- Grandparent: 0. Numerical Evaluation of Special Functions
- Parent: 4. Functions of One Variable
- Previous: 4.2. Error Functions, Dawson's Integral, Fresnel Integrals
- Next: 4.4. Gamma, Psi, and Polygamma Functions

Press here to get the full document in PostScript format.

Press here to get this subdocument in PostScript format.

**D. W. Lozier and F. W. J. Olver**

** 4.3. Exponential Integrals, Logarithmic Integral, Sine and Cosine Integrals
. **

4.3.1. * Exponential Integrals of Real Argument. *

Algorithms:

[** Cle62**]
,
[** CT69**]
,
[** Luk69b**]
,
[** Luk76**]
.

Software Packages:

[** Amo80a**, Fortran]
,
[** CMW63**, Algol]
,
[** Gau73**, Algol]
,
[** Pac70**, Fortran]
,
[** SZ76**, Fortran]
.

Intermediate Libraries:

[** Bak92**]
,
[** ULI90**]
.

Comprehensive Libraries:

** IMSL**,
** NAG**,
** Numerical Recipes**,
** Scientific Desk**,
** SLATEC**.

4.3.2. * Logarithmic Integral of Real Argument. *

Intermediate Libraries:

[** Bak92**]
,
[** ULI90**]
.

Comprehensive Libraries:

** IMSL**,
** Scientific Desk**,
** SLATEC**.

4.3.3. * Sine and Cosine Integrals and Hyperbolic Sine and
Cosine Integrals of Real Argument. *

Algorithms:

[** Luk69b**]
.

Software Packages:

[** Bul67**, Algol]
.

Intermediate Libraries:

[** Bak92**]
,
[** Mos89**]
,
[** ULI90**]
.

Comprehensive Libraries:

** IMSL**,
** NAG**,
** Numerical Recipes**,
** Scientific Desk**.

4.3.4. * Complex Arguments. *

Algorithms:

[** Luk69b**]
.

Software Packages:

[** Amo90a**, Fortran]
.

Intermediate Libraries:

[** Bak92**]
.

Interactive Systems:

** Maple**,
** Mathematica**.

4.3.5. * Articles. *

[** Amo80b**]
,
[** Amo90b**]
,
[** CT68**]
,
[** TM68**]
,
[** vdLT84**]
.

**Amo80a**-
D. E. Amos,
*Algorithm 556. Exponential integrals*, ACM Trans. Math. Software**6**(1980), 420--428, for remark see same journal v. 9 (1983), p. 525. **Amo80b**-
D. E. Amos,
*Computation of exponential integrals*, ACM Trans. Math. Software**6**(1980), 365--377. **Amo90a**-
D. E. Amos,
*Algorithm 683. A portable Fortran subroutine for exponential integrals of a complex argument*, ACM Trans. Math. Software**16**(1990), 178--182. **Amo90b**-
D. E. Amos,
*Computation of exponential integrals of a complex argument*, ACM Trans. Math. Software**16**(1990), 169--177. **Bak92**-
L. Baker,
*C mathematical function handbook*, McGraw-Hill, Inc., New York, 1992, includes diskette. **Bul67**-
R. Bulirsch,
*Numerical calculation of the sine, cosine and Fresnel integrals*, Numer. Math.**9**(1967), 380--385. **Cle62**-
C. W. Clenshaw,
*Chebyshev series for mathematical functions*, National Physical Laboratory Mathematical Tables, vol. 5, Her Majesty's Stationery Office, London, 1962. **CMW63**-
C. W. Clenshaw, G. F. Miller, and M. Woodger,
*Algorithms for special functions I*, Numer. Math.**4**(1963), 403--419. **CT68**-
W. J. Cody and H. C. Thacher, Jr.,
*Rational Chebyshev approximations for the exponential integral*, Math. Comp.**22**(1968), 641--649. **CT69**-
W. J. Cody and H. C. Thacher, Jr.,
*Chebyshev approximations for the exponential integral*, Math. Comp.**23**(1969), 289--303. **Gau73**-
W. Gautschi,
*Algorithm 471. Exponential integrals*, Comm. ACM**16**(1973), 761--763. **Luk69**-
Y. L. Luke,
*The special functions and their approximations*, vol. 2, Academic Press, New York, 1969. **Luk76**-
Y. L. Luke,
*On the expansion of exponential type integrals in series of Chebyshev polynomials*, Theory of Approximation with Applications (A. G. Law and B. N. Sahney, eds.), Academic Press, Inc., New York, 1976, pp. 180--199. **Mos89**-
S. L. B. Moshier,
*Methods and programs for mathematical functions*, Ellis Horwood Limited, Chichester, 1989, separate diskette. **Pac70**-
K. A. Paciorek,
*Algorithm 385. Exponential integral*, Comm. ACM**13**(1970), 446--447, for certification and remarks see same journal v. 13 (1970), pp. 448--449 and p. 750; v. 15 (1972), p. 1074. **SZ76**-
I. A. Stegun and R. Zucker,
*Automatic computing methods for special functions. Part III. The sine, cosine, exponential integrals, and related functions*, J. Res. Nat. Bur. Standards**80B**(1976), 291--311. **TM68**-
R. F. Tooper and J. Mark,
*Simplified calculation of for positive arguments, and a short table of*, Math. Comp.**22**(1968), 448--449. **ULI90**-
*Mathematical function library for Microsoft--C*, United Laboratories, Inc., John Wiley & Sons, 1990, includes diskettes. Edition also exists in Fortran (1989). **vdLT84**-
C. G. van der Laan and N. M. Temme,
*Calculation of special functions*, CWI Tract, vol. 10, Centrum voor Wiskunde en Informatica, Amsterdam, 1984.*:*The gamma function, the exponential integrals and error-like functions

The original abstract follows.

*
Higher transcendental functions continue to play varied and
important roles in investigations by engineers, mathematicians,
scientists and statisticians.
The purpose of this paper is to assist in locating useful approximations
and software for the numerical generation of these functions, and to
offer some suggestions for future developments in this field.
*

Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Md 20899

* E-mail address: dlozier@nist.gov*

Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742

* E-mail address: olver@bessel.umd.edu*

The research of the second author has been supported by NSF Grant CCR 89-14933.

1991 * Mathematics Subject Classification*. Primary 65D20;
Secondary 33-00.

Fri Apr 7 13:50:43 EDT 1995