayed in sequence. The Auto configuration box determines whether
the vector subsampling, data scale, or zoom factor of the display should be determined
automatically (based on the data in the file and the current display window size), or whether
their values should be held constant while loading the file.

mmDisp permits local customization allowing for automatic translation from other file
formats into one of the vector field formats (Sec. 18.3) that mmDisp recognizes. When
loading a file, mmDisp compares the file name to a list of glob-style patterns. These
patterns typically match on the filename extension. An example pattern is *.gz. The
assumption is that the pattern identifies files containing data in a particular format. For
each pattern in the list, there is a corresponding translation program. mmDisp calls on
that program as a filter which takes data in one format from standard input and writes to
standard output the same data in one of the formats supported by mmDisp. In its default
configuration, mmDisp recognizes the pattern *.gz and invokes the translation program
gzip -dc to perform the “translation.” In this way, support for reading gzip compressed
files is “built in” to mmDisp on any platform where the gzip program is installed.

New patterns and translation programs may be added to mmDisp by the usual method
of local customization (Sec. 2.3.2). The command to add to the customization file is of the
form

Oc_Option Add mmDisp Input filters {{*.gz {gzip -dc}}}

The final argument in this command is a list of pairs. The first element in each pair is the
filename pattern. The second element in each pair is the command line for launching the
corresponding translation program. If a program foo were known to translate a file format
identified by the extension .bar into the OVF file format, that program could be made
known to mmDisp by changing the above customization command to:

58

Oc_Option Add mmDisp Input filters {{*.gz {gzip -dc}} {*.bar foo}}

Outputs

The vector field displayed by mmDisp may be saved to disk via the File|Save As. . . dialog
box. The output is in the OVF format (Sec. 18.3.1). The OVF file options may be set by
selecting the appropriate radio buttons in the OVF File Options panel. The Title and Desc
fields may be edited before saving. Enabling the Browse button allows for saving multiple
files without closing the “Save File” dialog box.

The File|Print. . . dialog is used to produce a Postscript file of the current display. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry
with the appropriate pipe command, e.g., |lpr. (The exact format is system dependent.)

To produce bitmap output, save the file to disk in the OVF format, and use the avf2ppm
(Sec. 16.4) utility to do the conversion.

Controls

The menu selection File|Clear clears the display window. The menu selection File|Exit
terminates the mmDisp application. The menu Help provides the usual help facilities.

The View menu provides high-level control over how the vector field is placed in the
display window. The menu selection View|Wrap Display resizes the display window so
that it just contains the entire vector field surrounded by a margin. View|Fill Display
resizes the vector field until it fills the current size of the display window. If the aspect
ratio of the display window does not match the aspect ratio of the vector field, a larger
than requested margin appears along one edge to make up the difference. View|Rotate ccw
and View|Rotate cw rotate the display one quarter turn counter-clockwise and clockwise
respectively. The display window also rotates, so that the portion of the vector field seen and
any margins are preserved (unless the display of the control bar forces the display window
to be wider). View|reDraw allows the user to invoke a redrawing of the display window.

The menu selection Options|Configure. . . brings up a dialog box through which the
user may control many features of the vector field display. Vectors in the vector field may be
displayed as arrows, pixels, or both. The Arrow and Pixel buttons in the Plot type column
on the left of the dialog box enable each type of display.

Columns 2–4 in the Configure dialog box control the use of color. Both arrows and
pixels may be independently colored to indicate some quantity. The Color Quantity column
controls which scalar quantity the color of the arrow or pixel represents. The x, y, or z
components of the vector, the vector magnitude, or the in-plane xy-angle of the vector from

59

the positive x-axis may be selected. On regularly gridded data the vector field divergence is
also available for display.

The assignment of a color to a quantity value is determined by the Colormap selected.
Colormaps are labeled by a sequence of colors that are mapped across the range of the
selected quantity. For example, if the “Red-Black-Blue” colormap is applied to the Color
Quantity “z”, then vectors pointing into the xy-plane (z < 0) are colored red, those lying in
the plane (z = 0) are colored black, and those pointing out of the plane (z > 0) are colored
blue. Values between the extremes are colored with intermediate colors, selected using a
discretization determined by the # of Colors value. This value governs the use of potentially
limited color resources, and can be used to achieve some special coloring effects. (Note: The
xy-angle quantity is best viewed with a colormap that begins and ends with the same color,
e.g., “Red-Green-Blue-Red.”)

When there are many vectors in a vector field, a display of all of them may be more con-
fusing than helpful. The Subsample column allows the user to request that only a sampling
of vectors from the vector field be displayed. The Subsample value is roughly the number of
vectors along one spatial dimension of the vector field which map to a single displayed vector
(arrow or pixel). Each vector displayed is an actual vector in the vector field—the selection
of vectors for display is a sampling process, not an averaging or interpolation process. The
subsample rates for arrows and pixels may be set independently. A subsample rate of 0 is
interpreted specially to display all data. (This is typically much quicker than subsampling
at a small rate, e.g., 0.1.)

The length of an arrow represents the magnitude of the vector field. All arrows are
drawn with a length between zero and “full-scale.” By default, the full-scale arrow length
is computed so that it covers the region of the screen that one displayed vector is intended
to represent, given the current subsample rate. Following this default, arrows do not signifi-
cantly overlap each other, yet all non-zero portions of the vector field have a representation
in the display. Similarly, pixels are drawn with a default size that fills an area equal to
the region of the screen one pixel is intended to represent, given the pixel subsample rate.
The Size column allows the user to (independently) override the default size of pixels and
full-scale arrows. A value of 1 represents the default size. By changing to a larger or smaller
Size value, the user may request arrows or pixels larger or smaller than the default size.

Below the Arrow and Pixel Controls are several additional controls. The Data Scale
entry affects the data value scaling. As described above, all arrows are displayed with length
between zero and full-scale. The full-scale arrow length corresponds to some scalar value of
the magnitude of the vector field. The Data Scale entry allows the user to set the value at
which the drawn arrow length goes full-scale. Any vectors in the vector field with magnitude
equal to or greater than the data scale value will be represented by arrows drawn at full scale.
Other vectors will be represented by shorter arrows with length determined by a linear scale

60

between zero and the data scale value. Similarly, the data scale value controls the range
of values spanned by the colormap used to color pixels. The usual use of the Data Scale
entry is to reduce the data scale value so that more detail can be seen in those portions of
the vector field which have magnitude less than other parts of the vector field. If the data
scale value is increased, then the length of the arrows in the plot is reduced accordingly.
If the data scale value is decreased, then the length of the arrows is increased, until they
reach full-scale. An arrow representing a vector with magnitude larger than the data scale
value may be thought of as being truncated to the data scale value. The initial (default)
data scale value is usually the maximum vector magnitude in the field, so at this setting no
arrows are truncated. Entering 0 into the data scale box will cause the data scale to be reset
to the default value. (For OVF files (Sec. 18.3.1), the default data scale value is set from
the ValueRangeMaxMag header line. This is typically set to the maximum vector magnitude,
but this is not guaranteed.) The data scale control is intended primarily for use with vector
fields of varying magnitude (e.g., H-fields), but may also be used to adjust the pixel display
contrast for any field type.

The Zoom entry controls the spatial scaling of the display. The value roughly corresponds
to the number of pixels per vector in the fully-sampled vector field. (This value is not affected
by the subsampling rate.)

To the right of the Data Scale and Zoom entries are controls to specify what margin (in
pixels) should be maintained around the vector field, whether or not a bounding polygon is
displayed, and what background color the display window should use.

No changes made by the user in the Options|Configure. . . dialog box affect the display
window until either the Apply or OK button is selected. If the OK button is selected, the
dialog box is also dismissed. The Close button dismisses the dialog without changing the
display window.

The other item under the Options menu is a checkbutton that toggles the display of a
control bar. The control bar offers alternative interfaces to some of the operations available
from the Options|Configure. . . dialog box and the View menu. On the left end of the
control bar is a display of the coordinate axes. These axes rotate along with the vector field
in the display window to identify the coordinate system of the display, and are color coded
to agree with the pixel (if active) or arrow coloring. A click of the left mouse button on the
coordinate axes causes a counter-clockwise rotation. A click of the right mouse button on
the coordinate axes causes a clockwise rotation.

To the right of the coordinate axes are two rows of controls. The top row allows the
user to control the subsample rate and size of displayed arrows. The subsample rate may be
modified either by direct entry of a new rate, or by manipulation of the slider. The second
row controls the current data scale value. A vertical bar in the slider area marks the default
data scale value. Specifying 0 for the data scale value will reset the data scale to the default

61

value. At the bottom of the control bar is a zoom (spatial magnification) control.
The zoom value may also be changed by using the mouse inside the display window. A

click and drag with the left mouse button displays a red rectangle that changes size as the
mouse is dragged. When the left mouse button is released, the vector field is rescaled so
that the portion of the display window within the red rectangle expands until it reaches the
edges of the display window. Both dimensions are scaled by the same amount so there is
no distortion of the vector field. Small red arrows on the sides of the red rectangle indicate
which dimension will expand to meet the display window boundaries upon release of the left
mouse button. After the rescaling, the red rectangle remains in the display window briefly,
surrounding the same region of the vector field, but at the new scale.

A click and drag with the right mouse button displays a blue rectangle that changes size
as the mouse is dragged. When the right mouse button is released, the vector field is rescaled
so that all of the vector field currently visible in the display window fits in the size of the
blue rectangle. Both dimensions are scaled by the same amount so there is no distortion of
the vector field. Small blue arrows on the sides of the blue rectangle indicate the dimension
in which the vector field will shrink to exactly transform the display window size to the blue
rectangle size. After the rescaling, the blue rectangle remains in the display window briefly,
surrounding the same region of the vector field, now centered in the display window, and at
the new scale.

When the zoom value is large enough that a portion of the vector field lies outside the
display window, scrollbars appear that may be used to translate the vector field so that
different portions are visible in the display window. On systems that have a middle mouse
button, clicking the middle button on a point in the display window translates the vector
field so that the selected point is centered within the display window.

mmDisp remembers the previous zoom value and data scale values. To revert to the
previous settings, the user may hit the ESC key. This is a limited “Undo” feature.

Several keyboard shortcuts are available as alternatives to menu- or mouse-based opera-
tions. The effect of a key combination depends on which subwindow of mmDisp is active.
The TAB key may be used to change the active subwindow. The SHIFT-TAB key combination
also changes the active subwindow, in reverse order.

When the active subwindow is the display window, the following key combinations are
active:

• CTRL-o – same as menu selection File|Open. . .

• CTRL-s – same as menu selection File|Save as. . .

• CTRL-p – same as menu selection File|Print. . .

62

• CTRL-w – same as menu selection View|Wrap Display

• CTRL-f – same as menu selection View|Fill Display

• HOME – First fill, then wrap the display.

• CTRL-r – same as menu selection View|Rotate ccw

• SHIFT-CTRL-r – same as menu selection View|Rotate cw

• INSERT – decrease arrow subsample by 1

• DEL – increase arrow subsample by 1

• SHIFT-INSERT – decrease arrow subsample by factor of 2

• SHIFT-DEL – increase arrow subsample by factor of 2

• PAGEUP – increase the zoom value by a factor of 1.149

• PAGEDOWN – decrease the zoom value by a factor of 1.149

• SHIFT-PAGEUP – increase the zoom value by factor of 2

• SHIFT-PAGEDOWN – decrease the zoom value by factor of 2

• ESC – revert to previous data scale and zoom values

When the active subwindow is the control bar’s coordinate axes display, the following
key combinations are active:

• LEFT – same as menu selection View|Rotate ccw

• RIGHT – same as menu selection View|Rotate cw

When the active subwindow is any of the control bar’s value entry windows – arrow
subsample, size, data scale or zoom, the following key combinations are active:

• ESC – undo uncommitted value (displayed in red)

• RETURN – commit entered value

When the active subwindow is either of the control bar’s sliders—arrow subsample, data
scale or zoom—the following key combinations are active:

63

• LEFT – slide left (decrease value)

• RIGHT – slide right (increase value)

• ESC – undo uncommitted value (displayed in red)

• RETURN – commit current value

Of course the usual keyboard access to the menu items is also available.

Details

The selection of vectors for display according to the Subsample differs depending on whether
or not the data lies on a regular grid. If so, the Subsample takes integer values and deter-
mines the ratio of data points to displayed points. For example, a value of 5 means that
every fifth vector on the grid is displayed. This means that the number of vectors displayed
is 25 times fewer than the number of vectors on the grid.

For an irregular grid of vectors, an average cell size is computed, and the Subsample takes
values in units of 0.1 times the average cell size. A square grid of that size is overlaid on the
irregular grid. For each cell in the square grid, the data vector from the irregular grid closest
to the center of the square grid cell is selected for display. The vector is displayed at its true
location in the irregular grid, not at the center of the square grid cell. As the subsample
rate changes, the set of displayed vectors also changes, which can in some circumstances
substantially change the appearance of the displayed vector field.

Using mmDisp as a WWW browser helper application

You may configure your web browser to automatically launch mmDisp when downloading
an OVF file. The exact means to do this depends on your browser, but a couple of examples
are presented below.

In Netscape Navigator 4.X, bring up the Edit|Preferences. . . dialog box, and select
the Category Navigator|Applications subwindow. Create a New Type, with the following
fields:

Description of type: OOMMF Vector Field

MIME Type: application/x-oommf-vf

Suffixes: ovf omf ohf obf svf

Application: wish oommfroot/oommf.tcl +fg mmDisp -net 0 “arg”

64

On Windows platforms, the Suffixes field is labeled File Extension, and only one file
extension may be entered. Files downloaded from a web server are handled according to
their MIME Type, rather than their file extension, so that restriction isn’t important when
web browsing. If you wish to have files on the local disk with all the above file extensions
recognized as OOMMF Vector Field files, you must repeat the New Type entry for each
file extension. In the Application field, the values of wish, oommfroot, and arg vary with
your platform configuration. The value of wish is the full path to the wish application on
your platform (see Section 5). On Unix systems, wish may be omitted, assuming that the
oommf.tcl script is executable. If wish is not omitted on Unix systems, Netscape may issue
a security warning each time it opens an OOMMF Vector Field file. The value of oommfroot
should be the full path to the root directory of your OOMMF installation. The value of arg
should be “%1” on Windows and “%s” on Unix. The MIME type “application/x-oommf-vf”
must be configured on any HTTP server which provides OOMMF Vector Field files as well.

For Microsoft Internet Explorer 3.X, bring up the View|Options. . . dialog box, and
select the Program tab. Hit the File Types. . . button, followed by the New Type. . .
button. Fill the resulting dialog box with

Description of type: OOMMF Vector Field

Associated extension: ovf

Content type (MIME): application/x-oommf-vf

You may also disable the Confirm open after download checkbutton if you want. Then hit
the New. . . button below the Actions: window, and in the pop-up fill in

Action: open

Application used to perform action:
wish oommfroot/oommf.tcl +fg mmDisp -net 0 “%1”

Hit OK, Close, Close and OK. Replace wish and oommfroot with the appropriate paths on
your system (cf. Section 5). This will set up an association on files with the .ovf extension.
Internet Explorer 3.X apparently ignores the HTML Content Type field, so you must repeat
this process for each file extension (.ovf, .omf, .ohf, .obf and .svf) that you want to recognize.
This means, however, that Internet Explorer will make the appropriate association even if
the HTML server does not properly set the HTML Content Type field.

Microsoft Internet Explorer 4.X is integrated with the Windows operating system. Inter-
net Explorer 4.X doesn’t offer any means to set up associations between particular file types
and the applications which should be used to open them. Instead, this association is config-
ured within the Windows operating system. To set up associations for the OOMMF Vector

65

Field file type on Windows 95 or Windows NT 4.0, select Settings|Control Panel from
the Start menu. The Control Panel window appears. Select View|Options. . . to display
a dialog box. A Windows 98 shortcut to the same dialog box is to select Settings|Folder
Options. . . from the Start menu. Select the File Types tab and proceed as described above
for Internet Explorer 3.X. Depending on the exact release/service patch of your Windows
operating system, the exact instructions may vary.

Once you have your browser configured, you can test it on the µMAG 1st Standard
Problem report page,

http://www.ctcms.nist.gov/%7Erdm/std1/vectorcompare.html.

Known Bugs

The z-slice selection feature does not work properly with irregular meshes.

66

http://www.ctcms.nist.gov/%7Erdm/std1/vectorcompare.html

14 Data Archive: mmArchive

Overview

The application mmArchive provides automated vector field and data table storage ser-
vices. Although mmDisp (Sec. 13) and mmGraph (Sec. 12) are able to save such data
under the direction of the user, there are situations where it is more convenient to write data
to disk without interactive control.

mmArchive does not present a user interface window of its own, but like mmSolve2D
(Sec. 9) relies on mmLaunch (Sec. 6) to provide an interface on its behalf. Because
mmArchive does not require a window, it is possible on Unix systems to bring down
the X (window) server and still keep mmArchive running in the background.

Launching

mmArchive may be started either by selecting the mmArchive button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmArchive [standard options]

When the mmArchive button of mmLaunch is invoked, mmArchive is launched with
the -tk 0 option. This allows mmArchive to continue running if the X window server is
killed. The -tk 1 option is useful only for enabling the -console option for debugging.

As noted above, mmArchive depends upon mmLaunch to provide an interface. The
entry for an instance of mmArchive in the Threads column of any running copy of mm-
Launch has a checkbutton next to it. This button toggles the presence of a user interface
window through which the user may control that instance of mmArchive.

Inputs

mmArchive accepts vector field and data table style input from client applications (typically
running solvers) on its network (socket) interface.

67

Outputs

The client applications that send data to mmArchive control the flow of data. mmArchive
copies the data it receives into files specified by the client. There is no interactive control to
select the names of these output files. A simple status line shows the most recent vector file
save, or data table file open/close event.

Controls

The Exit in the mmLaunch-supplied user interface terminates mmArchive. Simply clos-
ing the user interface window does not terminate mmArchive, but only hides the control
window. To kill mmArchive the Exit button must be pressed.

Known Bugs

mmArchive appends data table output to the file specified by the source client application
(e.g., a running solver). If, at the same time, more than one source specifies the same file, or if
the the same source sends data table output to more than one instance of mmArchive, then
concurrent writes to the same file may corrupt the data in that file. It is the responsibility
of the user to ensure this does not happen; there is at present no file locking mechanism in
OOMMF to protect against this situation.

68

15 Documentation Viewer: mmHelp

Overview

The application mmHelp manages the display and navigation of hypertext (HTML) help
files. It presents an interface similar to that of World Wide Web browsers.

Although mmHelp is patterned after World Wide Web browsers, it does not have all of
their capabilities. mmHelp displays only a simplified form of hypertext required to display
the OOMMF help pages. It is not able to display many of the advanced hypertext features
provided by modern World Wide Web browsers. In the current release, mmHelp is not able
to follow http: URLs. It only follows file: URLs.

OOMMF software can be customized (See Sec. 2.3.2) to use another program to display
the HTML help files.

Launching

mmHelp may be launched from the command line via

tclsh oommf.tcl mmHelp [standard options] [URL]

The command line argument URL is the URL of the first page (home page) to be displayed. If
no URL is specified, mmHelp displays the Table of Contents of the OOMMF User’s Guide
by default.

69

Controls

Each page of hypertext is displayed in the main mmHelp window. Words which are under-
lined and colored blue are hyperlinks which mmHelp knows how to follow. Words which
are underlined and colored red are hyperlinks which mmHelp does not know how to follow.
Moving the mouse over a hyperlink displays the target URL of the hyperlink in the Link:
line above the display window. Clicking on a blue hyperlink will follow the hyperlink and
display a new page of hypertext.

mmHelp keeps a list of the viewed pages in order of view. Using the Back and Forward
buttons, the user may move backward and forward through this list of pages. The Home
button causes the first page to be displayed, allowing the user to start again from the
beginning. These three buttons have corresponding entries in the Navigate menu.

Use the menu selection File|Open to directly select a file from the file system to be
displayed by mmHelp.

The menu selection File|Refresh, or the Refresh button causes mmHelp to reload and
redisplay the current page. This may be useful if the display becomes corrupted, or for
repeatedly loading a hypertext file which is being edited.

When mmHelp encounters hypertext elements it does not recognize, it will attempt to
work around the problem. However, in some cases it will not be able to make sense of the
hypertext, and will display an error message. Documentation authors should take care to
use only the hypertext elements supported by mmHelp in their documentation files. Users
should never see such an error message.

mmHelp displays error messages in one of two ways: within the display window, or in
a separate window. Errors reported in the display window replace the display of the page of
hypertext. They usually indicate that the hypertext page could not be retrieved, or that its
contents are not hypertext. File permission errors are also reported in this way.

Errors reported in a separate window are usually due to a formatting error within the
page of hypertext. Selecting the Continue button of the error window instructs mmHelp to
attempt to resume display of the hypertext page beyond the error. Selecting Abort abandons
further display.

The menu selection Options|Font scale... brings up a dialog box through which the
user may select the scale of the fonts to use in the display window, relative to their initial
size.

The menu selection File|Exit or the Exit button terminates the mmHelp application.
The menu Help provides the usual help facilities.

70

Known Bugs

mmHelp is pretty slow. You may be happier using local customization (Sec. 2.3.2) methods
to replace it with another more powerful HTML browser. Also, we have noticed that the
underscore character in the italic font is not displayed (or is displayed as a space) at some
font sizes on some platforms.

71

16 Command Line Utilities

This section documents a few utilities distributed with OOMMF that are run from the
command line (Unix shell or Windows DOS prompt), which are typically used in pre- or
post-processing of data associated with a micromagnetic simulation.

16.1 Bitmap File Format Conversion: any2ppm

The any2ppm program converts bitmap files of various formats into the Portable Pixmap
(PPM) P3 (text) format. Supported input formats are PPM, BMP, and GIF. (Note:
OOMMF support for BMP requires Tk 8.0 or later.)

Launching

The any2ppm launch command is:

tclsh oommf.tcl any2ppm [standard options] [-noinfo] \

[-o outfile] [infile ...]

where

-noinfo Suppress writing of progress information to stderr.

-o outfile Write output to outname; use “-” to pipe output to stdout. The default is to
create a new file by stripping the extension, if any, off of each input filename, and
appending .ppm. If the generated filename already exists, a “-000” or “-001” . . . suffix
is appended.

infile ... List of input files to process.

Tk Requirement: any2ppm uses the Tk image command in its processing. This
requires that Tk be properly initialized, which in particular means that a valid display must
be available. This is not a problem on Windows, where a desktop is always present, but
on Unix this means that an X server must be running. The Xvfb12 virtual framebuffer can
be used if desired. (Xvfb is an X server distributed with X11R6 that requires no display
hardware or physical input devices.)

12http://www.sunworld.com/sunworldonline/swol-03-2000/swol-03-xvfb.html

72

http://www.sunworld.com/sunworldonline/swol-03-2000/swol-03-xvfb.html

16.2 Making Data Tables from Vector Fields: avf2odt

The avf2odt program converts rectangularly meshed vector field files in any of the recognized
formats (OVF, VIO; see Sec. 18.3) into the ODT 1.0 (Sec. 18.2) data table format.

Launching

The avf2odt launch command is:

tclsh oommf.tcl avf2odt [standard options] \

[-type <space|plane|line|point>] [-axis <x|y|z>] \

[-region <xmin> <ymin> <zmin> <xmax> <ymax> <zmax>] \

infile >outfile

where

-type <space|plane|line|point> Specify type of averaging. Space outputs 1 data line
consisting of the average vx, vy and vz field values in the selected region (see -region

option below). (For magnetization files, vx, vy and vz correspond to Mx, My and Mz.)
If plane or line is selected, then the output data table consists of multiple lines with
4 or 5 columns respectively. The last 3 columns in both cases are the vx, vy and vz
averaged over the specified axes-parallel affine subspace (i.e., plane or line). In the
plane case, the first column specifies the averaging plane offset along the coordinate
axis normal to the plane (see -axis option below). In the line case, the first 2 columns
specify the offset of the averaging line in the coordinate plane perpendicular to the line.
If -type is set to point, then no averaging is done, and the output consists of 6 column
data lines, one line for each point in the selected region, where the first 3 columns are
the point coordinates, and the last 3 are the vx, vy and vz values at the point.

This parameter is optional. The default value is space.

-axis <x|y|z> For the -type plane and -type line averaging types, selects which subset
of affine subspaces the averaging will be performed over. In the plane case, the -axis

represents the normal direction to the planes, while for line it is the direction parallel
to the lines. This parameter is ignored if -type is space or point. Optional; default
is x.

-region <xmin> <ymin> <zmin> <xmax> <ymax> <zmax> Axes-parallel rectan-
gular box denoting region in the vector field file over which data is to be collected. The
locations are in problem units (typically meters). A single hyphen, “-”, may be spec-
ified for any of the box corner coordinates, in which case the corresponding extremal

73

value from the input file is used. Optional; the default, -region - - - - - -, selects
the entire input file.

infile Name of input file to process. Must be one of the recognized formats, OVF 1.0 or
VIO, in a rectangular mesh subformat. Required.

>outfile Avf2odt writes its output to stdout. Use the redirection operator “>” to send the
output to a file. For output format details, see the ODT file description (Sec. 18.2).

Note: Themx, my andmz average magnetization values reported by mmSolve2D (Sec. 9)
exclude points with 0 saturation magnetization. Such points are included by avf2odt, so
the data table output from this program will probably not agree with that directly output
from mmSolve2D if there are any such regions.

16.3 Vector Field File Format Conversion: avf2ovf

The avf2ovf program converts vector field files from any of the recognized formats (OVF,
VIO; see Sec. 18.3) into the OVF 1.0 format.

Launching

The avf2ovf launch command is:

tclsh oommf.tcl avf2ovf [standard options] [-format <text|b4|b8>] \

[-grid <reg|irreg>] infile >outfile

where

-format <text|b4|b8> Specify output data format. The default is ASCII text; b4 selects
4-byte binary, b8 selects 8-byte binary. (The OVF format has an ASCII text header
in all cases.)

-grid <reg|irreg> Specify output grid structure. The default is reg, which will output
a regular (rectangular) grid if the input is recognized as a regular grid. The option
-grid irreg forces irregular mesh style output.

infile Name of input file to process. Must be one of the recognized formats, OVF 0.0, OVF
1.0, or VIO.

>outfile Avf2ovf writes its output to stdout. Use the redirection operator “>” to send the
output to a file.

74

The -format text and -grid irreg options are useful for preparing files for import
into non-OOMMF applications, because all non-data lines are readily identified by a leading
“#,” and each data line is a 6-tuple consisting of the node location and vector value. Pay
attention, however, to the scaling of the vector value as specified by “# valueunit” and
“# valuemultiplier” header lines.

For output format details, see the OVF file description (Sec. 18.3.1).

16.4 Making Bitmaps from Vector Fields: avf2ppm

The avf2ppm utility converts a collection of vector field files (e.g., .omf, .ohf) into color
bitmaps suitable for inclusion into documents or collating into movies. The command line
arguments control filename and format selection, while plain-text configuration files, modeled
after the mmDisp (Sec. 13) configuration dialog box, specify conversion parameters.

Launching

The avf2ppm launch command is:

tclsh oommf.tcl avf2ppm [standard options] [-config file] [-f] \

[-filter program] [-format <P3|P6|B24>] [-ipat pattern] \

[-opatexp regexp] [-opatsub sub] [-v level] [infile ...]

where

-config file User configuration file that specifies the image conversion parameters. This file
is discussed in detail below.

-f Force overwriting of existing (output) files. By default, if avf2ppm tries to create a
file, say foo.ppm, that already exists, it generates instead a new name of the form
foo.ppm-000, or foo.ppm-001, . . . , or foo.ppm-999, that doesn’t exist and writes
to that instead. The -f flag disallows alternate filename generation, and overwrites
foo.ppm instead.

-filter program Post-processing application to run on each app2ppm output file. May be
a pipeline of many programs.

-format <P3|P6|B24> Specify the output image file format. Currently supported for-
mats are the true color Portable Pixmap (PPM) formats P3 (ASCII text) and P6
(binary), and the uncompressed BMP 24 bits-per-pixel format. The default is P6.

75

-ipat pattern Specify input files using a pattern including “glob-style” wildcards. Mostly
useful in DOS.

-opatexp regexp Specify the “regular expression” applied to input filenames
to determine portion to be replaced in generation of output filenames.
Default: (\.[^.]?[^.]?[^.]?$|$)

-opatsub sub The string with which to replace the portion of input filenames matched by
the -opatsub during output filename generation. The default is .ppm for type P3 and
P6 file output, .bmp for B24 file output.

-v level Verbosity (informational message) level, with 0 generating only error messages,
and larger numbers generating additional information. The level value is an integer,
defaulting to 1.

infile ... List of input files to process.

Note that by default avf2ppm is run with the standard option -tk 0. This means
avf2ppm will not use or initialize Tk. Tk is only needed to convert background color
requests (see misc,background in the configuration file discussion below) from symbolic
form to hexadecimal representation (#RRGGBB). If the background color is not specified using
the hexadecimal format, then Tk is needed, and avf2ppm must be run with -tk 1.

The file specification options require some explanation. Input files may be specified either
by an explicit list (infile ...), or by giving a wildcard pattern, e.g., -ipat *.omf, which is
expanded in the usual way by avf2ppm (using the Tcl command glob). Unix shells (sh, csh,
etc.) automatically expand wildcards before handing control over to the invoked application,
so the -ipat option is not needed (although it is useful in case of a “command-line too long”
error). DOS does not do this expansion, so you must use -ipat to get wildcard expansion
in Windows.

As each input file is processed, a name for the output file is produced from the input
filename by rules determined by handing the -opatexp and -opatsub expressions to the
Tcl regsub command. Refer to the Tcl regsub documentation for details, but essentially
whatever portion of the input filename is matched by the -opatexp expression is removed
and replaced by the -opatsub string. The default -opatexp expression matches against any
filename extension of up to 3 characters, and the default -opatsub string replaces this with
the extension either .ppm or .bmp.

If you have command line image processing “filter” programs, e.g., ppmtogif (part of
the NetPBM package), then you can use the -filter option to pipe the output of avf2ppm
through that filter before it is written to the output file specified by the -opat* expressions.

76

If the processing changes the format of the file, (e.g., ppmtogif converts from PPM to GIF),
then you will likely want to specify a -opatsub different from the default.

Here is an example that processes all input files with the .omf extension, sending the
output through ppmtogif before saving the results in a files with the extension .gif:

tclsh oommf.tcl avf2ppm -ipat *.omf -opatsub .gif -filter ppmtogif

(On Unix, either drop the -ipat flag, or use quotes to protect the input file specification
string from expansion by the shell, as in -ipat ’*.omf’.) You may also pipe together
multiple filters, e.g., -filter ’ppmquant 256 | ppmtogif’.

Configuration files

The details of the conversion process are specified by plain-text configuration files, with fields
analogous to the entries in the mmDisp (Sec. 13) configuration dialog box. Each of the pa-
rameters is an element in an array named plot config. The default values for this array are
taken from the default configuration file oommf/app/mmdisp/scripts/avf2ppm.def, which
is a Tcl script read during avf2ppm initialization.

The sample default configuration script shown in Fig. 1 can be used as a starting point for
user (per-run) configuration files. Refer to this sample file and the mmDisp documentation
(Sec. 13) as we discuss each element of the array plot config. (See the Tcl documentation
for details of the array set command.)

colormaps A list of valid colormaps known to the program. This entry is not user-
configurable, and should not appear in user configuration files.

arrow,status Set to 1 to display arrows, 0 to not draw arrows.

arrow,colormap Select the colormap to use when drawing arrows. Should be one of the
strings specified in the colormaps array element.

arrow,colorcount Number of discretization levels to use from the colormap. A value of
zero will color all arrows with the first color in the colormap.

arrow,quantity Scalar quantity the arrow color is to represent. Supported values include
x, y, and z. The mmDisp configuration dialog box will present the complete list of
allowed quantities (which may be image dependent).

arrow,autosample If 1, then ignore the value of arrow,subsample and automatically de-
termine a “reasonable” subsampling rate for the arrows. Set to 0 to turn off this
feature.

77

arrow,subsample If arrow,autosample is 0, then subsample the input vectors at this rate
when drawing arrows. A value of 0 for arrow,subsample is interpreted specially to
display all data.

arrow,size Size of the arrows relative to the default size (represented as 1.0).

arrow,antialias If 1, then each pixel along the edge of an arrow is drawn not with the color
of the arrow, but with a mixture of the arrow color and the background color. This
makes arrow boundaries appear less jagged, but increases computation time. Also, the
colors used in the anti-aliased pixels are not drawn from the arrow or pixel colormap
discretizations, so color allocation in the output bitmap may increase dramatically.

pixel,... Each pixel configuration element has interpretation analogous to the corresponding
array configuration element, except that there is no pixel,antialias element, and
the auto subsampling rate for pixels is considerably denser than for arrows.

misc,background Specify the background color, using the hexadecimal format #RRGGBB

(for example, #ffff00 is yellow), or, when -tk 1 is active, using any of the forms
recognized by the Tk routine Tk GetColor, including symbolic names such as white,
black, green.

misc,drawboundary If 1, then draw the bounding polygon, if any, as specified in the input
vector field format file.

misc,margin The size of the border margin, in pixels.

misc,width, misc,height Maximum width and height of the output bitmap, in pixels. If
misc,crop is enabled, then one or both of these dimensions may be shortened.

misc,crop If disabled (0), then any leftover space in the bitmap (of dimensions misc,width
by misc,height) after packing the image are filled with the background color. If en-
abled (1), then the bitmap is cropped to just include the image (with the margin
specified by misc,margin). NOTE: Some movie formats require that bitmap dimen-
sions be multiples of 8 or 16. For such purposes, you should disable misc,crop and
specify appropriate dimensions directly with misc,width and misc,height.

misc,zoom Scaling factor for the display. This is the same value as shown in the “zoom”
box in the mmDisp control bar, and corresponds roughly to the number of pixels
per vector in the (original, fully-sampled) vector field. If set to zero, then avf2ppm
will automatically set the scaling so the image (with margins) just fits inside the area
specified by misc,width and misc,height.

78

misc,rotation Rotation in degrees; either 0, 90, 180 or 270.

User (per-run) configuration files are specified on the command line with the -config

option. To create a user configuration file, make a copy of the default avf2ppm.def config-
uration file, and edit it as desired in a plain text editor. You may omit any entries that you
do not want to change from the default. (Each entry consists of a name + value pair, e.g.,
misc,width 640.) You may “layer” configuration files by specifying multiple user configu-
ration files on the command line. These are processed from left to right, with the last value
set for each entry taking precedence.

16.5 Vector Field File Difference: avfdiff

The avfdiff program computes differences between vector field files in any of the recognized
formats (OVF, VIO; see Sec. 18.3). The input data must lie on rectangular meshes with
identical dimensions.

Launching

The avfdiff launch command is:

tclsh oommf.tcl avf2ovf [standard options] file-0 file-1 [... file-n]

where

file-0 Name of input file to subtract from other files. Must be either an OVF 1.0 file in the
rectangular mesh subformat, or an VIO file. Required.

file-1 Name of first input file from which file-0 is to be subtracted. Must also be either
an OVF 1.0 file in the rectangular mesh subformat, or an VIO file, and must have the
same dimensions as file-0. Required.

. . . file-n Optional additional files from which file-0 is to be subtracted, with the same
requirements as file-1.

For each input file file-1 through file-n, a separate output file is generated, in the
OVF 1.0 format. Each output file has a name based on the name of corresponding input
file, with a -diff suffix. If a file with the same name already exists, it will be overwritten.

For output file format details, see the OVF file description (Sec. 18.3.1).

79

array set plot_config {

colormaps { Red-Black-Blue Blue-White-Red Teal-White-Red \

Black-Gray-White White-Green-Black Red-Green-Blue-Red }

arrow,status 1

arrow,colormap Black-Gray-White

arrow,colorcount 0

arrow,quantity z

arrow,autosample 1

arrow,subsample 10

arrow,size 1

arrow,antialias 1

pixel,status 1

pixel,colormap Teal-White-Red

pixel,colorcount 225

pixel,quantity x

pixel,autosample 1

pixel,subsample 2

pixel,size 1

misc,background #FFFFFF

misc,drawboundary 1

misc,margin 10

misc,width 640

misc,height 480

misc,crop 1

misc,zoom 0

misc,rotation 0

}

Figure 1: Sample default configuration script avf2ppm.def.

80

16.6 Calculating H Fields from Magnetization: mag2hfield

The mag2hfield utility takes a MIF 1.1 micromagnetic problem specification file (.mif,
see Sec. 18.1.1) and a magnetization file (.omf, see Sec. 18.3) and uses the mmSolve2D
(Sec. 9) computation engine to calculate the resulting component (magnetostatic, exchange,
crystalline anisotropy, Zeeman) and total energy and/or H fields. The main use of this
utility to study the fields in a simulation using magnetization files generated by an earlier
mmSolve2D run.

Launching

The mag2hfield launch command is:

tclsh oommf.tcl mag2hfield [standard options] [-fieldstep #] \

[-data [energy,][field]] \

[-component [all,][anisotropy,][demag,][exchange,][total,][zeeman] \

mif_file omf_file

where

-data [energy,][field] Calculate energies, H fields, or both. Energy values are printed
to stdout, H fields are written to files as described below. Optional; the default is
energy,field.

-component [all,][anisotropy,][demag,][exchange,][total,][zeeman] Specify all energy/field
components that are desired. Optional; default is total, which is the sum of the
crystalline anisotropy, demagnetization (self-magnetostatic), exchange, and Zeeman
(applied field) terms.

-fieldstep # Applied field step index, following the schedule specified in the input MIF file
(0 denotes the initial field). Optional; default is 0.

mif file MIF micromagnetic problem specification file (.mif). Required.

omf file Magnetization state file. This can be in any of the formats accepted by the avfFile
record of the input MIF file. Required.

The H field output file format is determined by the Total Field Output Format record
of the input MIF 1.1 file (Sec. 18.1.1). The output file names have the form basename-hanisotropy.ohf,
basename-hzeeman.ohf, etc., where basename is the input .omf magnetization file name,
stripped of any trailing .omf or .ovf extension.

81

16.7 MIF Format Conversion: mifconvert

The mifconvert utility converts a MIF 1.1, see Sec. 18.1.1 micromagnetic problem speci-
fication file into the MIF 2.0, see Sec. 18.1.2 format. Eventually, it should be possible to
express any problem in the MIF 1.1 format using the MIF 2.0 format, but currently that is
not the case. It is recommended that the user carefully inspect the MIF 2.0 files generated
by this routine for correctness.

Launching

The mifconvert launch command is:

tclsh oommf.tcl mifconvert input_file output_file

where

input file Import MIF 1.1 micromagnetic problem specification file. Required.

output file Export MIF 2.0 micromagnetic problem specification file. Required.

16.8 Platform-Independent Make: pimake

The application pimake is similar in operation to the Unix utility program make, but it
is written entirely in Tcl so that it will run anywhere Tcl is installed. Like make, pimake
controls the building of one file, the target, from other files. Just as make is controlled by
rules in files named Makefile or makefile, pimake is controlled by rules in files named
makerules.tcl.

Launching

The pimake launch command is:

tclsh oommf.tcl pimake [standard options] \

[-d] [-i] [-k] [target]

where

-d Print verbose information about dependencies.

-i Normally an error halts operation. When -i is specified, ignore errors and try to continue
updating all dependencies of target.

82

-k Normally an error halts operation. When -k is specified, and an error is encountered,
stop processing dependencies which depend on the error, but continue updating other
dependencies of target.

target The file to build. May also be (and usually is) a symbolic target name. See below
for standard symbolic targets. By default, the first target in makerules.tcl is built.

There are several targets which may be used as arguments to pimake to achieve different
tasks. Each target builds in the current directory and all subdirectories. The standard targets
are:

upgrade Used immediately after unpacking a distribution, it removes any files which were
part of a previous release, but are not part of the unpacked distribution.

all Creates all files created by the configure target (see below). Compiles and links all the
executables and libraries. Constructs all index files.

configure Creates subdirectories with the same name as the platform type. Constructs a
port.h file which includes C++ header information specific to the platform.

objclean Removes the intermediate object files created by the compile and link steps.
Leaves working executables in place. Leaves OOMMF in the state of its distribution
with pre-compiled executables.

clean Removes the files removed by the objclean target. Also removes the executables and
libraries created by the all target. Leaves the files generated by the configure target.

distclean Removes the files removed by the clean target. Also removes all files and di-
rectories generated by configure target. Leaves only the files which are part of the
source code distribution.

maintainer-clean Remove all files which can possibly be generated from other files. The
generation might require specialized developer tools. This target is not recommended
for end-users, but may be helpful for developers.

help Print a summary of the standard targets.

83

17 OOMMF Batch System

The OOMMF Batch System (OBS) provides a scriptable interface to the same micromag-
netic solver engine used by mmSolve2D (Sec. 9), in the form of three Tcl applicatons
(batchmaster, batchslave, and batchsolve) that provide support for complex job schedul-
ing. All OBS script files are in the OOMMF distribution directory app/mmsolve/scripts.

Unlike most of the OOMMF package, the OBS is meant to be driven primarily from the
command line or shell (batch) script. OBS applications are launched from the command line
using the bootstrap application (Sec. 5).

17.1 Solver Batch Interface: batchsolve

Overview

The application batchsolve provides a simple command line interface to the OOMMF
micromagnetic solver engine.

Launching

The application batchsolve is launched by the command line:

tclsh oommf.tcl batchsolve [standard options]

[-end_exit <0|1>] [-end_paused] [-interface <0|1>] \

[-restart <0|1>] [-start_paused] [file]

where

-end exit <0|1> Whether or not to explicitly call exit at bottom of batchsolve.tcl.
When launched from the command line, the default is to exit after solving the problem
in file. When sourced into another script, like batchslave.tcl, the default is to wait
for the caller script to provide further instructions.

-interface <0|1> Whether to register with the account service directory application, so
that mmLaunch (Sec. 6), can provide an interactive interface. Default = 1 (do
register), which will automatically start account service directory and host service
directory applications as necessary.

-start paused Pause solver after loading problem.

-end paused Pause solver and enter event loop at bottom of batchsolve.tcl rather than
just falling off the end (the effect of which will depend on whether or not Tk is loaded).

84

-restart <0|1> Determines solver behavior when a new problem is loaded. If 1, then the
solver will look for basename.log and basename*.omf files to restart a previous run
from the last saved state (where basename is the “Base Output Filename” specified
in the input problem specification). If these files cannot be found, then a warning is
issued and the solver falls back to the default behavior (equivalent to -restart 0)
of starting the problem from scratch. The specified -restart setting holds for all
problems fed to the solver, not just the first.

file Immediately load and run the specified MIF file.

The input file file should contain a Micromagnetic Input Format (Sec. 18.1) (MIF)
problem description, such as produced by mmProbEd (Sec. 7). The batch solver searches
several directories for this file, including the current working directory, the data and scripts

subdirectories, and parallel directories relative to the directories app/mmsolve and app/mmpe

in the OOMMF distribution. Refer to the mif path variable in batchsolve.tcl for the
complete list.

If -interface is set to 1 (enabled), batchsolve registers with the account service di-
rectory application, and mmLaunch will be able to provide an interactive interface. Using
this interface, batchsolve may be controlled in a manner similar to mmSolve2D (Sec. 9).
The interface allows you to pause, un-pause, and terminate the current simulation, as well
as to attach data display applications to monitor the solver’s progress. If more interactive
control is needed, mmSolve2D should be used.

If -interface is 0 (disabled), batchsolve does not register, leaving it without an in-
terface, unless it is sourced into another script (e.g., batchslave.tcl) that arranges for an
interface on the behalf of batchsolve.

Use the -start_paused switch to monitor the progress of batchsolve from the very
start of a simulation. With this switch the solver will be paused immediately after loading
the specified MIF file, so you can bring up the interactive interface and connect display ap-
plications before the simulation begins. Start the simulation by selecting the Run command
from the interactive interface. This option cannot be used if -interface is disabled.

The -end_paused switch insures that the solver does not automatically terminate after
completing the specified simulation. This is not generally useful, but may find application
when batchsolve is called from inside a Tcl-only wrapper script.

Note on Tk dependence: If a problem is loaded that uses a bitmap mask file (Sec. 18.1.1),
and if that mask file is not in the PPM P3 (text) format, then batchsolve will launch
any2ppm (Sec. 16.1) to convert it into the PPM P3 format. Since any2ppm requires
Tk, at the time the mask file is read a valid display must be available. See the any2ppm
documentation for details.

85

Output

The output may be changed by a Tcl wrapper script (see Sec. 17.1), but the default out-
put behavior of batchsolve is to write tabular text data and the magnetization state at
the control point for each applied field step. The tabular data are appended to the file
basename.odt, where basename is the “Base Output Filename” specified in the input MIF
file. See the routine GetTextData in batchsolve.tcl for details, but at present the output
consists of the solver iteration count, nominal applied field B, reduced average magnetization
m, and total energy. This output is in the ODT file format.

The magnetization data are written to a series of OVF (OOMMF Vector Field) files,
basename.fieldnnnn.omf, where nnnn starts at 0000 and is incremented at each applied
field step. (The ASCII text header inside each file records the nominal applied field at that
step.) These files are viewable using mmDisp (Sec. 13).

The solver also automatically appends the input problem specification and miscellaneous
runtime information to the log file basename.log.

Programmer’s interface

In addition to directly launching batchsolve from the command line, batchsolve.tcl may
also be sourced into another Tcl script that provides additional control structures. Within
the scheduling system of OBS, batchsolve.tcl is sourced into batchslave, which provides
additional control structures that support scheduling control by batchmaster. There are
several variables and routines inside batchsolve.tcl that may be accessed and redefined
from such a wrapper script to provide enhanced functionality.

Global variables

mif A Tcl handle to a global mms mif object holding the problem description defined by
the input MIF file.

solver A Tcl handle to the mms solver object.

search path Directory search path used by the FindFile proc (see below).

Refer to the source code and sample scripts for details on manipulation of these variables.

Batchsolve procs

The following Tcl procedures are designed for external use and/or redefinition:

86

SolverTaskInit Called at the start of each task.

BatchTaskRelaxCallback Called at each control point reached in the simulation.

SolverTaskCleanup Called at the conclusion of each task.

FindFile Searches the directories specified by the global variable search path for a specified
file. The default SolverTaskInit proc uses this routine to locate the requested input
MIF file.

The first and third of these accept an arbitrary argument list (args), which is copied over
from the args argument to batchsolve.tcl procs BatchTaskRun and BatchTaskLaunch.
Typically one copies the default procs (as needed) into a task script, and makes appro-
priate modifications. You may (re-) define these procs either before or after sourcing
batchsolve.tcl. See Sec. 17.2.4 for example scripts.

17.2 Batch Scheduling System

Overview

The OBS supports complex scheduling of multiple batch jobs with two applications batch-
master and batchslave. The user launches batchmaster and provides it with a task
script. The task script is a Tcl script that describes the set of tasks for batchmaster
to accomplish. The work is actually done by instances of batchslave that are launched
by batchmaster. The task script may be modeled after the included simpletask.tcl or
multitask.tcl sample scripts (Sec. 17.2.4).

The OBS has been designed to control multiple sequential and concurrent micromagnetic
simulations, but batchmaster and batchslave are completely general and may be used to
schedule other types of jobs as well.

17.2.1 Master Scheduling Control: batchmaster

The application batchmaster is launched by the command line:

tclsh oommf.tcl batchmaster [standard options] task_script \

[host [port]]

where

task script is the user defined task (job) definition Tcl script,

87

host specifies the network address for the master to use (default is localhost),

port is the port address for the master (default is 0, which selects an arbitrary open port).

When batchmaster is run, it sources the task script. Tcl commands in the task script
should modify the global object $TaskInfo to inform the master what tasks to perform and
optionally how to launch slaves to perform those tasks. The easiest way to create a task
script is to modify one of the example scripts in Sec. 17.2.4. More detailed instructions are
in Sec. 17.2.3.

After sourcing the task script, batchmaster launches all the specified slaves, initializes
each with a slave initialization script, and then feeds tasks sequentially from the task list to
the slaves. When a slave completes a task it reports back to the master and is given the
next unclaimed task. If there are no more tasks, the slave is shut down. When all the tasks
are complete, the master prints a summary of the tasks and exits.

When the task script requests the launching and controlling jobs off the local machine,
with slaves running on remote machines, then the command line argument host must be
set to the local machine’s network name, and the $TaskInfo methods AppendSlave and
ModifyHostList will need to be called from inside the task script. Furthermore, OOMMF
does not currently supply any methods for launching jobs on remote machines, so a task
script which requests the launching of jobs on remote machines requires a working rsh

command or equivalent. See Sec. 17.2.3 for details.

17.2.2 Task Control: batchslave

The application batchslave may be launched by the command line:

tclsh oommf.tcl batchslave [standard options] \

host port id password [script [arg ...]]

where

host

port Host and port at which to contact the master to serve.

id

password ID and password to send to the master for identification.

auxscript

88

aux arg ... The name of a script to source (which actually performs the task the slave is
assigned), and any arguments it needs.

In normal operation, the user does not launch batchslave. Instead, instances of batch-
slave are launched by batchmaster as instructed by a task script. Although batchmaster
may launch any slaves requested by its task script, by default it launches instances of batch-
slave.

The function of batchslave is to make a connection to a master program, source the
auxscript and pass it the list of arguments aux arg Then it receives commands
from the master, and evaluates them, making use of the facilities provided by auxscript.
Each command is typically a long-running one, such as solving a complete micromagnetic
problem. When each command is complete, the batchslave reports back to its master
program, asking for the next command. When the master program has no more commands
batchslave terminates.

Inside batchmaster, each instance of batchslave is launched by evaluating a Tcl com-
mand. This command is called the spawn command, and it may be redefined by the task
script in order to completely control which slave applications are launched and how they are
launched. When batchslave is to be launched, the spawn command might be:

exec tclsh oommf.tcl batchslave -tk 0 -- $server(host) $server(port) \

$slaveid $passwd batchsolve.tcl -restart 1 &

The Tcl command exec is used to launch subprocesses. When the last argument to exec

is &, the subprocess runs in the background. The rest of the spawn command should look
familiar as the command line syntax for launching batchslave.

The example spawn command above cannot be completely provided by the task script,
however, because parts of it are only known by batchmaster. Because of this, the task
script should define the spawn command using “percent variables” which are substituted by
batchmaster. Continuing the example, the task script provides the spawn command:

exec %tclsh %oommf batchslave -tk 0 %connect_info \

batchsolve.tcl -restart 1

batchmaster replaces %tclsh with the path to tclsh, and %oommf with the path to the
OOMMF bootstrap application. It also replaces %connect info with the five arguments from
-- through $password that provide batchslave the hostname and port where batchmaster
is waiting for it to report to, and the ID and password it should pass back. In this example,
the task script instructs batchslave to source the file batchsolve.tcl and pass it the
arguments -restart 1. Finally, batchmaster always appends the argument & to the spawn
command so that all slave applications are launched in the background.

89

The communication protocol between batchmaster and batchslave is evolving and is
not described here. Check the source code for the latest details.

17.2.3 Batch Task Scripts

The application batchmaster creates an instance of a BatchTaskObj object with the name
$TaskInfo. The task script uses method calls to this object to set up tasks to be performed.
The only required call is to the AppendTask method, e.g.,

$TaskInfo AppendTask A "BatchTaskRun taskA.mif"

This method expects two arguments, a label for the task (here “A”) and a script to accom-
plish the task. The script will be passed across a network socket from batchmaster to a
slave application, and then the script will be interpreted by the slave. (In particular, keep in
mind that the file system seen by the script will be that of the machine on which the slave
process is running.)

This example uses the default batchsolve.tcl procs to run the simulation defined by the
taskA.mif MIF file. If you want to make changes to the MIF problem specifications on the
fly, you will need to modify the default procs. This is done by creating a slave initialization
script, via the call

$TaskInfo SetSlaveInitScript { <insert script here> }

The slave initialization script does global initializations, and also generally redefines the
SolverTaskInit proc; optionally the BatchTaskRelaxCallback and SolverTaskCleanup

procs may be redefined as well. At the start of each task SolverTaskInit is called by
BatchTaskRun (in batchsolve.tcl), at each control point BatchTaskRelaxCallback is ex-
ecuted, and at the end of each task SolverTaskCleanup is called. The first and third are
passed the arguments that were passed to BatchTaskRun. A simple SolverTaskInit proc
could be

proc SolverTaskInit { args } {

global mif basename outtextfile

set A [lindex $args 0]

set outbasename "$basename-A$A"

$mif SetA $A

$mif SetOutBaseName $outbasename

set outtextfile [open "$outbasename.odt" "a+"]

puts $outtextfile [GetTextData header \

"Run on $basename.mif, with A=[$mif GetA]"]

}

90

This proc receives the exchange constant A for this task on the argument list, and makes use of
the global variables mif and basename. (Both should be initialized in the slave initialization
script outside the SolverTaskInit proc.) It then stores the requested value of A in the mif

object, sets up the base filename to use for output, and opens a text file to which tabular
data will be appended. The handle to this text file is stored in the global outtextfile,
which is closed by the default SolverTaskCleanup proc. A corresponding task script could
be

$TaskInfo AppendTask "A=13e-12 J/m" "BatchTaskRun 13e-12"

which runs a simulation with A set to 13 × 10−12 J/m. This example is taken from the
multitask.tcl script in Sec. 17.2.4. (For commands accepted by mif objects, see the file
mmsinit.cc. Another object than can be gainfully manipulated is solver, which is defined
in solver.tcl.)

If you want to run more than one task at a time, then the $TaskInfo method AppendSlave

will have to be invoked. This takes the form

$TaskInfo AppendSlave <spawn count> <spawn command>

where <spawn command> is the command to launch the slave process, and <spawn count>
is the number of slaves to launch with this command. (Typically <spawn count> should
not be larger than the number of processors on the target system.) The default value for
this item (which gets overwritten with the first call to $TaskInfo AppendSlave) is

1 {Oc_Application Exec batchslave -tk 0 %connect_info batchsolve.tcl}

The Tcl command Oc Application Exec is supplied by OOMMF and provides access to the
same application-launching capability that is used by the OOMMF bootstrap application
(Sec. 5). Using a <spawn command> of Oc Application Exec instead of exec %tclsh

%oommf saves the spawning of an additional process. The default<spawn command> launches
the batchslave application, with connection information provided by batchmaster, and
using the auxscript batchsolve.tcl.

Before evaluating the <spawn command>, batchmaster applies several percent-style
substitutions useful in slave launch scripts: %tclsh, %oommf, %connect info, %oommf root,
and %%. The first is the Tcl shell to use, the second is an absolute path to the OOMMF
bootstrap program on the master machine, the third is connection information needed by
the batchslave application, the fourth is the path to the OOMMF root directory on the
master machine, and the last is interpreted as a single percent. batchmaster automatically
appends the argument & to the <spawn command> so that the slave applications are launched
in the background.

To launch batchslave on a remote host, use rsh in the spawn command, e.g.,

91

$TaskInfo AppendSlave 1 {exec rsh foo tclsh oommf/oommf.tcl \

batchslave -tk 0 %connect_info batchsolve.tcl}

This example assumes tclsh is in the execution path on the remote machine foo, and
OOMMF is installed off of your home directory. In addition, you will have to add the
machine foo to the host connect list with

$TaskInfo ModifyHostList +foo

and batchmaster must be run with the network interface specified as the server host (instead
of the default localhost), e.g.,

tclsh oommf.tcl batchmaster multitask.tcl bar

where bar is the name of the local machine.
This may seem a bit complicated, but the examples in the next section should make

things clearer.

17.2.4 Sample task scripts

The first sample task script (Fig. 2) is a simple example that runs the 3 micromagnetic
simulations described by the MIF files taskA.mif, taskB.mif and taskC.mif. It is launched
with the command

tclsh oommf.tcl batchmaster simpletask.tcl

This example uses the default slave launch script, so a single slave is launched on the current
machine, and the 3 simulations will be run sequentially. Also, no slave init script is given,
so the default procs in batchsolve.tcl are used. Output will be magnetization states and
tabular data at each control point, stored in files on the local machine with base names as
specified in the MIF files.

The second task script (Fig. 3) is a more complicated example running concurrent
processes on two machines. This script should be run with the command

tclsh oommf.tcl batchmaster multitask.tcl bar

where bar is the name of the local machine.
Near the top of the multitask.tcl script several Tcl variables (RMT MACHINE through

A list) are defined; these are used farther down in the script. The remote machine is speci-
fied as foo, which is used in the $TaskInfo AppendSlave and $TaskInfo ModifyHostList

commands.

92

FILE: simpletask.tcl

#

This is a sample batch task file. Usage example:

#

tclsh oommf.tcl batchmaster simpletask.tcl

Form task list

$TaskInfo AppendTask A "BatchTaskRun taskA.mif"

$TaskInfo AppendTask B "BatchTaskRun taskB.mif"

$TaskInfo AppendTask C "BatchTaskRun taskC.mif"

Figure 2: Sample task script simpletask.tcl.

There are two AppendSlave commands, one to run two slaves on the local machine, and
one to run a single slave on the remote machine (foo). The latter changes to a specified
working directory before launching the batchslave application on the remote machine.
(For this to work you must have rsh configured properly. In the future it may be possible to
launch remote commands using the OOMMF account server application, thereby lessening
the reliance on system commands like rsh.)

Below this the slave init script is defined. The Tcl regsub command is used to place
the task script defined value of BASEMIF into the init script template. The init script is
run on the slave when the slave is first brought up. It first reads the base MIF file into a
newly created mms mif instance. (The MIF file needs to be accessible by the slave process,
irrespective of which machine it is running on.) Then replacement SolverTaskInit and
SolverTaskCleanup procs are defined. The new SolverTaskInit interprets its first argu-
ment as a value for the exchange constant A. Note that this is different from the default
SolverTaskInit proc, which interprets its first argument as the name of a MIF file to load.
With this task script, a MIF file is read once when the slave is brought up, and then each task
redefines only the value of A for the simulation (and corresponding changes to the output
filenames and data table header).

Finally, the Tcl loop structure

foreach A $A_list {

$TaskInfo AppendTask "A=$A" "BatchTaskRun $A"

}

is used to build up a task list consisting of one task for each value of A in A list (defined
at the top of the task script). For example, the first value of A is 10e-13, so the first task

93

will have the label A=10e-13 and the corresponding script is BatchTaskRun 10e-13. The
value 10e-13 is passed on by BatchTaskRun to the SolverTaskInit proc, which has been
redefined to process this argument as the value for A, as described above.

There are 6 tasks in all, and 3 slave processes, so the first three tasks will run concurrently
in the 3 slaves. As each slave finishes it will be given the next task, until all the tasks are
complete.

FILE: multitask.tcl

#

This is a sample batch task file. Usage example:

#

tclsh oommf.tcl batchmaster multitask.tcl hostname [port]

#

Task script configuration

set RMT_MACHINE foo

set RMT_TCLSH tclsh

set RMT_OOMMF "/path/to/oommf/oommf.tcl"

set RMT_WORK_DIR "/path/to/oommf/app/mmsolve/data"

set BASEMIF taskA

set A_list { 10e-13 10e-14 10e-15 10e-16 10e-17 10e-18 }

Slave launch commands

$TaskInfo ModifyHostList +$RMT_MACHINE

$TaskInfo AppendSlave 2 "exec %tclsh %oommf batchslave -tk 0 \

%connect_info batchsolve.tcl"

$TaskInfo AppendSlave 1 "exec rsh $RMT_MACHINE \

cd $RMT_WORK_DIR \\\;\

$RMT_TCLSH $RMT_OOMMF batchslave -tk 0 %connect_info batchsolve.tcl"

Slave initialization script (with batchsolve.tcl proc

redefinitions)

set init_script {

Initialize solver. This is run at global scope

set basename __BASEMIF__ ;# Base mif filename (global)

mms_mif New mif

$mif Read [FindFile ${basename}.mif]

Redefine TaskInit and TaskCleanup proc’s

proc SolverTaskInit { args } {

94

global mif outtextfile basename

set A [lindex $args 0]

set outbasename "$basename-A$A"

$mif SetA $A

$mif SetOutBaseName $outbasename

set outtextfile [open "$outbasename.odt" "a+"]

puts $outtextfile [GetTextData header \

"Run on $basename.mif, with A=[$mif GetA]"]

flush $outtextfile

}

proc SolverTaskCleanup { args } {

global outtextfile

close $outtextfile

}

}

Substitute $BASEMIF in for __BASEMIF__ in above script

regsub -all -- __BASEMIF__ $init_script $BASEMIF init_script

$TaskInfo SetSlaveInitScript $init_script

Create task list

foreach A $A_list {

$TaskInfo AppendTask "A=$A" "BatchTaskRun $A"

}

Figure 3: Advanced sample task script multitask.tcl.

95

18 File Formats

18.1 Problem specification format (MIF)

Micromagnetic simulations are specified to the OOMMF solvers using the OOMMF Micro-
magnetic Input Format (MIF). There are two distinct, incompatible versions of this format.
The first, version 1.1, is the format used by the 2D solver (mmSolve2D (Sec. 9) and
batchsolve (Sec. 17.1)) and the mmProbEd (Sec. 7) problem editor. The new MIF for-
mat, version 2.0, is used by the Oxs 3D solver (Oxsii (Sec. 10)). In both cases all values are
in SI units. A command line utility mifconvert (Sec. 16.7) is provided to aid in converting
MIF 1.1 files to the MIF 2.0 format. For both versions it is recommended that MIF files be
given names ending with the .mif file extension.

18.1.1 MIF 1.1

A sample MIF 1.1 file is presented in Fig. 4. The first line of a MIF file must be of the
form “# MIF x.y”, where x.y represents the format revision number. (There was a MIF 1.0
format, but it was never part of a released version of OOMMF.)

After the format identifier line, any line ending in a backslash, ‘\’, is joined to the
succeeding line before any other processing is performed. Lines beginning with a ‘#’ character
are comments and are ignored. Blank lines are also ignored.

All other lines must consist of a Record Identifier followed by a parameter list. The Record
Identifier is separated from the parameter list by one or more ‘:’ and/or ‘=’ characters.
Whitespace and case is ignored in the Record Identifier field.

The parameter list must be a proper Tcl list. The parameters are parsed (broken into
separate elements) following normal Tcl rules; in short, items are separated by whitespace,
except as grouped by double quotes and curly braces. The grouping characters are removed
during parsing. Any ‘#’ character that is found outside of any grouping mechanism is inter-
preted as a comment start character. The ‘#’ and all following characters on that line are
interpreted as a comment.

Order of the records in a MIF 1.1 file is unimportant, except as explicitly stated below.
If two or more lines contain the same Record Identifier, then the last one takes precedence
(except for Field Range records, of which there may be several active). All records are
required unless listed as optional. Some of these record types are not yet supported by
mmProbEd, however your may edit a MIF 1.1 file by hand and supply it to mmSolve2D
(Sec. 9) using FileSource (Sec. 8).

For convenience, the Record Identifier tags are organized into several groups; these groups
correspond to the buttons presented by mmProbEd. We follow this convention below.

96

Material parameters

• # Material Name: This is a convenience entry for mmProbEd; inside the MIF 1.1
file it is a comment line. It relates a symbolic name (e.g., Iron) to specific values to
the next 4 items. Ignored by solvers.

• Ms: Saturation magnetization in A/m.

• A: Exchange stiffness in J/m.

• K1: Crystalline anisotropy constant in J/m3. If K1 > 0, then the anisotropy axis (or
axes) is an easy axis; if K1 < 0 then the anisotropy axis is a hard axis.

• Anisotropy Type: Crystalline anisotropy type; One of < uniaxial | cubic >.

• Anisotropy Dir1: Directional cosines of first crystalline anisotropy axis, taken with
respect to the coordinate axes (3 numbers). Optional; Default is 1 0 0 (x-axis).

• Anisotropy Dir2: Directional cosines of second crystalline anisotropy axis, taken
with respect to the coordinate axes (3 numbers). Optional; Default is 0 1 0 (y-axis).

For uniaxial materials it suffices to specify only Anisotropy Dir1. For cubic materials
one should also specify Anisotropy Dir2; the third axis direction will be calculated
as the cross product of the first two. The anisotropy directions will be automatically
normalized if necessary, so for example 1 1 1 is valid input (it will be modified to .5774
.5774 .5774). For cubic materials, Dir2 will be adjusted to be perpendicular to Dir1
(by subtracting out the component parallel to Dir1).

• Anisotropy Init: Method to use to set up directions of anisotropy axes, as a function
of spatial location; This is a generalization of the Anisotropy Dir1/2 records. The value
for this record should be one of < Constant | UniformXY | UniformS2 >. Constant
uses the values specified for Anisotropy Dir1 and Dir2, with no dispersion. Unifor-
mXY ignores the values given for Anisotropy Dir1 and Dir2, and randomly varies the
anisotropy directions uniformly in the xy-plane. UniformS2 is similar, but randomly
varies the anisotropy directions uniformly on the unit sphere (S2). This record is
optional; the default value is Constant.

• Edge K1: Anisotropy constant similar to crystalline anisotropy constant K1 described
above, but applied only along the edge surface of the part. This is a uniaxial anisotropy,
directed along the normal to the boundary surface. Units are J/m3, with positive values
making the surface normal an easy axis, and negative values making the surface an
easy plane. The default value for Edge K1 is 0, which disables the term.

97

• Do Precess: If 1, then enable the precession term in the Landau-Lifshitz ODE. If 0,
then do pure damping only. (Optional; default value is 1.)

• Gyratio: The gyromagnetic ratio, in m/(A.s). This is optional, with default value
of 2.21 × 105. See the discussion of the Landau-Lifshitz ODE under the Damp Coef
record identifier description.

• Damp Coef: The ODE solver in OOMMF integrates the Landau-Lifshitz equation,
written as

dM

dt
= −γM×Heff −

γα

Ms

M× (M×Heff) ,

where

γ is the gyromagnetic ratio (in m/(A.s)),

α is the damping coefficient (dimensionless).

The last is specified by the “Damp Coef” entry in the MIF 1.1 file. If not specified, a
default value of 0.5 is used, which allows the solver to converge in a reasonable number
of iterations. Physical materials will typically have a damping coefficient in the range
0.004 to 0.15. The solver engine mmSolve2D (Sec. 9) requires a non-zero damping
coefficient.

Demag specification

• Demag Type: Specify algorithm used to calculate self-magnetostatic (demagnetiza-
tion) field. Must be one of

– ConstMag: Calculates the average field in each cell under the assumption that
the magnetization is constant in each cell, using formulae from [12]. (The other
demag options calculate the field at the center of each cell.)

– 3dSlab: Calculate the in-plane field components using offset blocks of constant
(volume) charge. Details are given in [3]. Field components parallel to the z-axis
are calculated using squares of constant (surface) charge on the upper and lower
surfaces of the sample.

– 3dCharge: Calculate the in-plane field component using rectangles of constant
(surface) charge on each cell. This is equivalent to assuming constant magnetiza-
tion in each cell. The z-components of the field are calculated in the same manner
as for the 3dSlab approach.

98

– FastPipe: Algorithm suitable for simulations that have infinite extent in the
z-direction. This is a 2D version of the 3dSlab algorithm.

– None: No demagnetization. Fastest but least accurate method. :-}

All of these algorithms except FastPipe and None require that the Part Thickness (cf.
the Part Geometry section) be set. All algorithms use Fast Fourier Transform (FFT)
techniques to accelerate the calculations.

Part geometry

• Part Width: Nominal part width (x-dimension) in meters. Should be an integral
multiple of Cell Size.

• Part Height: Nominal part height (y-dimension) in meters. Should be an integral
multiple of Cell Size.

• Part Thickness: Part thickness (z-dimension) in meters. Required for 3D demag
kernels.

• Cell Size: In-plane (xy-plane) edge dimension of base calculation cell. This cell is a
rectangular brick, with square in-plane cross-section and thickness given by Part Thick-
ness. N.B.: Part Width and Part Height should be integral multiples of Cell Size.
Part Width and Part Height will be automatically adjusted slightly (up to 0.01%)
to meet this condition (affecting a small change to the problem), but if the required
adjustment is too large then the problem specification is considered to be invalid, and
the solver will signal an error.

• Part Shape: Optional. Part shape in the xy-plane; must be one of the following:

– Rectangle
The sample fills the area specified by Part Width and Part Height. (Default.)

– Ellipse
The sample (or the magnetically active portion thereof) is an ellipse inscribed
into the rectangular area specified by Part Width and Part Height.

– Ellipsoid
Similar to the Ellipse shape, but the part thickness is varied to simulate an ellip-
soid, with axis lengths of Part Width, Part Height and Part Thickness.

99

– Oval r
Shape is a rounded rectangle, where each corner is replaced by a quarter circle
with radius r, where 0 ≤ r ≤ 1 is relative to the half-width of the rectangle.

– Pyramid overhang
Shape is a truncated pyramid, with ramp transition base width (overhang) spec-
ified in meters.

– Mask filename
Shape and thickness are determined by a bitmap file, the name of which is specified
as the second parameter. The given filename must be accessible to the solver
application. At present the bitmap file must be in either the PPM (portable
pixmap), GIF, or BMP formats. (Formats other than the PPM P3 (text) format
may be handled by spawning an any2ppm (Sec. 16.1) subprocess.) The bitmap
will be spatially scaled as necessary to fit the simulation. White areas of the
bitmap are interpreted as being non-magnetic (or having 0 thickness); all other
areas are assumed to be composed of the material specified in the “Material
Parameters” section. Thickness is determined by the relative darkness of the
pixels in the bitmap. Black pixels are given full nominal thickness (specified by
the “Part Thickness” parameter above), and gray pixels are linearly mapped to a
thickness between the nominal thickness and 0.

In general, bitmap pixel values are converted to a thickness relative to the nominal
thickness by the formula 1-(R+G+B)/(3M), where R, G and B are the magnitudes
of the red, green and blue components, respectively, and M is the maximum
allowed component magnitude. For example, black has R=G=B=0, so the relative
thickness is 1, and white has R=G=B=M, so the relative thickness is 0.

Initial magnetization

• Init Mag: Name of routine to use to initialize the simulation magnetization directions
(as a function of position), and routine parameters, if any. Optional, with default
Random. The list of routines is long, and it is easy to add new ones. See the file
maginit.cc for details. A few of the more useful routines are:

– Random
Random directions on the unit sphere. This is somewhat like a quenched thermal
demagnetized state.

– Uniform θ φ
Uniform magnetization in the direction indicated by the two additional parame-

100

ters, θ and φ, where the first is the angle from the z-axis (in degrees), and the
second is the angle from the x-axis (in degrees) of the projection onto the xy-plane.

– Vortex
Fits an idealized vortex about the center of the sample.

– avfFile filename
The second parameter specifies an OVF/VIO (i.e., “any” vector field) file to use to
initialize the magnetization. The grid in the input file will be scaled as necessary
to fit the grid in the current simulation. The file must be accessible to the intended
solver application.

Experiment parameters

The following records specify the applied field schedule:

• Field Range: Specifies a range of applied fields that are stepped though in a linear
manner. The parameter list should be 7 numbers, followed by optional control point
(stopping criteria) specifications. The 7 required fields are the begin field Bx By Bz in
Tesla, the end field Bx By Bz in Tesla, and an integer number of steps (intervals) to
take between the begin and end fields (inclusive). Use as many Field Range records as
necessary—they will be stepped through in order of appearance. If the step count is
0, then the end field is ignored and only the begin field is applied. If the step count is
larger than 0, and the begin field is the same as the last field from the previous range,
then the begin field is not repeated.

The optional control point specs determine the conditions that cause the applied field
to be stepped, or more precisely, ends the simulation of the magnetization evolution
for the current applied field. The control point specs are specified as –type value
pairs. There are 3 recognized control point types: –torque, –time, and –iteration.
If a –torque pair is given, then the simulation at the current applied field is ended
when ‖m× h‖ (i.e., ‖M×H‖/M2

s) at all spins in the simulation is smaller than the
specified –torque value (dimensionless). If a –time pair is given, then the simulation at
the current field is ended when the elapsed simulation time for the current field step
reaches the specified –time value (in seconds). Similarly, an –iteration pair steps the
applied field when the iteration count for the current field step reaches the –iteration
value. If multiple control point specs are given, then the applied field is advanced when
any one of the specs is met. If no control point specs are given on a range line, then
the Default Control Point Spec is used.

101

For example, consider the following Field Range line:

Field Range: 0 0 0 0.05 0 0 5 -torque 1e-5 -time 1e-9

This specifies 6 applied field values, (0,0,0), (0.01,0,0), (0.02,0,0), . . . , (0.05,0,0) (in
Tesla), with the advancement from one to the next occurring whenever ‖m × h‖ is
smaller than 1e-5 for all spins, or when 1 nanosecond (simulation time) has elapsed at
the current field. (If –torque was not specified, then the applied field would be stepped
at 1, 2, 3 4 and 5 ns in simulation time.)

This Field Range record is optional, with a default value of 0 0 0 0 0 0 0.

• Default Control Point Spec: List of control point –type value pairs to use as
stepping criteria for any field range with no control point specs. This is a generalization
of and replacement for the Converge |mxh| Value record. Optional, with default “-
torque 1e-5.”

• Field Type: Applied (external) field routine and parameters, if any. This is optional,
with default Uniform. At most one record of this type is allowed, but the Multi type
may be used to apply a collection of fields. The nominal applied field (NAF) is stepped
through the Field Ranges described above, and is made available to the external field
routines which use or ignore it as appropriate.

The following Field Type routines are available:

– Uniform
Applied field is uniform with value specified by the NAF.

– Ribbon relcharge x0 y0 x1 y1 height
Charge “Ribbon,” lying perpendicular to the xy-plane. Here relcharge is the
charge strength relative to Ms, and (x0,y0), (x1,y1) are the endpoints of the
ribbon (in meters). The ribbon extends height/2 above and below the calculation
plane. This routine ignores the NAF.

– Tie rfx rfy rfz x0 y0 x1 y1 ribwidth
The points (x0,y0) and (x1,y1) define (in meters) the endpoints of the center
spine of a rectangular ribbon of width ribwidth lying in the xy-plane. The cells
with sample point inside this rectangle see an applied field of (rfx,rfy,rfz), in units
relative to Ms. (If the field is large, then the magnetizations in the rectangle will
be “tied” to the direction of that field.) This routine ignores the NAF.

102

– OneFile filename multiplier
Read B field in from a file. Each value in the file is multiplied by the “multiplier”
value on input. This makes it simple to reverse field direction (use -1 for the
multiplier), or to convert H fields to B fields (use 1.256637e-6). The input file
may be any of the vector field file types recognized by mmDisp. The input
dimensions will be scaled as necessary to fit the simulation grid, with zeroth
order interpolation as necessary. This routine ignores the NAF.

– FileSeq filename procname multiplier
This is a generalization of the OneFile routine that reads in fields from a sequence
of files. Here “filename” is the name of a file containing Tcl code to be sourced
during problem initialization, and “procname” is the name of a Tcl procedure
defined in filename, which takes the nominal B field components and field step
count values as imports (4 values total), and returns the name of the vector field
file that should be used as the applied B field for that field step.

– Multi routinecount \

param1count name1 param1 param2 . . . \
param2count name2 param1 param2 . . . \
. . .
Allows a conglomeration of several field type routines. All entries must be on
the same logical line, i.e., end physical lines with ’\’ continuation characters as
necessary. Here routinecount is the number of routines, and param1count is the
number parameters (including name1) needed by the first routine, etc.

Note that all lengths are in meters. The coordinates in the simulation lie in the first
octant, running from (0,0,0) to (Part Width, Part Height, Part Thickness).

Output specification

• Base Output Filename: Default base name used to construct output filenames.

• Magnetization Output Format: Format to use in the OVF (Sec. 18.3.1) data block
for exported magnetization files. Should be one of “binary 4” (default), “binary 8”, or
“text format-spec”, where format-spec is a C printf-style format code (default is %̈#

.17g¨).

• Total Field Output Format: Analogous to the Magnetization Output Format, but
for total field output files.

103

Miscellaneous

• Converge |mxh| Value: Nominal value to use as a stopping criterion: When ‖m×h‖
(i.e., ‖M×H‖/M2

s) at all spins in the simulation is smaller than this value, it is assumed
that a relaxed (equilibrium) state has been reached for the current applied field. This
is a dimensionless value.
NOTE: This Record Identifier is deprecated. Use Default Control Point Spec instead.

• Randomizer Seed: Value with which to seed random number generator. Optional.
Default value is 0, which uses the system clock to generate a semi-random seed.

• Max Time Step: Limit the maximum ODE step size to no larger than this amount,
in seconds. Optional.

• Min Time Step: Limit the minimum ODE step size to no less than this amount, in
seconds. Optional.

• User Comment: Free-form comment string that may be used for problem identifica-
tion. Optional.

MIF 1.1

#

All units are SI.

#

####################### MATERIAL PARAMETERS ############################

Ms: 800e3 # Saturation magnetization in A/m.

A: 13e-12 # Exchange stiffness in J/m.

K1: 0.5e3 # Anisotropy constant in J/m^3.

Anisotropy Type: uniaxial # One of <uniaxial|cubic>.

Anisotropy Dir1: 1 0 0 # Directional cosines wrt to coordinate axes

####################### DEMAG SPECIFICATION ############################

Demag Type: ConstMag # One of <ConstMag|3dSlab|2dSlab|3dCharge|FastPipe|None>.

########################## PART GEOMETRY ###############################

Part Width: 0.25e-6 # Nominal part width in m

Part Height: 1.0e-6 # Nominal part height in m

Part Thickness: 1e-9 # Part thickness in m.

Cell Size: 8.1e-9 # Cell size in m.

#Part Shape: # One of <Rectangle|Ellipse|Oval|Mask>. Optional.

104

###################### INITIAL MAGNETIZATION ###########################

Init Mag: Uniform 90 45 # Initial magnetization routine and parameters

###################### EXPERIMENT PARAMETERS ###########################

Field Range: -.05 -.01 0. .05 .01 0. 100 # Start_field Stop_field Steps

Field Range: .05 .01 0. -.05 -.01 0. 100

Field Type: Multi 4 \

7 Ribbon 1 0 1.0e-6 0.25e-6 1.0e-6 1e-9 \

7 Ribbon 1 0 0 0.25e-6 0 1e-9 \

9 Tie 100 0 0 0.12e-6 0.5e-6 0.13e-6 0.5e-6 8.1e-9 \

1 Uniform

The above positions ribbons of positive charge along the upper

and lower edges with strength Ms, applies a large (100 Ms) field

to the center cell, and also applies a uniform field across the

sample stepped from (-.05,-.01,0.) to (.05,.01,0.) (Tesla), and

back, in approximately 0.001 T steps.

Default Control Point Spec: -torque 1e-6 # Assume equilibrium has been

reached, and step the applied field, when the reduced torque |mxh|

drops below 1e-6.

###################### OUTPUT SPECIFICATIONS ###########################

Base Output Filename: samplerun

Magnetization Output Format: binary 8 # Save magnetization states

in binary format with full (8-byte) precision.

########################## MISCELLANEOUS ###############################

Randomizer Seed: 1 # Value to seed random number generator with.

User Comment: This is an example MIF 1.1 file, with lots of comments.

Figure 4: Example MIF 1.1 file.

18.1.2 MIF 2.0

The MIF 2.0 format was introduced with the Oxsii (Sec. 10) 3D solver. It is not backwards
compatible with the MIF 1.1 format, however a conversion utility, mifconvert (Sec. 16.7),

105

is available to aid in converting MIF 1.1 files to the MIF 2.0 format.
A sample MIF 2.0 file is presented in Fig. 5. The first line of a MIF file must be of

the form “# MIF x.y”, where x.y represents the format revision number, here 2.0. Unlike
MIF 1.1 files, the structure of MIF 2.0 files are governed by the requirement that they be
valid Tcl scripts. During processing MIF 2.0 files are evaluated inside a Tcl safe interpreter.
Safe interpreters disable certain commands (for example, disk input/output), but otherwise
the full power of the Tcl scripting language is available for use inside a MIF 2.0 file. Two
special commands, Specify and Miscellaneous, are used to communicate to the solver the
details of the problem to be solved.

Specify Block

An OXS simulation is built as a collection of Oxs Ext (OXS Extension) objects. Each
Oxs Ext object is specified and initialized in the input MIF 2.0 file using the Specify com-
mand. The Specify command takes two arguments: the name of the Oxs Ext object to
create, and an initialization string which is passed on to the Oxs Ext object during its con-
struction. The objects are created in the order in which they appear in the MIF file, so
order is important in some cases. In particular, if one Oxs Ext object refers to another in its
initialization string, then the referred to object must precede the referrer in the MIF file.

Here is a simple Specify block:

Specify Oxs_EulerEvolve:foo {

alpha 0.5

start_dm 0.01

}

The name of the new Oxs Ext object is “Oxs EulerEvolve:foo.” The first part of this name,
up to the colon, is the the C++ class name of the object. Here Oxs EulerEvolve is a class
that integrates the Landau-Lifshitz ODE using a simple forward Euler method. This must
be a child of the Oxs Ext class. The second part of the name (following the colon), is a
name for this particular instance of the object. In general, it is possible to have multiple
instances of an Oxs Ext child class in a simulation, but each instance must have a unique
name. These names are used for identification by output routines, and to allow one Specify

block to refer to another Specify block appearing earlier in the MIF file. If the second part
of the name is not given, then as a default the empty string is appended. (E.g., if instead
of “Oxs EulerEvolve:foo” above the name was specified as just “Oxs EulerEvolve”, then the
effective full name of the created object would be “Oxs EulerEvolve:”.)

The second argument to the Specify command is an arbitrary string that is interpreted
by the new Oxs Ext (child) object in its constructor. The format of this string is up to the

106

designer of the child class, but it is recommended that the string be structured as a Tcl list
with an even number of elements, with each pair consisting of a key + value pair. This is the
format followed by all Oxs Ext classes released by the OOMMF team. (Refer to the Oxsii
documentation for more details on the individual Oxs Ext child classes, Sec. 10.1.)

In the above example, the initialization string consists of two key + value pairs, “alpha
0.5” and “start dm 0.01”. The first specifies that the damping parameter α in the Landau-
Lifshitz ODE is 0.5. The second specifies the initial step size for the integration routine.
Interested parties should refer to a Tcl programming reference (e.g., [15]) for details on
forming a proper Tcl list, but in this example the list as a whole is set off with curly braces
(“{” and “}”), and individual elements are white space delimited.

Sometimes the value portion of a key + value pair will itself be a list, as in this next
example:

Specify Oxs_RectangularMesh:mesh {

cellsize {10e-9 10e-9 10e-9}

atlas Oxs_SectionAtlas:WorldAtlas

}

Here the value associated with “cellsize” is a list of 3 elements (the sampling rate along each
of the coordinate axes, in meters). Notice also that the “atlas” value refers to an earlier
Oxs Ext object, “Oxs SectionAtlas:WorldAtlas”.

A Specify block may also include embedded Oxs Ext objects. This is frequently used
to initialize a spatially varying quantity. For example,

Specify Oxs_UniaxialAnisotropy {

axis { Oxs_RandomVectorFieldInit {

min_norm 1

max_norm 1

}

}

K1 { Oxs_UniformScalarFieldInit { value 530e3 } }

}

This magneto-crystalline anisotropy object has a cell-wise randomly distributed easy axis.
To initialize its internal data structure, Oxs UniaxialAnisotropy creates a temporary
Oxs RandomVectorFieldInit object. This temporary object is also a child of the Oxs Ext

hierarchy—this allows it to be constructed using the same name-lookup machinery in-
voked by the Specify command—but the temporary is known only to the enclosing
Oxs UniaxialAnisotropy object, so it cannot be referenced from other Specify blocks.

107

It also does not need to be given an instance name. It does need an initialization string,
however, which is given here as the 4-tuple “min norm 1 max norm 1”. Notice how the
curly braces are nested so that this 4-tuple is presented to Oxs RandomVectorFieldInit as
a single item, while “Oxs RandomVectorFieldInit” and the associated initialization string
are wrapped up in another Tcl list, so that the value associated with “axis” is parsed at that
level as a single item.

The Oxs UniaxialAnisotropy class also supports cell-wise varying K1, so the value asso-
ciated with “K1” is another embedded Oxs Ext object. In this particular example, however,
K1 is uniform throughout the simulation region, so the trivial Oxs UniformScalarFieldInit

class is used for initialization (to the value 530× 103 J/m3).
This concludes a brief overview of the Specify block command and structure. Because

the interpretation of the initialization string in the Specify block is left to the constructed
object, the MIF 2.0 format is freely extensible. This also means that one must refer to
the documentation of each Oxs Ext child class to know how to interpret the corresponding
initialization string. Details on the standard Oxs Ext child classes (Sec. 10.1) are included
with the Oxsii documentation.

Miscellaneous Block

The Miscellaneous block is intended to provide to the solver any information that does
not fit naturally into one of the Specify blocks. This is intended mainly for development
purposes, and may be deprecated in the future.

The content of the Miscellaneous block is structured as a Tcl list with an even number
of elements, consisting of key + value pairs. The only key currently supported is basename;
the associated value is used as a base for output name construction by some of the data
output routines. There is an example Miscellaneous block in the sample MIF 2.0 file in
Fig. 5.

MIF 2.0

#

All units are SI.

#

This file must be a valid Tcl script.

#

Individual Oxs_Ext objects are loaded and initialized

via Specify command blocks. The following block defines

the extents (in meters) of the volume to be modeled.

108

The prefix ’Oxs_SectionAtlas’ specifies the type

of Oxs_Ext object to create, and the suffix ’:WorldAtlas’ is

the name assigned to this particular instance. Each object

created by a Specify command must have a unique full name

(here ’Oxs_SectionAtlas:WorldAtlas’). If the suffix is

not explicitly given, then the default ’:’ is automatically

assigned. References may be made to either the full name,

or the shorter suffix instance name (here ’:WorldAtlas’) if the

latter is unique. See the Oxs_StandardDriver block for some

reference examples.

Specify Oxs_SectionAtlas:WorldAtlas {

top { Oxs_RectangularSection {

xrange {0 500e-9}

yrange {0 250e-9}

zrange {3e-9 9e-9}

} }

bottom { Oxs_RectangularSection {

xrange {0 500e-9}

yrange {0 250e-9}

zrange {0 3e-9}

} }

world { Oxs_RectangularSection {

xrange {0 500e-9}

yrange {0 250e-9}

zrange {0 9e-9}

} }

}

The Oxs_RectangularMesh object is initialized with the

discretization cell size (in meters).

Specify Oxs_RectangularMesh:mesh {

cellsize {10e-9 10e-9 10e-9}

atlas :WorldAtlas

}

Magnetocrystalline anisotropy block.

Oxs_UniformScalarFieldInit and Oxs_UniformVectorFieldInit

are examples of embedded Oxs_Ext objects used to provide

109

internal initialization of the Oxs_UniaxialAnisotropy

object.

Specify Oxs_UniaxialAnisotropy {

K1 { Oxs_UniformScalarFieldInit { value 530e3 } }

axis { Oxs_RandomVectorFieldInit {

min_norm 1

max_norm 1

}

}

}

Exchange energy with spatially varying exchange

coefficient A. Inside the top layer (refer to

Oxs_SectionAtlas:WorldAtlas above) A = 13e-12 J/m,

in the bottom layer A = 30e-12 J/m (taken from the

default_A value), and the interlayer coupling is

A = 20e-12 J/m.

Specify Oxs_Exchange6Ngbr {

default_A 30e-12

atlas :WorldAtlas

A {

{ top top 13e-12 }

{ top bottom 20e-12 }

}

}

Define a couple of constants for later use.

set PI [expr {4*atan(1.)}]

set MU0 [expr {4*$PI*1e-7}]

The Oxs_UZeeman class is initialized with field ranges

in A/m. The following block uses the Hscale option to

allow inputs in mT. To make the $mu0 subsitution active,

we enclose the block with double quotes ("") instead of

curly braces ({}). (There are other ways to achieve this.)

Specify Oxs_UZeeman:AppliedField "

Hscale [expr 0.001/$MU0]

Hrange {

110

{ 0 0 0 10 0 0 2 }

{ 10 0 0 -10 0 0 2 }

{ 0 0 0 0 10 0 4 }

{ 1 1 1 5 5 5 0 }

}

"

Enable demagnetization (stray) field computation.

This block takes no parameters.

Specify Oxs_Demag {}

First order Euler ODE solver

Specify Oxs_EulerEvolve {

alpha 0.5

start_dm 0.01

}

The following procedure is used to initialize the initial

spin configuration in the Oxs_StandardDriver block.

proc UpDownSpin { x y z xmin ymin zmin xmax ymax zmax } {

if { $x < 0.55*$xmin + 0.45*$xmax } {

return "0 1 0"

} elseif { $x > 0.45*$xmin + 0.55*$xmax } {

return "0 -1 0"

} else {

return "0 0 1"

}

}

Specify Oxs_StandardDriver {

evolver Oxs_EulerEvolve

min_timestep 1e-18

max_timestep 1e-9

stopping_dm_dt 0.01

mesh :mesh

number_of_stages 1

stage_iteration_limit 0

total_iteration_limit 0

111

Ms { Oxs_UniformScalarFieldInit { value 8e5 } }

m0 { Oxs_ScriptVectorFieldInit {

script {UpDownSpin}

norm 1

} }

}

Block specifying various miscellaneous data

Miscellaneous {

basename test

}

Figure 5: Example MIF 2.0 file.

18.2 Data table format (ODT)

Textual output from solver applications that is not of the vector field variety is output in
the OOMMF Data Table (ODT) format. This is an ASCII text file format, with column
information in the header and one line of data per record. Any line ending in a ’\’ character
is joined to the succeeding line before any other processing is performed. Any leading ‘#’
characters on the second line are removed.

As with the OVF format (Sec. 18.3.1), all non-data lines begin with a ‘#’ character,
comments with two ‘#’ characters. (This makes it easier to import the data into external
programs, for example, plotting packages.) An example is shown in Fig. 6.

The first line of an ODT file should be the file type descriptor

ODT 1.0

It is also recommended that ODT files be given names ending in the file extension .odt so
that ODT files may be easily identified.

The remaining lines of the ODT file format should be comments, data, or any of the
following 5 recognized descriptor tag lines:

• # Table Start: Optional, used to segment a file containing multiple data table blocks.
Anything after the colon is taken as an optional label for the corresponding data table
block.

112

ODT 1.0

Table Start

Title: This is a small sample ODT file.

#

This is a sample comment. You can put anything you want

on comment lines.

#

Columns: Iteration "Applied Field" {Total Energy} Mx

Units: {} "mT" "J/m^3" "A/m"

103 50 0.00636 787840

1000 32 0.00603 781120

10300 -5000 0.00640 -800e3

Table End

Figure 6: Sample ODT file.

• # Title: Optional; everything after the colon is interpreted as a title for the table.

• # Columns: Required. One parameter per column, designating the label for that
column. Spaces may be embedded in a column label by using the normal Tcl grouping
mechanisms (i.e., double-quotes and braces).

• # Units: Optional. If given, it should have one parameter for each column, giving a
unit label for the corresponding column.

• # Table End: Optional, no parameters. Should be paired with a corresponding Table
Start record.

Data may appear anywhere after the Columns descriptor record and before any Table End
line, with one record per line. The data should be numeric values separated by whitespace.

18.3 Vector field format (OVF)

Vector field files specify vector quantities (e.g., magnetization or magnetic flux density) as
a function of spatial position. This type of file is produced by mmSolve2D (Sec. 9) when
“Total Field” or “Magnetization” output is selected. It is also the input data type read by
mmDisp (Sec. 13). OOMMF stores vector field files in the OOMMF Vector Field (OVF)
format. There are two versions of the OVF format supported by OOMMF. The OVF 1.0

113

format is the preferred format and the only one written by OOMMF software. It supports
both rectangular and irregular meshes, in binary and ASCII text. The OVF 0.0 format
(formerly SVF) is an older, simpler format that can be useful for importing vector field data
into OOMMF from other programs. (A third format, the VecFil or Vector Input/Output
(VIO) format, was used by some precursors to the OOMMF code. Although OOMMF is
able to read the VIO format, its use is deprecated. New programs should not make use of
it.)

The recommended file extensions for OVF files are .omf for magnetization files, .ohf for
magnetic field (H) files, .obf for magnetic flux density (B) files, or .ovf for generic files.

18.3.1 The OVF 1.0 format

A commented sample OVF 1.0 file is provided in Fig. 7. An OVF file has an ASCII header
and trailer, and a data block that may be either ASCII or binary. All non-data lines begin
with a ‘#’ character; the double ‘##’ marks the start of a comment, which continues until
the end of the line. There is no line continuation character. Lines starting with a ‘#’ but
containing only whitespace characters are ignored.

All non-empty non-comment lines in the file header are structured as field+value pairs.
The field tag consists of all characters after the initial ‘#’ up to the first colon (‘:’) character.
Case is ignored, and all space and tab characters are eliminated. The value consists of all
characters after the first colon, continuing up to a ‘##’ comment designator or the end of the
line.

The first line of an OVF file should be a file type identification line, having the form

OOMMF: rectangular mesh v1.0

or

OOMMF: irregular mesh v1.0

where the value “rectangular mesh v1.0” or “irregular mesh v1.0” identifies the mesh type
and revision. While the OVF 1.0 format was under development in earlier OOMMF releases,
the revision strings 0.99 and 0.0a0 were sometimes recorded on the file type identification
line. OOMMF treats all of these as synonyms for 1.0 when reading OVF files.

The remainder of the file is conceptually broken into Segment blocks, and each Segment
block is composed of a (Segment) Header block and a Data block. Every block begins with
“# Begin: <block type>” line, and ends with a corresponding “# End: <block type>” line.
The number of Segment blocks is specified in the

Segment count: 1

114

line. Currently only 1 segment is allowed. This may be changed in the future to allow for
multiple vector fields per file. This is followed by

Begin: Segment

to start the first segment.

Segment Header block The Segment Header block start is marked by the line “# Begin:
Header” and the end by “# End: Header”. Everything between these lines should be either
comments or one of the following file descriptor lines. They are order independent. All are
required unless otherwise stated. Numeric values are floating point values unless “integer”
is explicitly stated.

• title: Long file name or title.

• desc: Description line. Optional. Use as many as desired. Description lines may be
displayed by postprocessing programs, unlike comment lines which are ignored by all
automated processing.

• meshunit: Fundamental mesh spatial unit, treated as a label. The comment marker
‘##’ is not allowed in this label. Example value: “nm”.

• valueunit: Fundamental field value unit, treated as a label. The comment marker
‘##’ is not allowed in this label. Example: “kA/m.”

• valuemultiplier: File data values are multiplied by this to get true values in units of
“valueunit.” This simplifies the use of normalized values in the data block.

• xmin, ymin, zmin, xmax, ymax, zmax: Six separate lines, specifying the bounding
box for the mesh, in units of “meshunit.” This may be used by display programs to
limit the display area, and may be used for drawing a boundary frame if “boundary”
is not specified.

• boundary: List of (x,y,z) triples specifying the vertices of a boundary frame. Optional.

• ValueRangeMaxMag, ValueRangeMinMag: The maximum and non-zero mini-
mum field magnitudes in the data block, in the same units as used in the data block.
These are for optional use as hints by postprocessing programs; for example, mmDisp
will not display any vector with magnitude smaller than ValueRangeMinMag.

115

• meshtype: Grid structure; should be either “rectangular” or “irregular.” Irregular
grid files should specify “pointcount” in the header; rectangular grid files should specify
instead “xbase, ybase, zbase,” “xstepsize, ystepsize, zstepsize,” and “xnodes, ynodes,
znodes.”

• pointcount: Number of data sample points/locations, i.e., nodes (integer). For irreg-
ular grids only.

• xbase, ybase, zbase: Three separate lines, denoting the position of the first point in
the data section, in units of “meshunit.” For rectangular grids only.

• xstepsize, ystepsize, zstepsize: Three separate lines, specifying the distance be-
tween adjacent grid points, in units of “meshunit.” Required for rectangular grids, but
may be specified as a display hint for irregular grids.

• xnodes, ynodes, znodes: Three separate lines, specifying the number of nodes along
each axis (integers). For rectangular grids only.

Data block The data block start is marked by a line of the form

Begin: data <representation>

where <representation> is one of “text”, “binary 4”, or “binary 8”. Text mode uses the
ASCII specification, with individual data items separated by an arbitrary amount of whites-
pace (spaces, tabs and newlines). Comments are not allowed inside binary mode data blocks,
but are permitted inside text data blocks.

The binary representations are IEEE floating point in network byte order (MSB). To
insure that the byte order is correct, and to provide a partial check that the file hasn’t been
sent through a non 8-bit clean channel, the first datum is a predefined value: 1234567.0
(Hex: 49 96 B4 38) for 4-byte mode, and 123456789012345.0 (Hex: 42 DC 12 21 83 77 DE
40) for 8-byte mode. The data immediately follow the check value.

The structure of the data depends on whether the “meshtype” declared in the header is
“irregular” or “rectangular”. For irregular meshes, each data element is a 6-tuple, consisting
of the x, y and z components of the node position, followed by the x, y and z components of
the field at that position. Ordering among the nodes is not relevant. The number of nodes
is specified in the “pointcount” line in the segment header.

For rectangular meshes, data input is field values only, in x, y, z component triples.
These are ordered with the x index incremented first, then the y index, and the z index last.
This is nominally Fortran order, and is adopted here because commonly x will be the longest
dimension, and z the shortest, so this order is more memory-access efficient than the normal

116

C array indexing of z, y, x. The size of each dimension is specified in the “xnodes, ynodes,
znodes” lines in the segment header.

In any case, the first character after the last data item should be a newline, followed by

End: data <representation>

where <representation> must match the value in the “Begin: data” line. This is followed
by a

End: segment

line that ends the segment, and hence the file.
Note: An OVF file with ASCII data using irregular mesh output is also a valid SVF file,

although one must pay close attention to possible value scaling as specified by “# valueunit”
and “# valuemultiplier” header lines.

OOMMF: rectangular mesh v1.0

#

This is a comment.

No comments allowed in the first line.

#

Segment count: 1 ## Number of segments. Should be 1 for now.

#

Begin: Segment

Begin: Header

#

Title: Long file name or title goes here

#

Desc: ’Description’ tag, which may be used or ignored by postprocessing

Desc: programs. You can put anything you want here, and can have as many

Desc: ’Desc’ lines as you want. The ## comment marker is disabled in

Desc: description lines.

#

Fundamental mesh measurement unit. Treated as a label:

meshunit: nm

#

meshtype: rectangular

xbase: 0. ## (xbase,ybase,zbase) is the position, in

ybase: 0. ## ’meshunit’, of the first point in the data

117

zbase: 0. ## section (below).

#

xstepsize: 20. ## Distance between adjacent grid pts.: on the x-axis,

ystepsize: 10. ## 20 nm, etc. The sign on this value determines the

zstepsize: 10. ## grid orientation relative to (xbase,ybase,zbase).

#

xnodes: 200 ## Number of nodes along the x-axis, etc. (integers)

ynodes: 400

znodes: 1

#

xmin: 0. ## Corner points defining mesh bounding box in

ymin: 0. ## ’meshunit’. Floating point values.

zmin: -10.

xmax: 4000.

ymax: 4000.

zmax: 10.

#

Fundamental field value unit, treated as a label:

valueunit: kA/m

valuemultiplier: 0.79577472 ## Multiply file values by this to get

true value in ’valueunits’.

#

ValueRangeMaxMag: 1005.3096 ## These are in file value units, and

ValueRangeMinMag: 1e-8 ## are used as hints (or defaults) by

postprocessing programs. The mmDisp program ignores any points

with magnitude smaller than ValueRangeMinMag, and uses

ValueRangeMaxMag to scale inputs for display.

#

End: Header

#

Anything between ’# End: Header’ and ’# Begin: data text’,

’# Begin: data binary 4’ or ’# Begin: data binary 8’ is ignored.

##

Data input is in ’x-component y-component z-component’ triples,

ordered with x incremented first, then y, and finally z.

#

Begin: data text

1000 0 0 724.1 0. 700.023

118

578.5 500.4 -652.36

<...data omitted for brevity...>

252.34 -696.42 -671.81

End: data text

End: segment

Figure 7: Commented OVF sample file.

18.3.2 The OVF 0.0 format

The OVF 0.0 format is a simple ASCII text format supporting irregularly sampled data.
It is intended as an aid for importing data from non-OOMMF programs, and is backwards
compatible with the format used for problem submissions for the first µMAG standard
problem13.

Users of previous releases of OOMMF may recognize the OVF 0.0 format by its previous
name, the Simple Vector Field (SVF) format. It came to the attention of the OOMMF
developers that the file extension .svf was already registered in several MIME systems
to indicate the Simple Vector Format14, a vector graphics format. To avoid conflict, we
have stopped using the name Simple Vector Field format, although OOMMF software still
recognizes and reads SVF files, and you may still find example files and other references to
the SVF format.

A sample OVF 0.0 file is shown in Fig. 8. Any line beginning with a ‘#’ character is a
comment, all others are data lines. Each data line is a whitespace separated list of 6 elements:
the x, y and z components of a node position, followed by the x, y and z components of the
field at that position. Input continues until the end of the file is reached.

It is recommended (but not required) that the first line of an OVF file be

OOMMF: irregular mesh v0.0

This will aid automatic file type detection. Also, three special (extended) comments in OVF
0.0 files are recognized by mmDisp:

File: <filename or extended filename>

Boundary-XY: <boundary vertex pairs>

Grid step: <cell dimension triple>

13http://www.ctcms.nist.gov/˜rdm/stdprob 1.html
14http://www.softsource.com/svf/

119

http://www.ctcms.nist.gov/~{}rdm/stdprobprotect unhbox voidb@x kern .06emvbox {hrule width.3em}1.html
http://www.softsource.com/svf/

OOMMF irregular mesh v0.0

File: sample.ovf

Boundary-XY: 0.0 0.0 1.0 0.0 1.0 2.0 0.0 2.0 0.0 0.0

Grid step: .25 .5 0

x y z m_x m_y m_z

0.01 0.01 0.01 -0.35537 0.93472 -0.00000

0.01 1.00 0.01 -0.18936 0.98191 -0.00000

0.01 1.99 0.01 -0.08112 0.99670 -0.00000

0.50 0.50 0.01 -0.03302 0.99945 -0.00001

0.99 0.05 0.01 -0.08141 0.99668 -0.00001

0.75 1.50 0.01 -0.18981 0.98182 -0.00000

0.99 1.99 0.01 -0.35652 0.93429 -0.00000

Figure 8: Example OVF 0.0 file.

All these lines are optional. The “File” provides a preferred (possibly extended) filename
to use for display identification. The “Boundary-XY” line specifies the ordered vertices of a
bounding polygon in the xy-plane. If given, mmDisp will draw a frame using those points
to ostensibly indicate the edges of the simulation body. Lastly, the “Grid step” line provides
three values representing the average x, y and z dimensions of the volume corresponding to
an individual node (field sample). It is used by mmDisp to help scale the display.

Note that the data section of an OVF 0.0 file takes the simple form of columns of ASCII
formatted numbers. Columns of whitespace separated numbers expressed in ASCII are easy
to import into other programs that process numerical datasets, and are easy to generate,
so the OVF 0.0 file format is useful for exchanging vector field data between OOMMF and
non-OOMMF programs. Furthermore, the data section of an OVF 0.0 file is consistent with
the data section of an OVF 1.0 file that has been saved as an irregular mesh using text data
representation. This means that even though OOMMF software now writes only the OVF
1.0 format for vector field data, simple interchange of vector field data with other programs
is still supported.

120

19 Troubleshooting

The OOMMF developers rely on reports from OOMMF users to alert them to problems
with the software and its documentation, and to guide the selection and implementation
of new features. See the Credits (Sec. 21) for instructions on how to contact the OOMMF
developers.

The more complete your report, the fewer followup messages will be required to determine
the cause of your problem. Usually when a problem arises there is an error message produced
by the OOMMF software. A stack trace may be offered that reveals more detail about the
error. When reporting an error, it will help the developers diagnose the problem if users cut
and paste into their problem report the error message and stack trace exactly as reported
by OOMMF software. In addition, please include a copy of the output generated by tclsh

oommf.tcl +platform so that the OOMMF developers will know the details of your platform
configuration.

Before making a report to the OOMMF developers, please check the following list of fixes
for known problems:

1. When compiling (Sec. 2.2.3), there is an error something like:

<30654> pimake 1.x.x.x MakeRule panic:

Don’t know how to make ’/usr/include/tcl.h’

This means the header file tcl.h is missing from your Tcl installation. Other missing
header files might be tk.h from the Tk installation, or Xlib.h from an X Windows
installation on Unix. In order to compile OOMMF, you need to have the development
versions of Tcl, Tk, and (if needed) X Windows installed. The way to achieve that is
platform-dependent. On Windows you do not need an X Windows installation, and
when you install Tcl/Tk be sure to request a “full” instllation, or one with “header and
library files”. On Linux, be sure to install developer packages (for example, RPMs) as
well as user packages. Other platforms are unlikely to have this problem.

2. When compiling (Sec. 2.2.3), there is an error indicating that exceptions are not sup-
ported.

Parts of OOMMF are written in C++, and exceptions have been part of the C++
language for many years. If your compiler does not support them, it is time to upgrade
to one that does. OOMMF 1.2 requires a compiler capable of compiling source code
which uses C++ exceptions.

3. Compiling (Sec. 2.2.3) with gcc/egcs produces syntax errors on lines involving auto ptr

templates.

121

This is known to occur on RedHat 5.2 systems. The auto ptr definition in the
system STL header file memory (located on RedHat 5.2 systems in the directory
/usr/include/g++) is disabled by two #if statements. One solution is to edit this file
to turn off the #if checks. If you do this, you will also have to fix two small typos in
the definition of the release() member function.

4. On Solaris, gcc reports many errors like

ANSI C++ forbids declaration ‘XSetTransientForHint’ with no type

On many Solaris systems, the header files for the X Windows system are not ANSI
compliant, and gcc complains about that. To work around this problem, edit the file
config/cache/solaris.tcl to add the option -fpermissive to the gcc command
line.

5. On Windows, when first starting oommf.tcl, there is an error:

Error launching mmLaunch version 1.x.x.x:

couldn’t execute "...\omfsh.exe": invalid argument

This cryptic message most likely means that the pre-compiled OOMMF binaries which
were downloaded are for a different version of Tcl/Tk than is installed on your system.
Download OOMMF again, taking care this time to retrieve the binaries which match
the release of Tcl/Tk you have installed.

6. When first starting oommf.tcl, there is an error:

Error in startup script: Neither Omf export nor Omf export list

set in

The file ext/net/omfExport.tcl may be missing from your OOMMF installation. If
necessary, download and install OOMMF again.

122

20 References

[1] A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford, New York, 1996).

[2] A. Aharoni, “Demagnetizing Factors for Rectangular Ferromagnetic Prisms,” J. App.
Phys. 83, 3432–3434 (1999).

[3] D. V. Berkov, K. Ramstöck, and A. Hubert, “Solving Micromagnetic Problems: Towards
an Optimal Numerical Method,” Phys. Stat. Sol. (a) 137, 207–222 (1993).

[4] W. F. Brown, Jr., Micromagnetics (Krieger, New York, 1978).

[5] M. J. Donahue and R. D. McMichael, “Exchange Energy Representations in Computa-
tional Micromagnetics,” Physica B 233, 272–278 (1997).

[6] M. J. Donahue and D. G. Porter, “OOMMF User’s Guide, Version 1.0,” Technical Re-
port No. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg,
MD (1999) .

[7] T. L. Gilbert, “A Lagrangian Formulation of the Gyromagnetic Equation of the Mag-
netization Field,” Phys. Rev. 100, 1243 (1955).

[8] P. R. Gillette and K. Oshima, “Magnetization Reversal by Rotation,” J. Appl. Phys.
29, 529–531 (1958).

[9] L. Landau and E. Lifshitz, “On the Theory of the Dispersion of Magnetic Permeability
in Ferromagnetic Bodies,” Physik. Z. Sowjetunion 8, 153–169 (1935).

[10] R. D. McMichael and M. J. Donahue, “Head to Head Domain Wall Structures in Thin
Magnetic Strips,” IEEE Trans. Mag. 33, 4167–4169 (1997).

[11] L. Néel, “Some Theoretical Aspects of Rock Magnetism,” Adv. Phys. 4, 191–242 (1955).

[12] A. J. Newell, W. Williams, and D. J. Dunlop, “A Generalization of the Demagnetizing
Tensor for Nonuniform Magnetization,” J. Geophysical Research 98, 9551–9555 (1993).

[13] M. R. Scheinfein, J. Unguris, J. L. Blue, K. J. Coakley, D. T. Pierce, and R. J. Celotta,
“Micromagnetics of Domain Walls at Surfaces,” Phys. Rev. B 43, 3395–3422 (1991).

[14] E. C. Stoner and E. P. Wohlfarth, “A Mechanism of Magnetic Hysteresis in Heteroge-
neous Alloys,” Phil. Trans. Royal Soc. London A240, 599–642 (1948).

123

[15] B. B. Welch, Practical Programming in Tcl and Tk, 3rd ed. (Prentice Hall, Upper Saddle
River, New Jersey USA, 2000).

124

21 Credits

The main contributors to this document are Michael J. Donahue (michael.donahue@nist.gov)
and Donald G. Porter (donald.porter@nist.gov), both of ITL/NIST. Section 3 is based on
notes from Dianne P. O’Leary.

The OOMMF15 code is being developed mainly by Michael Donahue and Donald Porter.
Robert D. McMichael (rmcmichael@nist.gov) made contributions to the early development
of the 2D micromagnetic solver. Jason Eicke (jeicke@seas.gwu.edu) is responsible for the
problem editor, and has worked on the self-magnetostatic module of the micromagnetic
solver.

Quite a few users have contributed to the development of OOMMF by submitting bug
reports, small pieces of code, or suggestions for improvements. Many thanks to all these
people, including Dieter Buntinx, NgocNga Dao, Olivier Gérardin, Ping He, Michael Ho,
Mansoor B. A. Jalil, Jörg Jorzick, Pavel Kabos, Michael Kleiber, H. T. Leung, David Lewis,
Sang Ho Lim, Yi Liu, Van Luu, Andy P. Manners, Edward Myers, Valentine Novosad,
Andrew Perrella, Anil Prabhakar, Robert Ravlic, Stephen E. Russek, Renat Sabirianov,
Zhupei Shi, Xiaobo Tan, Stephen Thompson, Vassilios Tsiantos, Pieter Visscher, Scott L.
Whittenburg, Kong Xiangyang, Chengtao Yu, Steven A. Zielke, and Pei Zou.

If you have bug reports, contributed code, feature requests, or other comments for the
OOMMF developers, please send them in an e-mail message to <michael.donahue@nist.gov>.

15http://math.nist.gov/oommf/

125

http://www.itl.nist.gov/
http://www.nist.gov/
mailto:michael.donahue@nist.gov
http://math.nist.gov/oommf/

Index

account service directory, 20, 26, 84, 85
expires, 21
launching of, 21

Ajuba Solutions, 3
animations, 75
announcements, 2
antialias, 78
application

any2ppm, 32, 72, 85, 100
avf2odt, 73
avf2ovf, 49, 74
avf2ppm, 59, 75
avfdiff, 79
batchmaster, 88
batchslave, 85
batchsolve, 84, 87, 96
bootstrap, 22–24
FileSource, 29, 96
gzip, 58
Internet Explorer, 11, 65
mag2hfield, 81
make, 82
mifconvert, 82, 96, 105
mmArchive, 16, 18, 51, 67
mmDataTable, 16, 18, 50, 53, 54
mmDisp, 1, 16, 18, 33, 57, 67, 75, 77,

78, 86
mmGraph, 16, 18, 37, 51, 53, 67
mmHelp, 69
mmLaunch, 16, 25, 31, 32, 37, 39, 84
mmProbEd, 16, 27, 29, 85, 96, 125
mmSolve2D, 16, 17, 31, 67, 74, 84, 85,

96, 98, 113
Netscape, 11, 64
OOMMF Batch System, 84

Oxsii, 96, 105
oxsii, 39
pimake, 9, 82
ppmquant, 77
ppmtogif, 76
rsh, 88, 91, 93
tclsh, 3
web browser, 64, 69
Windows Explorer, 15, 24
wish, 3
Xvfb, 3, 23, 72

architecture, 20

batch processing, see application,OOMMF Batch Sys-
tem

Borland C++, see platform,Windows,Borland C++
boundary, 1, 61, 78
bug reports, see reporting bugs

cell size, 99
client, 20
client-server architecture, 20
color

discretization, 77
map, 60, 77
quantity, 59, 77

communication protocol, 90
contact information, 125
contributors, 125
control points, see simulation,control point
crystalline anisotropy, 97
curve break, 54
customize, 11

file format translation, 58–59
help file browser, 69

126

host server port, 21
cut-and-paste, 51
Cygwin, see platform,Windows,Cygwin en-

vironment

data
print, 54, 59, 62
save, 18, 54, 56, 59, 62, 67, 68
scale, 60, 61
zoom, 61

demagnetization, 98
download, 5

e-mail, 2, 125
edge anisotropy, 97
energy

anisotropy, 34, 36
crystalline anisotropy, 97
demag, 34, 36, 125
edge anisotropy, 97
exchange, 34, 36
total, 34, 36, 86
Zeeman, 34, 36

environment variables
DISPLAY, 21
inherited from parent process, 21
LD LIBRARY PATH, 8
OOMMF TCL CONFIG, 7
OOMMF TCLSH, 7
OOMMF TK CONFIG, 8
OOMMF WISH, 8
OSTYPE, 14
PATH, 9
TCL LIBRARY, 8, 15
TERM, 14
TK LIBRARY, 8

exchange stiffness, 97

FFT, 1, 36, 99

field
applied, 1, 33, 86, 102
demag, 1
effective, 36
update count, 33

field range, 101
file

bitmap, 72, 75
bmp, 72, 75, 100
configuration, 58, 77
conversion, 72–75, 81, 82
data table, 18, 33, 54, 73, 86, 91, 92,

112
difference, 79
gif, 72, 77, 100
hosts, see platform,Windows,hosts file
HTML, 69
log, 34, 85, 86
magnetization, 81, 85, 92
mask, 32, 85, 100
mif, 27, 29, 35, 82, 85, 86, 90–93, 96
obf, see file,vector field
odt, see file,data table, 54
ohf, see file,vector field, 103
omf, see file,magnetization, 103
ovf, see file,vector field, 101, 119
ppm, 72, 75, 77, 100
svf, 114, 117, 119
VecFil, 114
vector field, 18, 32, 58, 59, 61, 65, 73–

75, 79, 81, 86, 113
vio, 73, 74, 79, 101, 114

grid, 1, 36, 64, 74, 116
gyromagnetic ratio, 98

host service directory, 20–21, 25
expires, 21

127

launching of, 21

installation, 3
TclTk, 7–8

Internet, see TCP/IP
iteration, 33, 86

Landau-Lifshitz, see ODE,Landau-Lifshitz
launch

by account service directory, 21
command line arguments, 22–24
foreground, 22
from command line, 22
standard options, 23–24
version requirement, 22–23
with bootstrap application, 22
with mmLaunch, 26

license, iii

magnetization, 34, 86
initial, 1

magnetization initial, 100
margin, 78
materials, 28, 97
max angle, 34
memory use, 55
mesh, see grid
MIF, see file,mif
Miscellaneous block (MIF), 108
mmLaunch user interface, 25, 26, 32, 37,

39, 67
movies, see animations
mxh, see simulation,mxh

NetPBM, 76
network socket, 1, 38, 90

bug, see platform,Windows,network socket bug

OBS, see application,OOMMF Batch Sys-
tem

ODE
Landau-Lifshitz, 1, 36, 37, 45, 98
predictor-corrector, 37
Runge-Kutta, 37
step size, 104

output schedule, 17, 18, 33
Oxs Ext child classes, 40

part geometry, 99
platform, 121

configuration, 5
names, 6, 11–13
Unix

executable Tcl scripts, 24
PostScript to printer, 54, 59
X server, 67

Windows
Borland C++, 14
Cygwin environment, 7, 14
desktop shorcut, 13
dummy user ID, 26
file extension associations, 15, 24
file path separator, 8
hosts file, 8
network socket bug, 38
no Tcl configuration file, 7
setting environment variables, 15
Visual C++ configuration, 8
wildcard expansion, 76

precession, 98

random numbers, 104
record identifier, 96
reporting bugs, 121, 125
requirement

application version, see launch,version re-
quirement

C++ compiler, 4

128

disk space, 3–4, 10
display, 32, 85
rsh, 88
Tcl/Tk, 3
TCP/IP, 3
Tk, 32, 72, 76, 85
Tk 8.0+, 72

sampling, 77
saturation magnetization, 97
segment block, 114
self-magnetostatic, see demagnetization
server, 20
services, 20
simulation

2D, 1, 31, 84, 125
3D, 1, 39
control point, 18, 33, 37, 90, 92, 101,

102
equilibrium, 18
interactive control, 17, 18, 34, 85
iteration, 101
mxh, 34, 101, 104
restarting, 31, 85
scheduling, 87, 92
termination, 19, 35, 85
time, 33, 101

Specify block (MIF), 106
step size, 33

task script, 87, 90
Tcl list, 96
TCP/IP, 3, 20
threads, 17, 26, 32, 33, 39
time step, 33
torque, see simulation,mxh
total field, see field,effective

URL, 69

user ID, 20, 21, 26

vortex, 101

working directory, 5, 9, 21, 22, 26, 85, 93

Xvfb, see application,Xvfb

129

	Overview of OOMMF
	Installation
	Requirements
	Basic Installation
	Download
	Check Your Platform Configuration
	Compiling and Linking
	Installing
	Using OOMMF Software
	Reporting Problems

	Advanced Installation
	Reducing Disk Space Usage
	Local Customizations
	Managing OOMMF Platform Names
	Microsoft Windows Options

	Quick Start: Example OOMMF Session
	OOMMF Architecture Overview
	Command Line Launching
	OOMMF Launcher/Control Interface: mmLaunch
	Micromagnetic Problem Editor: mmProbEd
	Micromagnetic Problem File Source: FileSource
	The 2D Micromagnetic Solver: mmSolve2D
	OOMMF eXtensible Solver Interactive Interface: oxsii
	Standard Oxs_Ext Child Classes

	Data Table Display: mmDataTable
	Data Graph Display: mmGraph
	Vector Field Display: mmDisp
	Data Archive: mmArchive
	Documentation Viewer: mmHelp
	Command Line Utilities
	Bitmap File Format Conversion: any2ppm
	Making Data Tables from Vector Fields: avf2odt
	Vector Field File Format Conversion: avf2ovf
	Making Bitmaps from Vector Fields: avf2ppm
	Vector Field File Difference: avfdiff
	Calculating H Fields from Magnetization: mag2hfield
	MIF Format Conversion: mifconvert
	Platform-Independent Make: pimake

	OOMMF Batch System
	Solver Batch Interface: batchsolve
	Batch Scheduling System
	Master Scheduling Control: batchmaster
	Task Control: batchslave
	Batch Task Scripts
	Sample task scripts

	File Formats
	Problem specification format (MIF)
	MIF 1.1
	MIF 2.0

	Data table format (ODT)
	Vector field format (OVF)
	The OVF 1.0 format
	The OVF 0.0 format

	Troubleshooting
	References
	Credits

