
Methods for Quantifying and Characterizing

Errors in Pixel-Based 3D Rendering

John G. Hagedorn
Judith E. Terrill

Adele P. Peskin
James J. Filliben

Abstract

We present methods for measuring errors in the rendering of three-

dimensional points, line segments, and polygons in pixel-based com-

puter graphics systems. We present error metrics for each of these

three cases. These methods are applied to rendering with OpenGL

on two common hardware platforms under several rendering condi-

tions. Results are presented and differences in measured errors are

analyzed and characterized. We discuss possible extensions of this

error analysis approach to other aspects of the process of generating

visual representations of synthetic scenes.

1 Introduction

The visual display of virtual three-dimensional (3D) scenes has become com-
monplace in modern computing systems. Applications can be found in such
diverse fields as consumer games, video production, advertising, computer-
aided design, and scientific data visualization.

While many of these applications are intended to provide a qualitative
experience to the viewer, others are intended to convey accurate represen-
tations of spatial relationships. Applications such as computer-aided design
and scientific data visualization have important quantitative components.
For example, at NIST, we have implemented interactive measurement tools
into the virtual world [Hagedorn et al., 2007]. As we use such systems for

1

quantitative tasks, it is incumbent upon us to understand how the computer
graphics environment contributes to uncertainty in these tasks. The work we
present here is a first step toward this understanding.

In current computer graphics systems, virtual scenes are usually described
internally as a set of geometric objects in a 3D coordinate system. These
geometric descriptions are then transformed into a set of pixels that are
displayed to the user on a monitor. The process of transforming the 3D
descriptions to a set of pixels is referred to as rendering.

We have developed methods for assessing geometric errors introduced by
the rendering process. While this is hardly the only possible source of error
that may be introduced by computer graphics technology, in this paper we
focus exclusively on the rendering process. We will not examine other possible
sources of error such as inaccuracies in display devices or errors introduced
by variations in user viewing conditions.

It is also worth noting that issues of inaccuracies in visual presentation
are not confined to the display of computer generated pictures. The display
of different types of content (such as photographs, motion pictures, 3D syn-
thetic scenes, and conventional two-dimensional graphs) and different media
(such as paper, film, cathode ray tube (CRT), flat panel, and video projec-
tion) could each have its own set of uncertainty issues. For example, CRT
displays can exhibit pincushion and barrel distortions as well as other geo-
metric errors [Keller, 1997].

2 Approach

We study the rendering of three 3D geometric primitive forms: points, line
segments, and triangles. These represent the simplest and by far the most
commonly used geometric forms rendered in current computer graphics sys-
tems. Our work starts from the assumption that for each of these 3D geo-
metric forms, there is a correct projection of the form to a two-dimensional
(2D) rectangle that represents the viewing area. The viewing area can be
thought of as an idealization of (a portion of) the monitor screen, however it
is not discretized into a finite set of elements (pixels) as a real screen is. This
projection is described in many standard references on 3D computer graph-
ics [Foley et al., 1990]. We use this projection from 3D coordinates to the
2D coordinates of the viewing rectangle as an idealized form of the rendering
process. We measure rendering errors by comparing the set of pixels drawn

2

by the rendering process with the projection of the primitive to the idealized
viewing rectangle.

The rendering process is treated here as a black box. We examine the
results of the rendering of points, line segments, and triangles without trying
to evaluate the correctness of implementation of any specific rendering algo-
rithm. We do not attempt to explain any particular behavior of the rendering
system; we simply observe and measure it.

Furthermore, we consider only the positional accuracy of the rendering.
In other words, we are looking only at the positions of the pixels that are
drawn as part of each primitive. The accuracy of the color or intensity of the
pixels is not considered.

3 Method

We perform three sets of experiments, one set for each of the three types of
geometric primitive. Each experiment is a run of a program that renders a
set of geometric primitives and compares the actual pixels rendered with the
ideal projection of the primitive to the viewing area. For each primitive type,
we compare error metrics that quantify the amount by which the rendering
of a primitive deviates from its ideal projection. The error metrics used for
each primitive type are described below.

We ran each experiment on two platforms. Both platforms use commodity
hardware and operating systems. We will refer to these as Platform I and
Platform II. We keep the platforms anonymous because we wish this paper
to be a presentation of our methods rather than an evaluation of specific
hardware and software.

In the experiments that we describe here, the programs render the primi-
tives using OpenGL [Woo et al., 1997], however our method is not dependent
on any particular rendering software or rendering technique. Indeed, these
methods could just as easily be used with other 3D rendering libraries such
as DirectX [Microsoft, 2007]. We chose OpenGL because it is readily avail-
able on many hardware platforms, and is used in many consumer, industrial,
and research applications. Our test software was designed so that it could
easily be ported to a variety of hardware platforms and operating systems.
We have placed our software on the web [NIST, 2008].

Again, we want to emphasize that the purpose of this paper is not to
determine whether one hardware or software platform is better than another,

3

or to evaluate the performance of specific systems. Nor are we testing the
correctness of the implementation of any rendering algorithm. Rather our
intent is to describe methods by which one can characterize and quantify the
errors associated with a given 3D rendering system and compare one system
with another. In this paper, we use specific hardware and software as vehicles
for testing these methods and for showing their efficacy.

The basic procedure for all of our experiments was:

• Randomly generate 8 sets of viewing parameters

• Randomly generate a set of geometric primitives

• For each primitive, each view, and each platform

– render the element as white pixels on a black background without
antialiasing

– look at which pixels are part of the rendered element (using the
OpenGL procedure glReadPixels)

– quantify the deviation of the rendered element from the projection
to the idealized viewing rectangle

• Aggregate errors for individual primitives to form statistics

• Compare error statistics across viewing parameter sets and across plat-
forms

We use a portable random number generator [Kahaner et al., 1989] for
creating the randomly distributed viewing parameters and geometric primi-
tives. This ensures that we are running the same tests across platforms.

3.1 Generation of Viewing Parameters

Viewing parameters for 3D rendering can be expressed in terms of a camera
metaphor. The camera has a location, an orientation and an angular field
of view (FOV). The location is simply a point in 3-space. The orientation
determines the direction the camera is pointing and which way is ‘up’. The
angular field of view corresponds to the ‘length’ of the virtual camera lens.
For example an angular field of view of 10 degrees would be like a telephoto
lens (a ‘long’ lens) while an angular field of view of 100 degrees would be like

4

a wide-angle or fish-eye lens (a ‘short’ lens). The field of view of this virtual
camera forms an infinite four-sided pyramid in the 3D coordinate system.
The four faces of this 3D pyramid correspond to the four edges of the 2D
viewing area. Only geometry that intersects this pyramid can be rendered.

In addition to these camera-like parameters, there are several other pa-
rameters that describe viewing in a typical pixel-based computer graphics
system. The size of the rectangular screen area that is used for rendering
is described by its height and width in pixels. We will call this rectangular
screen area the rendering window. Following the camera analogy, the 2D
viewing area and the corresponding rendering window on the screen can be
thought of as the focal plane of the virtual camera.

Also, many computer graphics systems require the definition of near and
far clipping planes. These are planes in the 3D coordinate system that are
typically perpendicular to the direction that the camera is pointing. They
are usually specified by the distance to the plane from the view point (the
camera location) along the view direction vector. Normally any geometry
that is closer than the near clipping plane or beyond the far clipping plane
is discarded (clipped). So the infinite four-sided pyramid described above is
reduced to a truncated pyramid with six faces (a frustum).

For the tests described here, there are eight different combinations of
viewing parameters: two camera orientations, two angular fields of view, and
two window sizes. The two camera orientations are randomly generated;
we refer to these as CO-1 and CO-2. The two angular fields of view are 30
degrees and 150 degrees, and the two pixel dimensions are 128x128 pixels and
907x907 pixels. The camera location is fixed at the origin. The near and far
clipping planes are set at 0.01 units and 10.0 units respectively away from the
view point. We number these eight sets of viewing parameters sequentially
1 through 8 as indicated in the Table 1.

3.2 Coordinate Systems

There are three coordinate systems that we will use. The first coordinate
system is the 3D coordinate system in which the the geometric primitives
(points, line segments, and triangles) are defined. Then there is the 2D pixel

coordinate system of the rendering window. In this coordinate system, one
unit of length is equal to the spacing between adjacent pixels in the X or Y
direction. Note that this implies that the X spacing of pixels is the same as
the Y spacing of pixels. Our methods as implemented assume this equality,

5

Camera Angular Window Pixel
Orientation Field of View Dimensions

View 1 CO-1 30 128x128
View 2 CO-2 30 128x128
View 3 CO-1 150 128x128
View 4 CO-2 150 128x128
View 5 CO-1 30 907x907
View 6 CO-2 30 907x907
View 7 CO-1 150 907x907
View 8 CO-2 150 907x907

Table 1: The eight sets of viewing parameters.

although they are easily adapted to unequal pixel spacing in X and Y. We
also use the pixel coordinate system for the 2D viewing area that represents
an idealized form of the rendering window. Although this viewing area is not
discretized into pixels, it is convenient to use the same pixel-based coordinate
system.

In addition to the pixel coordinate system, we also introduce a 2D coor-
dinate system for the rendering window that normalizes distances based on
the size of the window. We define one unit of length in normalized window

coordinates to be
√

HW where H is the height of the window in pixels and
W is the width of the window in pixels. This coordinate system enables us to
compare distances (and areas) in windows of different sizes. Measurements
expressed in either of these coordinate systems are easily converted to phys-
ical coordinates (such as millimeters) if the physical spacing between pixels
is known.

As mentioned above, the projection from the 3D coordinate system to
the 2D pixel coordinate system is a major part of the rendering process and
is a central component of our methods. The normalized window coordinate
system is used for defining normalized versions of our error metrics.

3.3 Generation of Geometric Primitives

All of the geometric primitives are specified in terms of points in the 3D
coordinate system. A triangle is specified by its three 3D vertex points; a
line segment is specified by its two 3D end points; and a point primitive, of

6

course, is specified by one 3D point. For each primitive, we get the required
number of points by generating points that are randomly distributed within
the 3D unit sphere (a sphere of radius 1, centered at the origin). Each point
is produced by randomly generating X, Y, and Z coordinates in the interval
[−1, 1] and discarding those points that lie outside the unit sphere. This
random distribution of points through a spherical volume (rather than, for
example, through a cubical volume) ensures that the directions of the points
relative to the center of the sphere are randomly distributed. The center of
the sphere (the origin) is, as described above, our camera location for all of
the eight sets of viewing parameters. For the tests described below, 100,000
of each geometric primitive are generated.

3.4 Error Metrics for Point Primitives

The 3D point primitive is regarded as a 0-dimensional object described by a
set of X, Y, and Z coordinates. The rendered pixel for a given point primitive
is regarded as zero-dimensional object (a point) in the 2D pixel coordinate
system of the screen.

We present the error metric for the rendering of a point primitive in both
a non-normalized and a normalized form. The non-normalized metric is a
length in pixel coordinates, the normalized form is a length in normalized
window coordinates. The non-normalized metric is simply the distance from
the projection of 3D point to the ideal viewing rectangle from the center of the
rendered pixel in pixel coordinates. As mentioned above, we determine the
coordinates of rendered pixels by using the OpenGL procedure glReadPixels,
which enables us to examine the contents of pixels in the frame buffer after
we render the primitive. This method is used for all of the metrics described
below.

To specify the point rendering metrics, we begin with some definitions.
Let

p be a 3D point,

proj(p) be the projection of point p to 2D pixel space,

r(p) be the 2D coordinates of the pixel rendered for 3D point p,
and

dist2D(p1, p2) be the distance between 2D points p1 and p2.

7

We now can define the non-normalized point rendering error metric (PE) for
a 3D point p:

PE(p) = dist2D(proj(p), r(p)). (1)

Figure 1 illustrates the point error metric. This measure is in units of linear
pixel coordinates.

Figure 1: The point rendering error is the distance from the projection of
the 3D point to the center of the rendered pixel.

We then take this point rendering metric and scale it to normalized win-
dow coordinates. We let

W be the width of the rendering window in in pixel coordinates
and

H be the height of the rendering window in in pixel coordinates.

8

We then define the normalized error metric PEnorm :

PEnorm(p) =
dist2D(proj(p), r(p))√

WH
. (2)

By construction, some of the point primitives will lie outside of the field
of view and such points should generate no rendered pixels. Additionally,
the error metric assumes that if a point does lie within the field of view,
that there will be a single pixel rendered. So in addition to the error metric
described above, we tabulate the number of primitives that fall into each of
these categories:

true-visible - the point lies in the field of view and is rendered
as a single pixel

true-invisible - the point does not lie in the field of view and
no pixels are rendered

false-visible - the point does not lie in the field of view but it
is rendered by a single pixel

false-invisible - the point lies in the field of view but no pixels
are rendered

multiple-visible - multiple pixels are rendered

We only calculate the point rendering error metrics for the true-visible case.

3.5 Error Metrics for Line Segment Primitives

3D Line segment primitives are regarded as one-dimensional objects de-
scribed by two 3D end points. The pixels rendered for each segment are
regarded as zero-dimensional objects (points) in the 2D pixel coordinate sys-
tem of the screen.

We devised error metrics for rendering of line segment primitives based on
offset errors and extent errors. An offset error is the perpendicular distance
from a rendered pixel to the 2D projection of the line defined by the two 3D
segment end-points. These distances can be signed, where a distance from
a 2D point to a 2D line is either positive or negative based on which side of
the line the point lies. Extent errors measure how the set of rendered pixels
cover the linear extent of the line segment. We identify two types of extent

9

errors. When the rendered pixels extend beyond the end of the line segment,
we refer to this as overshoot, when they do not cover to the end of the line
segment, we refer to it as undershoot. Figure 2 illustrates the components of
these metrics for a simple case.

Figure 2: Components of the line segment error metrics. The white pixels are
the pixels that were rendered to represent the line segment. The projection
of the 3D line segment to 2D is shown as the gray line segment. The offset
errors are the perpendicular distances from the centers of the rendered pixels
to the projected line. The extent errors measure the difference between the
ends of the projected line segment to the ends as indicated by the rendered
pixels.

Our error metric for line segments is implemented in a signed and un-
signed form; we refer to these as LSEs and LSEu respectively. The signed
metric (LSEs) uses signed offset errors and does not include extent errors.
The unsigned metric (LSEu) regards all offset errors as positive and also

10

includes extent errors. In order to specify these metrics we first define some
terms. Let

e1 and e2 be 3D points,

(e1, e2) be the line segment with end points e1 to e2,

ptProj (e) be the 2D point produced by projecting the 3D
point e, to 2D pixel coordinates.

lnProj (e1, e2) be the 2D line produced by projecting the 3D
line determined by e1 and e2 to 2D pixel coordinates,

P(e1, e2) be the set of 2D pixels that are rendered for (e1, e2),

N(e1, e2) be the number of pixels in P(e1, e2), and

ds (p, line) be the signed distance from 2D point p to a 2D line
in pixel coordinates. This distance is positive when p is on
one side of the line and negative when p is on the other side.
When p is a pixel position, this distance is an offset error as
described above.

As mentioned above, pixels are regarded as 2D points in this discussion. We
now define the signed error metric LSEs:

LSEs(e1, e2) =

∣

∣

∣

∣

∣

∑

p∈P (e1,e2) ds(p, lnProj(e1, e2))

N(e1, e2)

∣

∣

∣

∣

∣

. (3)

This is the absolute value of the average of the offset errors for all rendered
pixels, so LSEs is in units of linear pixels. This measures the extent to which
the offset errors are biased to one side or the other of the projected line
segment. Note that by taking the absolute value of the average offset error,
we are choosing to measure the magnitude of the bias without considering a
direction to the bias.

In order to define LSEu, we must first define the extent errors: the
amount that the set of rendered pixels overshoot or undershoot the projected
line segment. We first observe that the set of rendered pixels, P (e1, e2), can
be ordered based on the position of orthogonal projection of each pixel onto
lnProj(e1, e2). We order these so that as we move from one pixel to the
next, the projections of these pixels onto the line move in the direction from
ptProj(e1) to ptProj(e2). In this ordering of the rendered pixels, the first in
the list corresponds (in some sense) to e1, and the last in the list corresponds

11

to e2. With this background, we can define the extent error. Augmenting
the definitions above, let

projToLn(p, l) be point on line l closest to point p,

first be the first point in the set P(e1,e2) when ordered as de-
scribed above,

last be the last point in the set P(e1,e2) when ordered as de-
scribed above, and

dist2D(a, b) be the positive distance between 2D points a and
b in pixel coordinates.

Then we define the extent error as follows:

extentError(e1, e2) =

|dist2D(projToLn(first, lnProj(e1, e2)), ptP roj(e1))| +
|dist2D(projToLn(last, lnProj(e1, e2)), ptP roj(e2))|. (4)

We can now define the unsigned line segment rendering error metric:

LSEu(e1, e2) =
∑

p∈P (e1,e2) |ds(p, lnProj(e1, e2))|+ extentError(e1, e2)

N(e1, e2) + 2
. (5)

This is the average magnitude of the offset and extent errors in pixel coordi-
nates.

As for the point rendering metric, we define normalized versions of the
line segment error metrics. Using W and H as defined in Section 3.4,

LSEu−norm(e1, e2) =
LSEu(e1, e2)√

WH
, (6)

and

LSEs−norm(e1, e2) =
LSEs(e1, e2)√

WH
. (7)

These metrics are in linear normalized window coordinates. The unsigned
metrics give assessments of overall deviation of the rendered pixels from the
projected line segment. The signed metrics indicate if the deviation is biased
toward one side of the projected line segment.

As described in Section 3.4, we categorize each line segment rendering case
as true-visible, true-invisible, false-visible, and false-invisible. (No multiple-
visible category is used for line segments.) We calculate our error metrics
only on the true-visible cases.

12

3.6 Error Metrics for Triangle Primitives

3D triangle primitives are regarded as 2D objects described by three 3D
vertex points. The pixels rendered for each triangle are regarded as 2D
objects in the 2D pixel coordinate system of the rendering window. Each
pixel is treated as covering a 2D square with edges of length 1 that is centered
at integral pixel coordinates. So the pixels form a square tiling of the screen
area. This models the display device in an idealized form that no real display
achieves. Nevertheless, pixels on real displays do occupy 2D areas, even
if these areas do not perfectly conform to the square tiling of the screen
described above. Our approach relates (however imperfectly) these areas to
the area of the projected triangle primitive. One could construct a triangle
rendering error metric based on regarding the pixels as points rather than
areas; we may do this in future work.

Our basic error metric for rendered triangles (TE) is based on determining
how much of each square pixel area is inside the projection of the triangle to
the 2D viewing area. Again, we begin with some definitions. Let

T be a triangle determined by three vertex points,

proj (T) be the projection of the triangle to the 2D pixel coor-
dinate system and clipped to the viewing area,

p be a pixel,

P(T) be set of pixels rendered for T,

S be a 2D polygon,

inside (S, p) be the area of the pixel p that lies inside the 2D
polygon S, and

outside (S, p) be the area of the pixel p that lies outside the
2D polygon S.

Note that for a given S and p,

inside(S, p) + outside(S, p) = 1. (8)

Then we define two forms of the rendering error metric TE, a signed version
(TEs) and an unsigned version (TEu) as follows:

TEs(T) =
∑

p∈P (T)

outside(proj(T), p) −
∑

p/∈P (T)

inside(proj(T), p), (9)

13

and

TEu(T) =
∑

p∈P (T)

outside(proj(T), p) +
∑

p/∈P (T)

inside(proj(T), p). (10)

Both of these metrics measure area in pixel coordinates.
Figure 3 illustrates the components of the triangle error metrics. In this

figure, the projected triangle is shown overlaying the grid of pixels. The four
light pixels are the pixels that were rendered to represent the 3D triangle.
The light gray area represents the rendered area that correctly lies inside the
projected triangle area and the black area is correctly outside the projected
triangle. The white area corresponds to the first term of the two metrics
above: it is rendered pixel area that is outside the projected triangle. The
dark gray area corresponds to the second term: it is unrendered pixel area
that is inside the projected triangle.

As for the line segment measures, the unsigned metric assesses the overall
deviation of the rendered triangle from the projection of that triangle, while
the signed metric indicates whether there is any bias in the errors. When
TEs is positive, it means that errors are biased toward rendered pixels being
outside the projected triangle. When TEs is negative, it means that errors
are biased toward unrendered pixels inside the projected triangle.

We again specify normalized versions of these metrics in much the same
way that we did for the line segment metrics. Because TEs and TEu are
measures of area, we normalize based on the pixel area of the entire window
yeilding an area in normalized window coordinates. Letting W and H be
defined as in Section 3.4, we define the normalized error metrics as follows:

TEu−norm(T) =
TEu(T)

WH
, (11)

and

TEs−norm(T) =
TEs(T)

WH
. (12)

Another possible normalization of these metrics could be accomplished by
dividing by the combined length (in pixel coordinates) of the visible edges
of the triangle. This normalization is based on the hypothesis that triangle
rendering errors are most likely to occur near the visible edges and thus would
be proportional to the length of those edges.

Again, we use the categories true-visible, true-invisible, false-visible, and
false-invisible. We calculate our error metrics only on the true-visible cases.

14

Figure 3: The components of the triangle error metrics. The white pixels are
the pixels that were rendered for the 3D triangle. The projection of the 3D
triangle is shown as an overlay. The areas of the white pixels that are outside
the projected triangle and the areas of the black pixels that are inside the
projected triangle represent errors.

15

4 Results

We present results for each of the geometric primitive type, each associated
error metric, and each platform. We use these error metrics to quantify and
to summarize errors associated with rendering and as tools for comparing
different rendering cases (different window sizes, platforms, and so on). We
will present both the normalized and non-normalized metrics for the point
primitive, but in order to simplify the presentation, we will focus on the nor-
malized form of each metric for line segments and triangles. The same sorts
of analyses, comparisons, and plots can be done with the non-normalized
metrics. Indeed, in some contexts it might be more appropriate to look at
the non-normalized metrics.

In analyzing the results of these tests we found that there was very little
effect in changing the camera orientation. This means that although there
were eight distinct sets of viewing parameters, the views that varied only by
the camera orientation produced results that were, in aggregate, practically
identical. Figure 4 illustrates this graphically with a quantile-quantile plot of
point errors for for View 1 versus View 2 on Platform I. (Recall that Table 1
indicates that View 1 and View 2 differ only in camera orientation.) This
example is fairly typical of comparisons of views that differ only by camera
orientation.

We used the usual t tests and F tests to try to confirm that these pairs of
camera orientation cases were equivalent in both mean and variance for each
error metric that we present. Although the t test is robust in the presence of
non-normal distributions, the F test is not, so we supplemented the F test
with the Levene test of variance, which is more robust for non-normal data.
We applied these tests both to the raw data as well as to Box-Cox transformed
data when possible. We found that the t tests confirmed that the locations
of the distributions for all of the the pairs of camera orientation cases were
equivalent. However for some cases, the F tests indicated a difference in
variation for the raw data and/or the Box-Cox transformed data; the Levene
tests, however, indicated a difference in only a single case. At the same time,
we observed that for these cases, the differences in standard deviations were
small compared to the magnitude of the standard deviations themselves.
Thus, for practical purposes, we decided to regard cases that differed only in
camera orientation as equivalent.

So, in the interest of brevity, we report results for four view groups, which
we designate A, B, C, and D. View A is the aggregate of views 1 and 2; View

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Point Error (PE) Platform I View 1

P
o

in
t

E
rr

o
r

 (
P

E
)

 P

la
tf

o
rm

 I

V
ie

w
 2

Figure 4: Quantile-quantile plot of point rendering errors measured for View
1 on Platform I versus View 2 on Platform I.

17

B is the aggregate of views 3 and 4; View C is the aggregate of views 5 and
6; and View D is the aggregate of views 7 and 8. As mentioned above, we
tested 100,000 of each primitive type for each of the eight original views, so
after aggregation, we have run 200,000 of each primitive type for each of the
aggregated views on each platform.

When summarizing the results, we will present the median and the in-
terquartile range (IQR) rather than the mean and standard deviation. This
is done because the distributions of these measurements are not normal and
some of them contain a small number of extreme outliers. These outliers tend
to have undue influence on the mean and standard deviation while having
little effect on the median and IQR. We will present histograms to illustrate
and to compare the shapes of the distributions.

4.1 Results for Point Primitives

First, we present the visibility counts for each of the aggregated views in
Table 2.

true true false false
Platform View visible invisible visible invisible

I A 4225 195703 0 72
I B 76711 123134 1 154
I C 4225 195764 0 11
I D 76711 123260 0 29

II A 4224 195703 0 73
II B 76704 123128 7 161
II C 4225 195764 0 11
II D 76710 123259 1 30

Table 2: The counts of point primitives rendered in each visibility category
for each view and platform.

There is a very close correspondence between the two platforms. We note
that views A and C have angular fields of view of 30 degress, while views B
and D have angular fields of view of 150 degrees. We expect a larger number
of points to be visible given a wider field of view.

18

We see that an extremely small number of points are visibly rendered
when they should be off-screen, while there is a low level (between 0.005%
and 0.08%) of points that are invisible when they should be rendered.

Now we present the statistics on the errors (PE) found for each of the
points in the true-visible category. Table 3 shows the statistics for the point
rendering error metric PE for each view and platform. Table 4 shows statis-
tics for the normalized form of the metric (PEnorm).

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 0.39555 0.20938 0.39553 0.21221
B 150 128 0.39716 0.20673 0.39714 0.20942
C 30 907 0.39542 0.20975 0.39542 0.21335
D 150 907 0.39946 0.20597 0.39945 0.20904

Table 3: Summary of non-normalized point rendering errors.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 3.090 1.636 3.090 1.658
B 150 128 3.103 1.615 3.103 1.636
C 30 907 0.436 0.231 0.436 0.235
D 150 907 0.440 0.227 0.440 0.230

Table 4: Summary of normalized point rendering errors (×103).

First of all, we see a remarkable consistency among all of the views and
platforms for PE. Not only are the centers and spreads of the distributions
consistent across all cases, but the shapes of the distributions are very con-
sistent. For example, Figure 5 shows a relative bihistogram that compares
the distribution of PE for View A on Platform I with View D on Platform
II. We also note that this distribution is very close to the distribution that
one would expect if the X and Y components of the rendering errors were
uniformly distributed in the interval [−0.5, 0.5].

For the normalized metric PEnorm, we see the results for PE scaled by
the normalization factors based on window size. This, of course, produces

19

-1 -0.5 0 0.5 1 1.5 2

-0.2

-0.1

0

0.1

0.2

Point Error (PE)

Platform II View D

Platform I View A

Figure 5: Relative bihistogram of the point rendering error metric PE as
measured for View A on Platform I versus View D on Platform II.

20

errors that are smaller for the larger window size. This reflects the usual
understanding that a higher resolution rendering is more accurate than a
lower resolution rendering.

We note again that PE is expressed in pixel units while PEnorm is ex-
pressed in normalized window coordinates. PEnorm is useful for comparing
results in windows of differing sizes, while PE is somewhat more easily con-
verted to physical units (such as millimeters) on an actual screen. For exam-
ple, one of our LCD displays has a pixel spacing of 0.255 mm. This means
that the median point rendering error of about 0.396 pixel units (Table 3)
corresponds to a median error of approximately 0.101 mm in physical units.

4.2 Results for Line Segment Primitives

Table 5 shows the counts for the various visibility categories for each platform
and view. We see a very low level of false visible and false invisible cases and
very few differences between the platforms.

true true false false
Platform View visible invisible visible invisible

I A 20540 179380 0 80
I B 125260 74556 0 184
I C 20608 179380 0 12
I D 125424 74556 0 20

II A 20538 179378 2 82
II B 125249 74554 2 195
II C 20603 179379 1 17
II D 125424 74556 0 20

Table 5: The counts of line segments in each visibility category for each
platform and view.

4.2.1 Normalized Signed Line Segment Rendering Errors

We use the normalized signed line segment metric LSEs−norm as a measure
of the extent to which the rendered pixels are biased to one side of the

21

projected line segment. This metric is used to compare the different cases
across platforms and across cases within platforms.

Table 6 shows the errors for each view for each platform. Figure 6 shows
these errors graphically in the form of a box plot. We see that for both
platforms, the 30 degree views have slightly smaller medians and spreads
than the corresponding 150 degree views, although the effect is larger on
Platform I. We also see that the smaller window size produces errors that
have a larger median and spread than the larger window size; again, this
effect is larger on Platform I.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 62.71 125.63 344.89 341.96
B 150 128 84.55 146.92 362.60 390.40
C 30 907 1.67 3.47 45.39 42.99
D 150 907 2.24 4.00 48.05 46.60

Table 6: Summary of normalized signed line segment rendering errors (×106).

It is also worthwhile to compare the shapes of these distributions. The
shapes of the distributions are very consistent for the different views for a
single platform, but they are quite different across platforms. For example,
Figure 7 shows a bihistogram of View A for the two platforms. The shape
of these distributions is strikingly different. For Platform I, the distribution
is closely clustered near zero with a rapid drop-off. For Platform II, the
distrbution stays fairly high and even shows a slight peak that is well away
from zero.

To summarize, we see a higher level of bias in rendered line segments
in the cases with smaller window sizes and we see a higher level of bias on
Platform II than on Platform I for equivalent cases.

4.2.2 Normalized Unsigned Line Segment Rendering Errors

We use the normalized unsigned line segment error LSEu−norm to assess the
magnitude of the total error of the rendered line segment. It enables us to
compare errors for the various views and platforms. Table 7 summarized
error statistics for each view and platform. Figure 8 shows the same data in
graphic form.

22

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007
L

S
E

s-
n

o
rm

A B C D A B C D

Platform I Platform II

Figure 6: Box plot of normalized signed line segment rendering errors broken
down by view and platform. Note that the range of the Y axis has been
restricted so that the body of the box plots can be fairly compared. As a
result, for some of distributions the maximum value lies outside of the plot
area. The width of each box is proportional to the number of measurements
in the corresponding distribution.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 1.906 0.230 1.926 0.239
B 150 128 1.920 0.249 1.964 0.262
C 30 907 0.257 0.039 0.260 0.039
D 150 907 0.258 0.039 0.262 0.037

Table 7: Summary of normalized unsigned line segment rendering errors
(×103).

23

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LSEs-norm

Platform II View A

Platform I View A

Figure 7: Relative bihistogram of the normalized signed line segment render-
ing error for View A and Platforms I and II.

24

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

L
S

E
u

-n
o

rm

A B C D A B C D

Platform I Platform II

Figure 8: Box plot of normalized unsigned line segment rendering errors
broken down by view and platform. As in Figure 8, the range of the Y axis
has been restricted so that the body of the box plots can be fairly compared.
This results in some of the maximum values extending beyond the plot area.

25

The first thing that we see is that the two platforms give practically the
same results for equivalent cases. Histograms of the various distributions
confirm that the results from corresponding cases across platforms closely
match. For example, Figure 9 compares the histograms for View A on the
two platforms. Furthermore we see that changing the angular field of view
seems to produce no substantial difference. The major effect that we see
is with a change in window size. The smaller window size produces a much
larger measure of error with a much wider distribution than the larger window
size.

0 0.001 0.002 0.003 0.004 0.005

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

LSEu-norm

Platform II View A

Platform I View A

Figure 9: Relative bihistogram of the normalized unsigned line segment ren-
dering error for View A and Platforms I and II.

Although there are, of course, large differences in normalized window
coordinates between the two different window sizes, when we convert these
measurements to physical units on a real display or to pixel coordinates the
differences are very small. Using our LDC display with pixel spacing of 0.255
mm as an example, we see that all of the medians fall into the range between
0.059 mm and 0.065 mm. In somewhat broader strokes, we could also say
that all of the median errors are a little less than a quarter of a pixel.

26

4.3 Results for Triangle Primitives

Table 8 shows the counts for the four visibility categories broken down by
view and platform. The counts on Platform I closely track those on Platform
II. As we expect, the number of visible triangles that are visible in the wider
fields of view (Views B and D) is greater than counts for the narrower fields
of view (Views A and C). We see no false visible cases and a relatively low
level of false invisible cases, with the counts for the larger windows (Views
C and D) being much lower than the smaller windows (Views A and B).

true true false false
Platform View visible invisible visible invisible

I A 52580 147133 0 287
I B 155090 44236 0 674
I C 52828 147133 0 39
I D 155691 44236 0 73

II A 52585 147133 0 282
II B 155110 44236 0 654
II C 52830 147133 0 37
II D 155688 44236 0 76

Table 8: The counts of triangle primitives rendered in each visibility category
for each view and platform.

In the course of running these triangle rendering tests, we observe that
sometimes a triangle covers the entire field of view. Typically, this results in
every pixel in the window being rendered. We refer to this as a full window

rendering. When this occurs, both the unsigned and signed error measures
are exactly zero. Unsurprisingly, this occurs much more often for the 30
degree FOV cases than the 150 degree FOV cases. A full window rendering
happens sufficiently often that it noticably affects the distributions. We will
point this out as it appears in the results that we present below.

4.3.1 Normalized Signed Triangle Rendering Errors

The normalized signed error metric TEs−norm measures the extent to which
the rendered area is outside rather than inside the projection of the 3D

27

triangle. A positive measure indicates that a greater error area is outside the
projected triangle and a negative value indicates more error inside. Table 9
presents summary statistics broken down by view and platform. Figure 10
presents the same results in the form of a box plot. Note that the fact that
the median for Views A and C is exactly zero is due to the substantial number
of full window renderings that occur for the narrower field of view.

For all four views on both platforms the medians are all very close to
zero. This indicates that there is little bias toward errors occurring outside
versus inside the projected triangle. However there are differences between
cases that show up when we look at the spread of the distributions. The
spread of the distribution is subtantially larger on Platform II compared to
the same view on Platform I. Furthermore, the spread of the views for the
larger window size is much less than for the smaller window size on both
platforms; this is clearly related to the normalization.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 0.00 58.75 0.00 276.66
B 150 128 −0.05 116.67 15.48 344.57
C 30 907 0.00 1.58 0.00 35.45
D 150 907 −0.01 3.19 0.32 39.64

Table 9: Summary of normalized signed triangle rendering errors (×106).

In Figure 11, we show a relative bihistogram of these errors for Views
A and B on Platform I. This shows the general shape of these error dis-
tributions, which is consistent across platforms and views. Note that while
both histograms show a spike at zero, this peak is much more pronounced
in the upper histogram, and the spread is somewhat narrower in the upper
histogram. As mentioned above, full window renderings are much more com-
mon for views A and C than for views B and D. This results in a larger
number of triangles with an error of exactly zero, which accounts for the
more pronounced peak at zero for View A in the figure. This effect occurs
on both platforms and both window sizes.

28

-0.0002

-0.0001

0

0.0001

0.0002

T
E

s-
n

o
rm

A B C D A B C D

Platform I Platform II

Figure 10: Box plot of normalized signed triangle rendering errors broken
down by view and platform. Again, the range of the Y axis again has been
restricted so that the body of the box plots can be fairly compared. This
results in the maximum and minimum values lying outside of the plot area.

29

-0.001 -0.0005 0 0.0005 0.001

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

TEs-norm

Platform I View A

Platform I View B

Figure 11: Relative bihistogram comparing the signed triangle rendering
errors for Views A and B for Platform 1.

30

4.3.2 Normalized Unsigned Triangle Rendering Errors

The normalized unsigned error TEu measures the total aggregate error area
for the rendering. Table 10 summarizes these errors. Figure 12 shows the
same data in the form of a box plot. We see that errors for the larger window
size are much lower than those for the smaller window sizes, and errors for
the wider FOV are slightly larger and more tightly grouped than for the
narrower FOV. These effects are present for both platforms.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 1.606 1.673 1.607 1.698
B 150 128 1.989 0.680 2.007 0.732
C 30 907 0.226 0.237 0.229 0.241
D 150 907 0.281 0.093 0.286 0.099

Table 10: Summary of normalized unsigned triangle rendering errors (×103).

In fact, we see a remarkable consistency between the two platforms in
the appearance of these distributions. For example, Figure 13 shows relative
bihistograms comparing View A on Platform I versus Platform II and View
B on Platform I versus Platform II. This figure shows both the equivalence
of correponding distributions across platforms and the characteristic shape
of the distributions. Particularly interesting is the difference of the shapes
of the distributions for Views A and B. View A and View B differ only in
their angular fields of view (30 degrees versus 150 degrees respectively). The
smaller field of view for View A results in many more full window renderings
which accounts for the peak at zero, but it is unclear why the shape of the
rest of the distribution is so different from that of View B.

To put these measurements into perspective, so to speak, we can convert
the normalized errors into physical units. Because TEu is a measure of area,
we can convert the medians from Table 10 into units of square millimeters
(mm2) For example, the median of 1.606 × 10−3 in normalized window co-
ordinates for View A on Platform I corresponds to an area of 1.71 mm2 on
our LCD display with pixel spacing of 0.255 mm. Similarly, the median of
0.286 × 10−3 that we report for View D on Platform II corresponds to an
area of 15.3 mm2. The same conversions can be applied to the IQRs as well
as to the medians.

31

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

T
E

u
-n

o
rm

A B C D A B C D

Platform I Platform II

Figure 12: Box plot of normalized unsigned triangle rendering errors broken
down by view and platform. As in previous figures, the range of the Y axis
has been restricted so that the body of the box plots can be fairly compared.
So for some of distributions the maximum values lie outside of the plot area.

32

-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

TEu-norm

Platform I View A

Platform II View A

-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

TEu-norm

Platform I View B

Platform II View B

Figure 13: Relative bihistograms comparing the distribution of normalized
unsigned triangle rendering errors for View A and B on Platform I versus
Platform II.

33

5 Conclusions and Future Work

The error metrics that we present above have enabled us to make quantita-
tive estimates of errors in rendering the three most basic geometric primitives
used in computer graphics. This lets us compare errors for different rendering
cases, including across platforms. For example, we’ve seen that point ren-
dering has a median error of about 0.39 in pixel coordinates, that Platform I
has substantially less bias error in rendering line segments (LSEs−norm) than
than Platform II, and so on. Our normalizations provide a way of quanti-
fying our intuitive understanding that higher resolution renderings produce
smaller errors.

These results can provide useful information in real-world viewing sit-
uations. These measurements are easily converted to physical dimensions,
as we have illustrated in Section 4 for an actual LCD display device. Of
course, different displays have different physical characteristics and will show
different errors when those errors are expressed in physical units. For ex-
ample, Table 11 shows how the point rendering error (PE) of 0.396 pixel
units translates to physical dimensions on three representative screens that
we use in our group at NIST: a flat-panel LCD monitor, a CRT, and a large
rear-projected screen that is used in our interactive immersive visualization
(virtual reality) system.

Display PE

LCD 0.101 mm
CRT 0.118 mm

Projection 0.915 mm

Table 11: Point rendering error of 0.396 pixel units converted to physical
units for three representative screens used at NIST.

Note that the error metrics that we present here do not capture all of the
possible types of rendering errors that could occur. For example, the line
segment rendering error metrics do not measure whether there are gaps in
the rendered set of pixels. Similarly, there is no direct measure of whether a
triangle is rendered as a simply connected set of pixels.

We plan to continue this work by quantifying errors in other aspects of
the process of making visual representations of information. For example, we
will be analyzing how these rendering errors result in quantifiable errors in

34

depth representation in stereo displays. We will also be investigating errors
that result from the the process of generating renderable 3D geometric prim-
itives from underlying data representations (for example, CT scans). We
refer to these as modeling errors. For our work in immersive visualization
environments, we will be looking at the viewing errors caused by the position
tracking systems used in virtual reality systems. Finally, we are developing
methods for aggregating all of these types of errors to form an overall quan-
titative assessment of errors contributed by the visualization process. It is
our goal that these errors can, in turn, be aggregated with error assessments
of the underlying data being presented to provide an overall uncertainty and
confidence interval.

We believe that these tools enable us to understand better the possible
errors in our displays of scientific data and other quantitative information.
This understanding is critical for making informed judgements based on these
visual representations.

6 Disclaimer

Certain commercial products may be identified in this paper in order to
adequately describe the subject matter of this work. Such identification
is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the
identified products are necessarily the best available for the purpose.

References

[Foley et al., 1990] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F.
(1990). Computer Graphics: Principles and Practice. Addison-Wesley,
Reading, MA, USA, second edition.

[Hagedorn et al., 2007] Hagedorn, J. G., Dunkers, J. P., Satterfield, S. G.,
Peskin, A. P., Kelso, J. T., and Terrill, J. E. (2007). Measurement tools
for the immersive visualization environment. Journal of Research of the

National Institute of Standards and Technology, 112(5):257–270.

35

[Kahaner et al., 1989] Kahaner, D., Moler, C., and Nash, S. (1989). Nu-

merical Methods and Software. Prentice-Hall, Inc., Englewood Cliffs, NJ,
USA.

[Keller, 1997] Keller, P. A. (1997). Electronic Display Measurement. John
Wiley and Sons, Inc., New York, NY, USA.

[Microsoft, 2007] Microsoft (2007). DirectX product information. Web-
site. http://www.microsoft.com/windows/directx/productinfo/

default.mspx.

[NIST, 2008] NIST (2008). Visualization metrology. Website. http://math.
nist.gov/mcsd/savg/vis/metrology/index.html.

[Woo et al., 1997] Woo, M., Neider, J., and Davis, T. (1997). OpenGL Pro-

gramming Guide. Addison-Wesley, Reading, MA, USA, second edition.

36

