
Methods for Quantifying and Characterizing

Errors in Pixel-Based 3D Rendering

John G. Hagedorn

Judith E. Terrill

Adele P. Peskin

James J. Filliben

National Institute of Standards and Technology,

Gaithersburg, MD 20899-8911

June 10, 2008

Key words: computer graphics; metrology; pixel measurement; rendering

measurement; scientific visualization; virtual measurement

Abstract

We present methods for measuring errors in the rendering of three-

dimensional points, line segments, and polygons in pixel-based computer

graphics systems. We present error metrics for each of these three cases.

These methods are applied to rendering with OpenGL on two common

hardware platforms under several rendering conditions. Results are pre-

sented and differences in measured errors are analyzed and characterized.

We discuss possible extensions of this error analysis approach to other

1

aspects of the process of generating visual representations of synthetic

scenes.

1 Introduction

The visual display of virtual three-dimensional (3D) scenes has become common-

place in modern computing systems. Applications can be found in such diverse

fields as consumer games, video production, advertising, computer-aided design,

and scientific data visualization.

While many of these applications are intended to provide a qualitative ex-

perience to the viewer, others are intended to convey accurate representations

of spatial relationships. Applications such as computer-aided design and scien-

tific data visualization have important quantitative components. For example,

at NIST, we have implemented interactive measurement tools into the virtual

world [1]. As we use such systems for quantitative tasks, it is incumbent upon

us to understand how the computer graphics environment contributes to un-

certainty in these tasks. The work we present here is a first step toward this

understanding.

In current computer graphics systems, virtual scenes are usually described

internally as a set of geometric objects in a 3D coordinate system. These geo-

metric descriptions are then transformed into a set of pixels that are displayed

to the user on a monitor. The process of transforming the 3D descriptions to a

set of pixels is referred to as rendering.

We have developed methods for assessing geometric errors introduced by

the rendering process. While this is hardly the only possible source of error

that may be introduced by computer graphics technology, in this paper we

focus exclusively on the rendering process. We will not examine other possible

sources of error such as inaccuracies in display devices or errors introduced by

2

variations in user viewing conditions.

It is also worth noting that issues of inaccuracies in visual presentation are

not confined to the display of computer generated pictures. The display of

different types of content (such as photographs, motion pictures, 3D synthetic

scenes, and conventional two-dimensional graphs) and different media (such as

paper, film, cathode ray tube (CRT), flat panel, and video projection) could

each have its own set of uncertainty issues. For example, CRT displays can

exhibit pincushion and barrel distortions as well as other geometric errors [2].

2 Approach

We study the rendering of three 3D geometric primitive forms: points, line

segments, and triangles. These represent the simplest and by far the most

commonly used geometric forms rendered in current computer graphics systems.

Our work starts from the assumption that for each of these 3D geometric forms,

there is a correct projection of the form to a two-dimensional (2D) rectangle

that represents the viewing area. The viewing area can be thought of as an

idealization of (a portion of) the monitor screen, however it is not discretized

into a finite set of elements (pixels) as a real screen is. This projection is

described in many standard references on 3D computer graphics [3]. We use this

projection from 3D coordinates to the 2D coordinates of the viewing rectangle

as an idealized form of the rendering process. We measure rendering errors by

comparing the set of pixels drawn by the rendering process with the projection

of the primitive to the idealized viewing rectangle.

The rendering process is treated here as a black box. We examine the results

of the rendering of points, line segments, and triangles without trying to evaluate

the correctness of implementation of any specific rendering algorithm. We do

not attempt to explain any particular behavior of the rendering system; we

3

simply observe and measure it.

Furthermore, we consider only the positional accuracy of the rendering. In

other words, we are looking only at the positions of the pixels that are drawn

as part of each primitive. The accuracy of the color or intensity of the pixels is

not considered.

3 Method

We perform three sets of experiments, one set for each of the three types of

geometric primitive. Each experiment is a run of a program that renders a set

of geometric primitives and compares the actual pixels rendered with the ideal

projection of the primitive to the viewing area. For each primitive type, we

compare error metrics that quantify the amount by which the rendering of a

primitive deviates from its ideal projection. The error metrics used for each

primitive type are described below.

We ran each experiment on two platforms. Both platforms use commodity

hardware and operating systems. We will refer to these as Platform I and

Platform II. We keep the platforms anonymous because we wish this paper to

be a presentation of our methods rather than an evaluation of specific hardware

and software.

In the experiments that we describe here, the programs render the primitives

using OpenGL1 [4], however our method is not dependent on any particular

rendering software or rendering technique. Indeed, these methods could just as

easily be used with other 3D rendering libraries such as DirectX [5]. We chose

OpenGL because it is readily available on many hardware platforms, and is used

in many consumer, industrial, and research applications. Our test software was

1Certain commercial equipment, instruments, or materials are identified in this paper to

foster understanding. Such identification does not imply recommendation or endorsement by

the National Institute of Standards and Technology, nor does it imply that the materials or

equipment identified are necessarily the best available for the purpose.

4

designed so that it could easily be ported to a variety of hardware platforms

and operating systems. We have placed our software on the web [6].

Again, we want to emphasize that the purpose of this paper is not to deter-

mine whether one hardware or software platform is better than another, or to

evaluate the performance of specific systems. Nor are we testing the correctness

of the implementation of any rendering algorithm. Rather our intent is to de-

scribe methods by which one can characterize and quantify the errors associated

with a given 3D rendering system and compare one system with another. In

this paper, we use specific hardware and software as vehicles for testing these

methods and for showing their efficacy.

The basic procedure for all of our experiments was:

• Randomly generate 8 sets of viewing parameters

• Randomly generate a set of geometric primitives

• For each primitive, each view, and each platform

– render the element as white pixels on a black background without

antialiasing

– look at which pixels are part of the rendered element (using the

OpenGL procedure glReadPixels)

– quantify the deviation of the rendered element from the projection

to the idealized viewing rectangle

• Aggregate errors for individual primitives to form statistics

• Compare error statistics across viewing parameter sets and across plat-

forms

We use a portable random number generator [7] for creating the randomly

distributed viewing parameters and geometric primitives. This ensures that we

5

are running the same tests across platforms.

3.1 Generation of Viewing Parameters

Viewing parameters for 3D rendering can be expressed in terms of a camera

metaphor. The camera has a location, an orientation and an angular field of view

(FOV). The location is simply a point in 3-space. The orientation determines

the direction the camera is pointing and which way is ‘up’. The angular field

of view corresponds to the ‘length’ of the virtual camera lens. For example

an angular field of view of 10 degrees would be like a telephoto lens (a ‘long’

lens) while an angular field of view of 100 degrees would be like a wide-angle

or fish-eye lens (a ‘short’ lens). The field of view of this virtual camera forms

an infinite four-sided pyramid in the 3D coordinate system. The four faces of

this 3D pyramid correspond to the four edges of the 2D viewing area. Only

geometry that intersects this pyramid can be rendered.

In addition to these camera-like parameters, there are several other param-

eters that describe viewing in a typical pixel-based computer graphics system.

The size of the rectangular screen area that is used for rendering is described

by its height and width in pixels. We will call this rectangular screen area the

rendering window. Following the camera analogy, the 2D viewing area and the

corresponding rendering window on the screen can be thought of as the focal

plane of the virtual camera.

Also, many computer graphics systems require the definition of near and far

clipping planes. These are planes in the 3D coordinate system that are typically

perpendicular to the direction that the camera is pointing. They are usually

specified by the distance to the plane from the view point (the camera location)

along the view direction vector. Normally any geometry that is closer than

the near clipping plane or beyond the far clipping plane is discarded (clipped).

6

So the infinite four-sided pyramid described above is reduced to a truncated

pyramid with six faces (a frustum).

For the tests described here, there are eight different combinations of viewing

parameters: two camera orientations, two angular fields of view, and two window

sizes. The two camera orientations are randomly generated; we refer to these as

CO-1 and CO-2. The two angular fields of view are 30 degrees and 150 degrees,

and the two pixel dimensions are 128x128 pixels and 907x907 pixels. The camera

location is fixed at the origin. The near and far clipping planes are set at 0.01

units and 10.0 units respectively away from the view point. We number these

eight sets of viewing parameters sequentially 1 through 8 as indicated in the

Table 1.

Camera Angular Field Window Pixel
Orientation of View (degree) Dimensions

View 1 CO-1 30 128x128
View 2 CO-2 30 128x128
View 3 CO-1 150 128x128
View 4 CO-2 150 128x128
View 5 CO-1 30 907x907
View 6 CO-2 30 907x907
View 7 CO-1 150 907x907
View 8 CO-2 150 907x907

Table 1: The eight sets of viewing parameters.

3.2 Coordinate Systems

There are three coordinate systems that we will use. The first coordinate system

is the 3D coordinate system in which the the geometric primitives (points, line

segments, and triangles) are defined. Then there is the 2D pixel coordinate

system of the rendering window. In this coordinate system, one unit of length

is equal to the spacing between adjacent pixels in the X or Y direction. Note

that this implies that the X spacing of pixels is the same as the Y spacing

7

of pixels. Our methods as implemented assume this equality, although they

are easily adapted to unequal pixel spacing in X and Y. We also use the pixel

coordinate system for the 2D viewing area that represents an idealized form of

the rendering window. Although this viewing area is not discretized into pixels,

it is convenient to use the same pixel-based coordinate system.

In addition to the pixel coordinate system, we also introduce a 2D coordinate

system for the rendering window that normalizes distances based on the size of

the window. We define one unit of length in normalized window coordinates to

be
√

HW where H is the height of the window in pixels and W is the width of

the window in pixels. This coordinate system enables us to compare distances

(and areas) in windows of different sizes. Measurements expressed in either of

these coordinate systems are easily converted to physical coordinates (such as

millimeters) if the physical spacing between pixels is known.

As mentioned above, the projection from the 3D coordinate system to the

2D pixel coordinate system is a major part of the rendering process and is a

central component of our methods. The normalized window coordinate system

is used for defining normalized versions of our error metrics.

3.3 Generation of Geometric Primitives

All of the geometric primitives are specified in terms of points in the 3D co-

ordinate system. A triangle is specified by its three 3D vertex points; a line

segment is specified by its two 3D end points; and a point primitive, of course,

is specified by one 3D point. For each primitive, we get the required number of

points by generating points that are randomly distributed within the 3D unit

sphere (a sphere of radius 1, centered at the origin). Each point is produced

by randomly generating X, Y, and Z coordinates in the interval [−1, 1] and

discarding those points that lie outside the unit sphere. This random distribu-

8

tion of points through a spherical volume (rather than, for example, through a

cubical volume) ensures that the directions of the points relative to the center

of the sphere are randomly distributed. The center of the sphere (the origin)

is, as described above, our camera location for all of the eight sets of viewing

parameters. For the tests described below, 100,000 of each geometric primitive

are generated.

3.4 Error Metrics for Point Primitives

The 3D point primitive is regarded as a 0-dimensional object described by a

set of X, Y, and Z coordinates. The rendered pixel for a given point primitive

is regarded as a zero-dimensional object (a point) in the 2D pixel coordinate

system of the screen.

We present the error metric for the rendering of a point primitive in both a

non-normalized and a normalized form. The non-normalized metric is a length

in pixel coordinates, the normalized form is a length in normalized window coor-

dinates. The non-normalized metric is simply the distance from the projection

of 3D point to the ideal viewing rectangle from the center of the rendered pixel

in pixel coordinates. As mentioned above, we determine the coordinates of ren-

dered pixels by using the OpenGL procedure glReadPixels, which enables us to

examine the contents of pixels in the frame buffer after we render the primitive.

This method is used for all of the metrics described below.

To specify the point rendering metrics, we begin with some definitions. Let

p be a 3D point,

proj(p) be the projection of point p to 2D pixel space,

r(p) be the 2D coordinates of the pixel rendered for 3D point p, and

dist2D(p1, p2) be the distance between 2D points p1 and p2.

9

We now can define the non-normalized point rendering error metric (PE) for a

3D point p:

PE(p) = dist2D(proj(p), r(p)). (1)

Figure 1 illustrates the point error metric. This measure is in units of linear

pixel coordinates.

Figure 1: The point rendering error is the distance from the projection of the
3D point to the center of the rendered pixel.

We then take this point rendering metric and scale it to normalized window

coordinates. We let

W be the width of the rendering window in in pixel coordinates and

H be the height of the rendering window in in pixel coordinates.

10

We then define the normalized error metric PEnorm :

PEnorm(p) =
dist2D(proj(p), r(p))√

WH
. (2)

By construction, some of the point primitives will lie outside of the field of

view and such points should generate no rendered pixels. Additionally, the error

metric assumes that if a point does lie within the field of view, that there will

be a single pixel rendered. So in addition to the error metric described above,

we tabulate the number of primitives that fall into each of these categories:

true-visible - the point lies in the field of view and is rendered as

a single pixel

true-invisible - the point does not lie in the field of view and no

pixels are rendered

false-visible - the point does not lie in the field of view but it is

rendered by a single pixel

false-invisible - the point lies in the field of view but no pixels are

rendered

multiple-visible - multiple pixels are rendered

We only calculate the point rendering error metrics for the true-visible case.

3.5 Error Metrics for Line Segment Primitives

3D Line segment primitives are regarded as one-dimensional objects described

by two 3D end points. The pixels rendered for each segment are regarded

as zero-dimensional objects (points) in the 2D pixel coordinate system of the

screen.

We devised error metrics for rendering of line segment primitives based on

offset errors and extent errors. An offset error is the perpendicular distance

11

from a rendered pixel to the 2D projection of the line defined by the two 3D

segment end-points. These distances can be signed, where a distance from a 2D

point to a 2D line is either positive or negative based on which side of the line

the point lies. Extent errors measure how the set of rendered pixels cover the

linear extent of the line segment. We identify two types of extent errors. When

the rendered pixels extend beyond the end of the line segment, we refer to this

as overshoot, when they do not cover to the end of the line segment, we refer

to it as undershoot. Figure 2 illustrates the components of these metrics for a

simple case.

Our error metric for line segments is implemented in a signed and unsigned

form; we refer to these as LSEs and LSEu respectively. The signed metric

(LSEs) uses signed offset errors and does not include extent errors. The un-

signed metric (LSEu) regards all offset errors as positive and also includes extent

errors. In order to specify these metrics we first define some terms. Let

e1 and e2 be 3D points,

(e1, e2) be the line segment with end points e1 to e2,

ptProj (e) be the 2D point produced by projecting the 3D point e

to 2D pixel coordinates,

lnProj (e1, e2) be the 2D line produced by projecting the 3D line

determined by e1 and e2 to 2D pixel coordinates,

P(e1, e2) be the set of 2D pixels that are rendered for (e1, e2),

N(e1, e2) be the number of pixels in P(e1, e2), and

ds (p, line) be the signed distance from 2D point p to a 2D line

in pixel coordinates. This distance is positive when p is on one

side of the line and negative when p is on the other side. When

p is a pixel position, this distance is an offset error as described

above.

12

Figure 2: Components of the line segment error metrics. The white pixels are
the pixels that were rendered to represent the line segment. The projection of
the 3D line segment to 2D is shown as the gray line segment. The offset errors
are the perpendicular distances from the centers of the rendered pixels to the
projected line. The extent errors measure the difference between the ends of
the projected line segment to the ends as indicated by the rendered pixels.

13

As mentioned above, pixels are regarded as 2D points in this discussion. We

now define the signed error metric LSEs:

LSEs(e1, e2) =

∣

∣

∣

∣

∣

∑

p∈P (e1,e2) ds(p, lnProj(e1, e2))

N(e1, e2)

∣

∣

∣

∣

∣

. (3)

This is the absolute value of the average of the offset errors for all rendered pixels,

so LSEs is in units of linear pixels. This measures the extent to which the offset

errors are biased to one side or the other of the projected line segment. Note

that by taking the absolute value of the average offset error, we are choosing to

measure the magnitude of the bias without considering a direction to the bias.

In order to define LSEu, we must first define the extent errors: the amount

that the set of rendered pixels overshoot or undershoot the projected line seg-

ment. We first observe that the set of rendered pixels, P (e1, e2), can be ordered

based on the position of orthogonal projection of each pixel onto lnProj(e1, e2).

We order these so that as we move from one pixel to the next, the projections of

these pixels onto the line move in the direction from ptProj(e1) to ptProj(e2).

In this ordering of the rendered pixels, the first in the list corresponds (in some

sense) to e1, and the last in the list corresponds to e2. With this background,

we can define the extent error. Augmenting the definitions above, let

projToLn(p, l) be point on line l closest to point p,

first be the first point in the set P(e1,e2) when ordered as described

above,

last be the last point in the set P(e1,e2) when ordered as described

above, and

dist2D(a, b) be the positive distance between 2D points a and b

in pixel coordinates.

14

Then we define the extent error as follows:

extentError(e1, e2) =

|dist2D(projT oLn(first, lnProj(e1, e2)), ptProj(e1))| +

|dist2D(projT oLn(last, lnProj(e1, e2)), ptProj(e2))|. (4)

We can now define the unsigned line segment rendering error metric:

LSEu(e1, e2) =
∑

p∈P (e1,e2) |ds(p, lnProj(e1, e2))| + extentError(e1, e2)

N(e1, e2) + 2
. (5)

This is the average magnitude of the offset and extent errors in pixel coordinates.

As for the point rendering metric, we define normalized versions of the line

segment error metrics. Using W and H as defined in Sec. 3.4,

LSEu−norm(e1, e2) =
LSEu(e1, e2)√

WH
, (6)

and

LSEs−norm(e1, e2) =
LSEs(e1, e2)√

WH
. (7)

These metrics are in linear normalized window coordinates. The unsigned met-

rics give assessments of overall deviation of the rendered pixels from the pro-

jected line segment. The signed metrics indicate if the deviation is biased toward

one side of the projected line segment.

As described in Sec. 3.4, we categorize each line segment rendering case as

true-visible, true-invisible, false-visible, and false-invisible. (No multiple-visible

category is used for line segments.) We calculate our error metrics only on the

true-visible cases.

15

3.6 Error Metrics for Triangle Primitives

3D triangle primitives are regarded as 2D objects described by three 3D vertex

points. The pixels rendered for each triangle are regarded as 2D objects in

the 2D pixel coordinate system of the rendering window. Each pixel is treated

as covering a 2D square with edges of length 1 that is centered at integral

pixel coordinates. So the pixels form a square tiling of the screen area. This

models the display device in an idealized form that no real display achieves.

Nevertheless, pixels on real displays do occupy 2D areas, even if these areas do

not perfectly conform to the square tiling of the screen described above. Our

approach relates (however imperfectly) these areas to the area of the projected

triangle primitive. One could construct a triangle rendering error metric based

on regarding the pixels as points rather than areas; we may do this in future

work.

Our basic error metric for rendered triangles (TE) is based on determining

how much of each square pixel area is inside the projection of the triangle to

the 2D viewing area. Again, we begin with some definitions. Let

T be a triangle determined by three vertex points,

proj (T) be the projection of the triangle to the 2D pixel coordinate

system and clipped to the viewing area,

p be a pixel,

P(T) be set of pixels rendered for T,

S be a 2D polygon,

inside (S, p) be the area of the pixel p that lies inside the 2D

polygon S, and

outside (S, p) be the area of the pixel p that lies outside the 2D

polygon S.

16

Note that for a given S and p,

inside(S, p) + outside(S, p) = 1. (8)

Then we define two forms of the rendering error metric TE, a signed version

(TEs) and an unsigned version (TEu) as follows:

TEs(T) =
∑

p∈P (T)

outside(proj(T), p) −
∑

p/∈P (T)

inside(proj(T), p), (9)

and

TEu(T) =
∑

p∈P (T)

outside(proj(T), p) +
∑

p/∈P (T)

inside(proj(T), p). (10)

Both of these metrics measure area in pixel coordinates.

Figure 3 illustrates the components of the triangle error metrics. In this fig-

ure, the projected triangle is shown overlaying the grid of pixels. The four light

pixels are the pixels that were rendered to represent the 3D triangle. The light

gray area represents the rendered area that correctly lies inside the projected

triangle area and the black area is correctly outside the projected triangle. The

white area corresponds to the first term of the two metrics above: it is ren-

dered pixel area that is outside the projected triangle. The dark gray area

corresponds to the second term: it is unrendered pixel area that is inside the

projected triangle.

As for the line segment measures, the unsigned metric assesses the overall

deviation of the rendered triangle from the projection of that triangle, while the

signed metric indicates whether there is any bias in the errors. When TEs is

positive, it means that errors are biased toward rendered pixels being outside

the projected triangle. When TEs is negative, it means that errors are biased

17

Figure 3: The components of the triangle error metrics. The white pixels are the
pixels that were rendered for the 3D triangle. The projection of the 3D triangle
is shown as an overlay. The areas of the white pixels that are outside the
projected triangle and the areas of the black pixels that are inside the projected
triangle represent errors.

18

toward unrendered pixels inside the projected triangle.

We again specify normalized versions of these metrics in much the same way

that we did for the line segment metrics. Because TEs and TEu are measures of

area, we normalize based on the pixel area of the entire window yeilding an area

in normalized window coordinates. Letting W and H be defined as in Sec. 3.4,

we define the normalized error metrics as follows:

TEu−norm(T) =
TEu(T)

WH
, (11)

and

TEs−norm(T) =
TEs(T)

WH
. (12)

Another possible normalization of these metrics could be accomplished by di-

viding by the combined length (in pixel coordinates) of the visible edges of the

triangle. This normalization is based on the hypothesis that triangle render-

ing errors are most likely to occur near the visible edges and thus would be

proportional to the length of those edges.

Again, we use the categories true-visible, true-invisible, false-visible, and

false-invisible. We calculate our error metrics only on the true-visible cases.

4 Results

We present results for each of the geometric primitive type, each associated

error metric, and each platform. We use these error metrics to quantify and to

summarize errors associated with rendering and as tools for comparing different

rendering cases (different window sizes, platforms, and so on). We will present

both the normalized and non-normalized metrics for the point primitive, but

in order to simplify the presentation, we will focus on the normalized form

of each metric for line segments and triangles. The same sorts of analyses,

19

comparisons, and plots can be done with the non-normalized metrics. Indeed,

in some contexts it might be more appropriate to look at the non-normalized

metrics.

In analyzing the results of these tests we found that there was very little

effect in changing the camera orientation. This means that although there

were eight distinct sets of viewing parameters, the views that varied only by

the camera orientation produced results that were, in aggregate, practically

identical. Figure 4 illustrates this graphically with a quantile-quantile plot of

point errors for for View 1 versus View 2 on Platform I. (Recall that Table 1

indicates that View 1 and View 2 differ only in camera orientation.) This

example is fairly typical of comparisons of views that differ only by camera

orientation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Point Error (PE) Platform I View 1

P
o

in
t

E
rr

o
r

 (
P

E
)

 P

la
tf

o
rm

 I

V
ie

w
 2

Figure 4: Quantile-quantile plot of point rendering errors measured for View 1
on Platform I versus View 2 on Platform I.

We used the usual t tests and F tests to try to confirm that these pairs of

20

camera orientation cases were equivalent in both mean and variance for each

error metric that we present. Although the t test is robust in the presence of

non-normal distributions, the F test is not, so we supplemented the F test with

the Levene test of variance, which is more robust for non-normal data. We

applied these tests both to the raw data as well as to Box-Cox transformed data

when possible. We found that the t tests confirmed that the locations of the

distributions for all of the the pairs of camera orientation cases were equivalent.

However for some cases, the F tests indicated a difference in variation for the

raw data and/or the Box-Cox transformed data; the Levene tests, however,

indicated a difference in only a single case. At the same time, we observed

that for these cases, the differences in standard deviations were small compared

to the magnitude of the standard deviations themselves. Thus, for practical

purposes, we decided to regard cases that differed only in camera orientation as

equivalent.

So, in the interest of brevity, we report results for four view groups, which

we designate A, B, C, and D. View A is the aggregate of views 1 and 2; View

B is the aggregate of views 3 and 4; View C is the aggregate of views 5 and

6; and View D is the aggregate of views 7 and 8. As mentioned above, we

tested 100,000 of each primitive type for each of the eight original views, so

after aggregation, we have run 200,000 of each primitive type for each of the

aggregated views on each platform.

When summarizing the results, we will present the median and the interquar-

tile range (IQR) rather than the mean and standard deviation. This is done

because the distributions of these measurements are not normal and some of

them contain a small number of extreme outliers. These outliers tend to have

undue influence on the mean and standard deviation while having little effect on

the median and IQR. We will present histograms to illustrate and to compare

21

the shapes of the distributions.

4.1 Results for Point Primitives

First, we present the visibility counts for each of the aggregated views in Table 2.

true true false false
Platform View visible invisible visible invisible

I A 4225 195703 0 72
I B 76711 123134 1 154
I C 4225 195764 0 11
I D 76711 123260 0 29

II A 4224 195703 0 73
II B 76704 123128 7 161
II C 4225 195764 0 11
II D 76710 123259 1 30

Table 2: The counts of point primitives rendered in each visibility category for
each view and platform.

There is a very close correspondence between the two platforms. We note

that views A and C have angular fields of view of 30 degress, while views B

and D have angular fields of view of 150 degrees. We expect a larger number of

points to be visible given a wider field of view.

We see that an extremely small number of points are visibly rendered when

they should be off-screen, while there is a low level (between 0.005% and 0.08%)

of points that are invisible when they should be rendered.

Now we present the statistics on the errors (PE) found for each of the points

in the true-visible category. Table 3 shows the statistics for the point rendering

error metric PE for each view and platform. Table 4 shows statistics for the

normalized form of the metric (PEnorm).

First of all, we see a remarkable consistency among all of the views and

platforms for PE. Not only are the centers and spreads of the distributions

consistent across all cases, but the shapes of the distributions are very consistent.

22

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 0.39555 0.20938 0.39553 0.21221
B 150 128 0.39716 0.20673 0.39714 0.20942
C 30 907 0.39542 0.20975 0.39542 0.21335
D 150 907 0.39946 0.20597 0.39945 0.20904

Table 3: Summary of non-normalized point rendering errors.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 3.090 1.636 3.090 1.658
B 150 128 3.103 1.615 3.103 1.636
C 30 907 0.436 0.231 0.436 0.235
D 150 907 0.440 0.227 0.440 0.230

Table 4: Summary of normalized point rendering errors (×103).

For example, Fig. 5 shows a relative bihistogram that compares the distribution

of PE for View A on Platform I with View D on Platform II. We also note that

this distribution is very close to the distribution that one would expect if the

X and Y components of the rendering errors were uniformly distributed in the

interval [−0.5, 0.5].

For the normalized metric PEnorm, we see the results for PE scaled by the

normalization factors based on window size. This, of course, produces errors

that are smaller for the larger window size. This reflects the usual understanding

that a higher resolution rendering is more accurate than a lower resolution

rendering.

We note again that PE is expressed in pixel units while PEnorm is expressed

in normalized window coordinates. PEnorm is useful for comparing results in

windows of differing sizes, while PE is somewhat more easily converted to phys-

ical units (such as millimeters) on an actual screen. For example, one of our

liquid crystal displays (LCD) has a pixel spacing of 0.255 mm. This means that

the median point rendering error of about 0.396 pixel units (Table 3) corre-

23

-1 -0.5 0 0.5 1 1.5 2

-0.2

-0.1

0

0.1

0.2

Point Error (PE)

Platform II View D

Platform I View A

Figure 5: Relative bihistogram of the point rendering error metric PE as mea-
sured for View A on Platform I versus View D on Platform II.

24

sponds to a median error of approximately 0.101 mm in physical units.

4.2 Results for Line Segment Primitives

Table 5 shows the counts for the various visibility categories for each platform

and view. We see a very low level of false visible and false invisible cases and

very few differences between the platforms.

true true false false
Platform View visible invisible visible invisible

I A 20540 179380 0 80
I B 125260 74556 0 184
I C 20608 179380 0 12
I D 125424 74556 0 20

II A 20538 179378 2 82
II B 125249 74554 2 195
II C 20603 179379 1 17
II D 125424 74556 0 20

Table 5: The counts of line segments in each visibility category for each platform
and view.

4.2.1 Normalized Signed Line Segment Rendering Errors

We use the normalized signed line segment metric LSEs−norm as a measure of

the extent to which the rendered pixels are biased to one side of the projected

line segment. This metric is used to compare the different cases across platforms

and across cases within platforms.

Table 6 shows the errors for each view for each platform. Figure 6 shows

these errors graphically in the form of a box plot. We see that for both plat-

forms, the 30 degree views have slightly smaller medians and spreads than the

corresponding 150 degree views, although the effect is larger on Platform I. We

also see that the smaller window size produces errors that have a larger median

25

and spread than the larger window size; again, this effect is larger on Platform

I.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 62.71 125.63 344.89 341.96
B 150 128 84.55 146.92 362.60 390.40
C 30 907 1.67 3.47 45.39 42.99
D 150 907 2.24 4.00 48.05 46.60

Table 6: Summary of normalized signed line segment rendering errors (×106).

It is also worthwhile to compare the shapes of these distributions. The

shapes of the distributions are very consistent for the different views for a single

platform, but they are quite different across platforms. For example, Fig. 7

shows a bihistogram of View A for the two platforms. The shape of these

distributions is strikingly different. For Platform I, the distribution is closely

clustered near zero with a rapid drop-off. For Platform II, the distrbution stays

fairly high and even shows a slight peak that is well away from zero.

To summarize, we see a higher level of bias in rendered line segments in the

cases with smaller window sizes and we see a higher level of bias on Platform II

than on Platform I for equivalent cases.

4.2.2 Normalized Unsigned Line Segment Rendering Errors

We use the normalized unsigned line segment error LSEu−norm to assess the

magnitude of the total error of the rendered line segment. It enables us to

compare errors for the various views and platforms. Table 7 summarized error

statistics for each view and platform. Figure 8 shows the same data in graphic

form.

The first thing that we see is that the two platforms give practically the same

results for equivalent cases. Histograms of the various distributions confirm

26

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

L
S

E
s-

n
o

rm

A B C D A B C D

Platform I Platform II

Figure 6: Box plot of normalized signed line segment rendering errors broken
down by view and platform. Note that the range of the Y axis has been restricted
so that the body of the box plots can be fairly compared. As a result, for some
of distributions the maximum value lies outside of the plot area. The width of
each box is proportional to the number of measurements in the corresponding
distribution.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 1.906 0.230 1.926 0.239
B 150 128 1.920 0.249 1.964 0.262
C 30 907 0.257 0.039 0.260 0.039
D 150 907 0.258 0.039 0.262 0.037

Table 7: Summary of normalized unsigned line segment rendering errors (×103).

27

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LSEs-norm

Platform II View A

Platform I View A

Figure 7: Relative bihistogram of the normalized signed line segment rendering
error for View A and Platforms I and II.

28

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

L
S

E
u

-n
o

rm

A B C D A B C D

Platform I Platform II

Figure 8: Box plot of normalized unsigned line segment rendering errors broken
down by view and platform. As in Fig. 8, the range of the Y axis has been
restricted so that the body of the box plots can be fairly compared. This results
in some of the maximum values extending beyond the plot area.

29

that the results from corresponding cases across platforms closely match. For

example, Fig. 9 compares the histograms for View A on the two platforms.

Furthermore we see that changing the angular field of view seems to produce no

substantial difference. The major effect that we see is with a change in window

size. The smaller window size produces a much larger measure of error with a

much wider distribution than the larger window size.

0 0.001 0.002 0.003 0.004 0.005

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

LSEu-norm

Platform II View A

Platform I View A

Figure 9: Relative bihistogram of the normalized unsigned line segment render-
ing error for View A and Platforms I and II.

Although there are, of course, large differences in normalized window coor-

dinates between the two different window sizes, when we convert these measure-

ments to physical units on a real display or to pixel coordinates the differences

are very small. Using our LCD display with pixel spacing of 0.255 mm as an

example, we see that all of the medians fall into the range between 0.059 mm

and 0.065 mm. In somewhat broader strokes, we could also say that all of the

median errors are a little less than a quarter of a pixel.

30

4.3 Results for Triangle Primitives

Table 8 shows the counts for the four visibility categories broken down by view

and platform. The counts on Platform I closely track those on Platform II. As

we expect, the number of visible triangles that are visible in the wider fields

of view (Views B and D) is greater than counts for the narrower fields of view

(Views A and C). We see no false visible cases and a relatively low level of false

invisible cases, with the counts for the larger windows (Views C and D) being

much lower than the smaller windows (Views A and B).

true true false false
Platform View visible invisible visible invisible

I A 52580 147133 0 287
I B 155090 44236 0 674
I C 52828 147133 0 39
I D 155691 44236 0 73

II A 52585 147133 0 282
II B 155110 44236 0 654
II C 52830 147133 0 37
II D 155688 44236 0 76

Table 8: The counts of triangle primitives rendered in each visibility category
for each view and platform.

In the course of running these triangle rendering tests, we observe that some-

times a triangle covers the entire field of view. Typically, this results in every

pixel in the window being rendered. We refer to this as a full window rendering.

When this occurs, both the unsigned and signed error measures are exactly zero.

Unsurprisingly, this occurs much more often for the 30 degree FOV cases than

the 150 degree FOV cases. A full window rendering happens sufficiently often

that it noticably affects the distributions. We will point this out as it appears

in the results that we present below.

31

4.3.1 Normalized Signed Triangle Rendering Errors

The normalized signed error metric TEs−norm measures the extent to which

the rendered area is outside rather than inside the projection of the 3D triangle.

A positive measure indicates that a greater error area is outside the projected

triangle and a negative value indicates more error inside. Table 9 presents

summary statistics broken down by view and platform. Figure 10 presents the

same results in the form of a box plot. Note that the fact that the median for

Views A and C is exactly zero is due to the substantial number of full window

renderings that occur for the narrower field of view.

For all four views on both platforms the medians are all very close to zero.

This indicates that there is little bias toward errors occurring outside versus

inside the projected triangle. However there are differences between cases that

show up when we look at the spread of the distributions. The spread of the

distribution is subtantially larger on Platform II compared to the same view on

Platform I. Furthermore, the spread of the views for the larger window size is

much less than for the smaller window size on both platforms; this is clearly

related to the normalization.

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 0.00 58.75 0.00 276.66
B 150 128 −0.05 116.67 15.48 344.57
C 30 907 0.00 1.58 0.00 35.45
D 150 907 −0.01 3.19 0.32 39.64

Table 9: Summary of normalized signed triangle rendering errors (×106).

In Fig. 11, we show a relative bihistogram of these errors for Views A and B

on Platform I. This shows the general shape of these error distributions, which

is consistent across platforms and views. Note that while both histograms show

a spike at zero, this peak is much more pronounced in the upper histogram,

32

-0.0002

-0.0001

0

0.0001

0.0002

T
E

s-
n

o
rm

A B C D A B C D

Platform I Platform II

Figure 10: Box plot of normalized signed triangle rendering errors broken down
by view and platform. Again, the range of the Y axis again has been restricted
so that the body of the box plots can be fairly compared. This results in the
maximum and minimum values lying outside of the plot area.

33

and the spread is somewhat narrower in the upper histogram. As mentioned

above, full window renderings are much more common for views A and C than

for views B and D. This results in a larger number of triangles with an error of

exactly zero, which accounts for the more pronounced peak at zero for View A

in the figure. This effect occurs on both platforms and both window sizes.

-0.001 -0.0005 0 0.0005 0.001

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

TEs-norm

Platform I View A

Platform I View B

Figure 11: Relative bihistogram comparing the signed triangle rendering errors
for Views A and B for Platform 1.

4.3.2 Normalized Unsigned Triangle Rendering Errors

The normalized unsigned error TEu measures the total aggregate error area for

the rendering. Table 10 summarizes these errors. Figure 12 shows the same

data in the form of a box plot. We see that errors for the larger window size are

much lower than those for the smaller window sizes, and errors for the wider

FOV are slightly larger and more tightly grouped than for the narrower FOV.

These effects are present for both platforms.

34

Win Platform I Platform II
View FOV Size median IQR median IQR

A 30 128 1.606 1.673 1.607 1.698
B 150 128 1.989 0.680 2.007 0.732
C 30 907 0.226 0.237 0.229 0.241
D 150 907 0.281 0.093 0.286 0.099

Table 10: Summary of normalized unsigned triangle rendering errors (×103).

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

T
E

u
-n

o
rm

A B C D A B C D

Platform I Platform II

Figure 12: Box plot of normalized unsigned triangle rendering errors broken
down by view and platform. As in previous figures, the range of the Y axis has
been restricted so that the body of the box plots can be fairly compared. So for
some of the distributions the maximum values lie outside of the plot area.

35

In fact, we see a remarkable consistency between the two platforms in the

appearance of these distributions. For example, Fig. 13 shows relative bihis-

tograms comparing View A on Platform I versus Platform II and View B on

Platform I versus Platform II. This figure shows both the equivalence of cor-

reponding distributions across platforms and the characteristic shape of the

distributions. Particularly interesting is the difference of the shapes of the dis-

tributions for Views A and B. View A and View B differ only in their angular

fields of view (30 degrees versus 150 degrees respectively). The smaller field of

view for View A results in many more full window renderings which accounts for

the peak at zero, but it is unclear why the shape of the rest of the distribution

is so different from that of View B.

To put these measurements into perspective, so to speak, we can convert the

normalized errors into physical units. Because TEu is a measure of area, we

can convert the medians from Table 10 into units of square millimeters (mm2)

For example, the median of 1.606× 10−3 in normalized window coordinates for

View A on Platform I corresponds to an area of 1.71 mm2 on our LCD display

with pixel spacing of 0.255 mm. Similarly, the median of 0.286 × 10−3 that we

report for View D on Platform II corresponds to an area of 15.3 mm2. The

same conversions can be applied to the IQRs as well as to the medians.

5 Conclusions and Future Work

The error metrics that we present above have enabled us to make quantitative

estimates of errors in rendering the three most basic geometric primitives used

in computer graphics. This lets us compare errors for different rendering cases,

including across platforms. For example, we’ve seen that point rendering has a

median error of about 0.39 in pixel coordinates, that Platform I has substantially

less bias error in rendering line segments (LSEs−norm) than than Platform

36

-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

TEu-norm

Platform I View A

Platform II View A

-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

TEu-norm

Platform I View B

Platform II View B

Figure 13: Relative bihistograms comparing the distribution of normalized un-
signed triangle rendering errors for View A and B on Platform I versus Platform
II.

37

II, and so on. Our normalizations provide a way of quantifying our intuitive

understanding that higher resolution renderings produce smaller errors.

These results can provide useful information in real-world viewing situations.

These measurements are easily converted to physical dimensions, as we have

illustrated in Sec. 4 for an actual LCD display device. Of course, different

displays have different physical characteristics and will show different errors

when those errors are expressed in physical units. For example, Table 11 shows

how the point rendering error (PE) of 0.396 pixel units translates to physical

dimensions on three representative screens that we use in our group at NIST: a

flat-panel LCD monitor, a CRT, and a large rear-projected screen that is used

in our interactive immersive visualization (virtual reality) system.

Display PE

LCD 0.101 mm
CRT 0.118 mm

Projection 0.915 mm

Table 11: Point rendering error of 0.396 pixel units converted to physical units
for three representative screens used at NIST.

Note that the error metrics that we present here do not capture all of the

possible types of rendering errors that could occur. For example, the line seg-

ment rendering error metrics do not measure whether there are gaps in the

rendered set of pixels. Similarly, there is no direct measure of whether a trian-

gle is rendered as a simply connected set of pixels.

We plan to continue this work by quantifying errors in other aspects of the

process of making visual representations of information. For example, we will

be analyzing how these rendering errors result in quantifiable errors in depth

representation in stereo displays. We will also be investigating errors that result

from the the process of generating renderable 3D geometric primitives from

underlying data representations (for example, CT scans). We refer to these as

38

modeling errors. For our work in immersive visualization environments, we will

be looking at the viewing errors caused by the position tracking systems used

in virtual reality systems. Finally, we are developing methods for aggregating

all of these types of errors to form an overall quantitative assessment of errors

contributed by the visualization process. It is our goal that these errors can,

in turn, be aggregated with error assessments of the underlying data being

presented to provide an overall uncertainty and confidence interval.

We believe that these tools enable us to understand better the possible er-

rors in our displays of scientific data and other quantitative information. This

understanding is critical for making informed judgements based on these visual

representations.

6 Disclaimer

Certain commercial products may be identified in this paper in order to ad-

equately describe the subject matter of this work. Such identification is not

intended to imply recommendation or endorsement by the National Institute

of Standards and Technology, nor is it intended to imply that the identified

products are necessarily the best available for the purpose.

References

[1] John G. Hagedorn, Joy P. Dunkers, Steven G. Satterfield, Adele P. Peskin,

John T. Kelso, and Judith E. Terrill,Measurement tools for the immersive

visualization environment, Journal of Research of the National Institute of

Standards and Technology 112 (5), 257–270 (2007).

[2] Peter A. Keller,Electronic Display Measurement,John Wiley and Sons, Inc.

New York, NY, USA (1997).

39

[3] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes,

Computer Graphics: Principles and Practice,Addison-Wesley Reading, MA,

USA, second edition (1990).

[4] Mason Woo, Jackie Neider, and Tom Davis,OpenGL Programming Guide,

Addison-Wesley Reading, MA, USA, second edition (1997).

[5] Microsoft, DirectX product information, Website, (2007), http://www.

microsoft.com/windows/directx/productinfo/default.mspx.

[6] NIST, Visualization metrology, Website, (2008), http://math.nist.gov/

mcsd/savg/vis/metrology/index.html.

[7] David Kahaner, Cleve Moler, and Stephen Nash, Numerical Methods and

Software,Prentice-Hall, Inc. Englewood Cliffs, NJ, USA (1989).

40

