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High precision variational calculations for the Born-Oppenheimer energies
of the ground state of the hydrogen molecule
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Born-Oppenheimer approximation Hylleraas variational calculations with up to 7034 expansion
terms are reported for the 1�g

+ ground state of neutral hydrogen at various internuclear distances. The
nonrelativistic energy is calculated to be −1.174 475 714 220�1� hartree at R=1.4 bohr, which is
four orders of magnitude better than the best previous Hylleraas calculation, that of Wolniewicz
�J. Chem. Phys. 103, 1792 �1995��. This result agrees well with the best previous variational energy,
−1.174 475 714 216 hartree, of Cencek �personal communication�, obtained using explicitly
correlated Gaussians �ECGs� �Cencek and Rychlewski, J. Chem. Phys. 98, 1252 �1993�; Cencek
et al., ibid. 95, 2572 �1995�; Rychlewski, Adv. Quantum Chem. 31, 173 �1998��. The uncertainty
in our result is also discussed. The nonrelativistic energy is calculated to be
−1.174 475 931 399�1� hartree at the equilibrium R=1.4011 bohr distance. This result also agrees
well with the best previous variational energy, −1.174 475 931 389 hartree, of Cencek and
Rychlewski �Rychlewski, Handbook of Molecular Physics and Quantum Chemistry, edited by
S. Wilson �Wiley, New York, 2003�, Vol. 2, pp. 199–218; Rychlewski, Explicitly Correlated Wave
Functions in Chemistry and Physics Theory and Applications, edited by J. Rychlewski �Kluwer
Academic, Dordrecht, 2003�, pp. 91–147.�, obtained using ECGs. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2173250�
I. INTRODUCTION

Variational methods based on explicitly correlated wave
functions are known to give the most accurate upper bounds
to energy states, and hence the inclusion of terms containing
the interelectronic distance rij in the wave function has be-
come increasingly common, at least for few-electron atomic
systems �N�4� �so common, in fact, that a book dealing
entirely with explicitly correlated functions has recently been
produced1�. The milestone in the theory of the hydrogen
molecule, the simplest molecular system containing an elec-
tron pair bond, is the work of James and Coolidge.2 Follow-
ing the work of Hylleraas3 on the helium atom, they em-
ployed factors of r12 in the hydrogen molecule wave function
�the full bibliography on H2 calculations until 1960 is given
in Ref. 4 and established beyond a doubt the usefulness of
including the interelectronic distance explicitly in the wave
function. Kolos and co-worker5,6 and Wolniewicz7 general-
ized the approach of James and Coolidge to get a more ac-
curate description of dissociation. Wave functions using their
“generalized James-Coolidge �JC�” wave functions are com-
monly referred to as Hylleraas �Hy� or more specifically
Kolos-Wolniewicz �KW� wave functions.1 In addition to Hy
wave function calculations, the Hylleraas-configuration inter-
action �Hy-CI� technique �developed by us8 and also inde-
pendently by Woźnicki9� has been applied to diatomic mol-
ecules �including H2� by Clary and co-worker10–13 and
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Clementi and co-workers.14–19 In Hy-CI calculations the
wave function is expanded as a linear combination of corre-
lated configuration state functions �CSFs�, where the unique
part of each CSF is a product of orbitals �� ,� ,�, etc.� and at
most one rij raised to some power �See the review article by
Rychlewski20 and Sec. 2.4 of Rychlewski1 for a discussion of
Hy-CI wave functions�. However, the calculations of Clem-
enti et al. for H2 did not achieve the accuracy of purely Hy
calculations, the best of which were the KW calculations of
Wolniewicz.7

In this work we extend the work of Kolos and
co-worker5,6 and Wolniewicz7 to calculate the energies of
1�g

+ states of H2 using expansions in confocal elliptical co-
ordinates with explicit inclusion of interelectronic distance
coordinates up through r12

7 . We calculate Born-Oppenheimer
�BO� energies for various internuclear distances in the range
of 0.4–6.0 bohr. We also determine the BO ground state
energy more precisely than the best previous calculation.1,21

The calculations reported are similar to those described
in the classic paper of Kolos and Roothaan5 �see this paper
for algorithmic details of our calculations� but go far beyond
those as a reflection of the improved capability of modern
computers. We also note that the best previous calculation to
date on the H2 ground state is neither Hy �KW� nor Hy-CI
but the one employing exponentially correlated Gaussian
�ECG� functions.1,20,22,23 While the results that have been
obtained with this technique have been impressive, this tech-
nique suffers from the same inability to represent the elec-

tron cusp behavior at rij =0 as a strictly orbital CI calcula-
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tion. Many authors have emphasized that the wave function
should have a cusplike behavior24 at r12=0 such that

� 1

�

��

�r12
�

r12=0
=

1

2
. �1�

The ECG wave function cannot properly represent this be-
havior. However, progress towards overcoming this defect
has recently been made by Pachucki and Komasa.25,26 They
add terms linear in ri and rij to an ECG calculation to pro-
duce what they call a linear ECG �LECG� basis.

II. WAVE FUNCTIONS

Since the time-independent, nonrelativistic electronic
Schrödinger equation in the Born-Oppenheimer �BO� �or the
so-called clamped nuclei� approximation is not separable in
the electron coordinates, basis sets which incorporate the r12

interelectronic coordinate are most efficient. The wave func-
tion we use for the H2 ground state is

��r1,r2� = �
K=1

N

CK�K�r1,r2� . �2�

The terms �K have the form

�K�r1,r2� = �1 + P12��r12
� 	1

n
2
j 	1

n̄
2
j̄ e−��	1+�̄	2�� , �3�

where 	 and 
 are confocal elliptic coordinates27 and n, j, n̄,
j, �, �̄, and � must be specified for each expansion term K.
For 1�g

+ states, j+ j̄ must be even. Terms in the KW wave
function differ from ours in that they include exponential

factors e−��
1+�̄
2� in 
1 and 
2 providing proper asymptotic
behavior of the wave function at large internuclear distance
R �recently the KW approach has been extended by Kubacki
and Komasa28 to allow multiple parameters, e.g., 132 in the

calculation reported in Table III�. Setting �= �̄=0 in the KW
wave function limits the range of R for which high precision
energies can be obtained. For us that range turns out to be
0.4–6.0 bohr �we could handle R0.4 with the current basis
if we used normalized orbitals, but even then, for technical

TABLE I. Calculations of the BO energy of the gro
=1.4 bohr. See text for what is tabulated in each col

� k � � �N N

0 11 10 1.320 75 0 149
1 10 10 1.320 75 1131 262
2 9 10 1.320 75 790 341
3 8 10 1.320 75 535 394
4 7 10 1.320 75 346 429
5 7 10 1.320 75 346 463
6 6 10 1.320 75 214 485
7 6 10 1.320 75 214 506
0 8 8 6.320 75 535 560
1 8 8 6.320 75 535 613
2 7 8 6.320 75 346 648
3 6 8 6.320 75 214 669
4 6 8 6.320 75 214 691
5 5 8 6.320 75 123 703
reasons our existing code would not allow R to approach 0�.

Downloaded 02 Mar 2006 to 129.6.80.55. Redistribution subject to A
In practice for the ground state one can let �= �̄ in each term
K as James and Coolidge originally did. Thus our wave func-
tion has �= �̄ for each K, but to speed up convergence we
use two sets of terms �K and �K� , one set with �= �̄=�1 and
the other with �= �̄=�2 �we refer to these as two alpha ex-
pansions�.

A. Results and discussion

In Table I we give the results of a 7034 term calculation
for R=1.4 bohr. In the table we show in each row the results
of adding to the previous calculation terms with an rij power
given by � and containing all n and j powers of 	1 and 
1,
respectively, that satisfy n+ j�k and all n̄ and j̄ powers of 	2

and 
2, respectively, satisfying n̄+ j̄�k. In addition for a 1�g
+

state j+ j̄ must be even, so terms with odd j+ j̄ are not in-
cluded. The last term selection criterion is that n, n̄, j, and j̄
must be ��. This and the value of ��=�̄� for each line com-
pletely specifies the wave function expansion in sufficient de-
tail that the calculation can be repeated, in contrast to any of
the previous large scale calculations on H2. This is one rea-
son why we made no attempt to further select the terms
being used �it then becomes difficult to specify the final
wave function terms in print without giving a detailed list�.

The first eight lines are for adding successively high
powers of rij with �1=1.320 75 and then terms correspond-
ing to �2=6.320 75 are added. Energies for each expansion
length N are tabulated as well as the improvement over the
previous level.

We note that �E for �=7 is greater then that for �=6,
whereas one might expect a monotone decrease as the power
of r12 is raised. However, the terms in our expansion are of
two types: those with even powers of r12, which are basically
�complicated� CI-type terms, and those with odd powers of
r12, which treat electron-electron interactions in an essen-
tially different fashion. The �E contributions from both of
these term types are indeed monotone decreasing as expected
but there is nothing that requires the combination to be simi-
larly monotone decreasing, especially since one has reached

state of the H2 molecule at internuclear distance R

Energy �E� �hartree� �E

−1.161 518 240 453 517 4
−1.174 437 033 907 773 7 −0.129 18�10−1

−1.174 475 267 311 513 6 −0.382 33�10−4

−1.174 475 706 160 320 7 −0.438 84�10−6

−1.174 475 713 814 860 6 −0.765 45�10−8

−1.174 475 714 083 184 5 −0.268 32�10−9

−1.174 475 714 100 185 3 −0.170 00�10−10

−1.174 475 714 145011 5 −0.448 26�10−10

−1.174 475 714 190 684 3 −0.456 72�10−10

−1.174 475 714 210 523 3 −0.198 39�10−10

−1.174 475 714 216 401 7 −0.587 83�10−11

−1.174 475 714 218 711 6 −0.230 99�10−11

−1.174 475 714 219 818 1 −0.110 65�10−11

−1.174 475 714 220 075 5 −0.257 4�10−12
und
umn.

1
2
2
7
3
9
3
7
2
7
3
7
1
4

the point where it is getting difficult to describe the electron
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distribution with a single nonlinear parameter. In this con-
nection, we note that the reordered two alpha expansion re-
sults presented in Table II exhibit no such anomalous behav-
ior.

Based on the rate of convergence that is observed
here, we conclude that the energy has converged to 12
decimal places and the 13th digit is 0 or 1, i.e.,
E=−1.174 475 714 220�1� hartree. Optimization of � at the
7034 term level changes things only in the 15th decimal
�16th digit�, i.e., the energy surface in � space is very flat.
Varying the expansion terms beyond 7034 systematically
gave energy improvements occurring only in the 13th and
14th decimal places, further evidence that our result has con-
verged to 13 digits.

In Table II we again give results for the 7034 term cal-
culation but with terms reordered to show the energy contri-
bution of each power of rij ���. Energies for each expansion
length N are tabulated as well as the improvement over the
previous level.

Our final energy is also listed in Table III and compared
with previous results. The 2400 ECG result in Table III has
been communicated to us by W. Cencek to correct his calcu-
lation reported in Ref. 21. As communicated to us by
Cencek,29 he gets −1.174 475 714 216 hartree and then the
numerical stability of the wave function deteriorates so that
the last digit starts fluctuating. Which means that the
−1.174 475 714 223 hartree reported in Ref. 21 is not a true
last digit upper bound since the last digits suffer from

TABLE II. Calculations of the BO energy of the gro
hartrees. Terms are organized by rij power �; �1=1.

� �N N

0 2026 −
1 1656 3682 −
2 1146 4828 −
3 749 5577 −
4 560 6137 −
5 469 6606 −
6 214 6820 −
7 214 7034 −

TABLE III. Comparison with previous explicitly cor
of the hydrogen molecule �R=1.4 bohr� expressed in

Technique Author

Many alphas Kubacki and Komasa �R
JC Bishop and Cheung �Re

KW Kolos �includes r12
3 � �R

One alpha This work �includes
Two alphas This work �includes

KW Wolniewicz �includes r12
6 �

ECG Cencek and Kutzelnigg �R
One alpha This work �includes
One alpha This work �includes
Two alphas This work �includes

ECG Cencek �Ref. 29�
Two alphas This work �includes

a
132 nonlinear parameters.
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numerical instabilities. Cencek’s error estimate is
1�10−10 hartree. As stated previously, we believe that our
result has converged to 1.174 475 714 220�1�, two orders of
magnitude better than the error estimate of the best previous
calculations.21,29 In Table III we label our calculations with a
single � as one alpha and those with both an �1 and an �2 as
two alphas. The JC, KW, ECG, and Hy-CI designations in
this and following tables are those of Rychlewski.1

In Kolos and Roothaan’s original paper5 the highest
power of r12 used was 2. Terms with r12

2 introduce the
equivalent of ��1���2� CI-type terms. So only �-� type
terms were explicitly correlated in Kolos and Roothaan’s
original study. r12

3 factors will introduce the equivalent of
��1���2�r12 terms. In Table III it can be seen that using only
a single �, we are able to compute the energy to eight digits
�seven decimal places� with r12�3. It is interesting that with
r12�5 �r12

5 puts in ��1���2�r12� we are able to do better than
all previous Hy calculations employing many terms with
high powers of 	1 and 	2 as well as the accurate 1200 term
ECG calculation of Cencek and Kutzelnigg.30 The energy
calculated with the ECG wave function was obtained only
after a very time-consuming optimization process in which
five nonlinear parameters per basis function �which means
6000 parameters for the 1200 term wave function� were op-
timized. In contrast the optimization for our single � wave
function is based on the selection of the terms of the form of
Eq. �3� and the optimization of only the single parameter �.
By going up to r12

7 we effectively correlate up to

tate of the H2 molecule at R=1.4 bohr expressed in
5 and �2=6.320 75.

gy �E� �hartree� �E

523 300 229 836 0
437 336 488 608 6 −0.129 14�10−1

475 280 326 470 9 −0.379 43�10−4

475 706 942 023 1 −0.426 61�10−6

475 714 069 212 3 −0.712 71�10−8

475 714 216 389 9 −0.147 17�10−9

475 714 219 924 8 −0.353 49�10−11

475 714 220 075 5 −0.150 7�10−12

d calculations for the BO energy of the ground state
rees.

N Energy �E� �hartree�

� 22a −1.174 474 77
� 249 −1.174 475 65

370 −1.174 475 685
3947 −1.174 475 706 160
5577 −1.174 475 706 942

7� 883 −1.174 475 713 565
0� 1200 −1.174 475 714 037

4639 −1.174 475 714 083
5067 −1.174 475 714 145
6606 −1.174 475 174 216
2400 −1.174 475 174 216
7034 −1.174 475 174 220
und s
320 7

Ener

1.161
1.174
1.174
1.174
1.174
1.174
1.174
1.174
relate
hart

ef. 28
f. 45
ef. 6�
r12

3 �
r12

3 �
�Ref.
ef. 3

r12
5 �

r12
7 �

r12
5 �

r12
7 �
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��1���2�-type products. Table III shows that a single non-
linear parameter is adequate for a 0.1 nhartree level of accu-
racy, but is not as good as the 2400 term ECG wave function.
By adding a second � at the r12

5 level we were able to exceed
our single � r12

7 result as well as the 2400 ECG result. Going
up to r12

7 with �1 and r12
5 with �2 achieves an 0.001 nhartree

level of accuracy.
Table IV summarizes previous results at the equilibrium

bond distance R=1.4011 bohr. The improvement of this
wave function over the ECG 2400 term wave function of
Cencek and Rychlewski parallels the relationship of ECG to
Hy at R=1.4 bohr.

We find in this work that very good energies are obtained
with our wave functions up to and including R=6.0 bohrs.
The fact that we do so well for such large R values without a
� nonlinear parameter in the wave function is presumably
because we have numerous terms with high powers of 
1 and

2. In Table V we show that the comparison of single �
results versus ECG results holds not only for a single inter-
nuclear distance but for a whole range of R using the 5067
term single � wave function. We are basically assuming that
the expansion terms used for R=1.4 will be adequate for
other R values. We are also assuming that since �1 and �2 are
not tightly coupled, we can use the �1 values from Table VI
for a good single nonlinear parameter calculation. It is strik-
ing how well these results agree with the 1200 term ECG
results, which are better than the best previous Hy results, the
KW results of Wolniewicz.7

Drake31 has pointed out the practical need for “dou-
bling” basis sets so there is a natural partition of the basis set
into two distinct distance scales: one appropriate to the com-
plex correlated motion near the nucleus and the other appro-
priate for further out. Drake uses just two sets of orbitals to

TABLE IV. BO energy for the ground state of the h

Technique Author

Hy-CI Frye et al. �Refs. 17 and 1
KW Wolniewicz �Ref. 7�
ECG Rychlewski et al. �Ref. 4
ECG Cencek and Rychlewski �Re

Two alphas This work �includes r12
7

TABLE V. BO energy �in hartrees� of the ground state of the hydrogen
molecule at selected internuclear distances �expressed in bohr� calculated
using the 1200 ECG wave function �Table 2.8 in Ref. 1� and our 5067 term
single � wave function �terms defined in Table I, lines 1–8�. The �1 values
used here are those presented in Table VI.

R 1200 term ECG 5067 term one �

1.0 −1.124 539 719 5 −1.124 539 719 462 06
1.2 −1.164 935 243 3 −1.164 935 243 354 69
1.4 −1.174 475 714 0 −1.174 475 714 145 01
1.6 −1.168 583 373 3 −1.168 583 373 287 03
1.8 −1.155 068 737 5 −1.155 068 737 548 57
2.0 −1.138 132 957 0 −1.138 132 957 074 81
3.0 −1.057 326 268 7 −1.057 326 268 835 43
4.0 −1.016 390 252 8 −1.016 390 252 933 31
6.0 −1.000 835 707 6 −1.000 835 707 653 04
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accelerate convergence. In our He calculations we found that
the importance of the second orbital exponent came in
around the 13th digit. In our present calculations we found it
difficult to get the tenth digit �0.1 nhartree accuracy� without
taking into account the detailed description of the wave func-
tion near the protons by incorporating elliptical orbitals with
large orbital exponents to describe the charge distribution
near the nucleus. This effect did not enter in the He calcula-
tions until we wanted more than 13 decimal places. The
greater need for two scale parameters is probably to be ex-
pected in H2 where much of the electron correlation energy
is associated with the region far from the nuclei, unlike He
where the space close to the nucleus is energetically impor-
tant for both electron-electron and electron-nucleus interac-
tions.

In Table VI we give our final results �7034 term wave
functions� for the BO energy of the ground state of the
H2 molecule at internuclear distances ranging from 0.4
to 6.0 bohrs using two nonlinear parameters, �1 and �2. In
Table VI we also tabulate the contribution of all the �2 terms
versus R �the column labeled �E��2��1012�. As previously
discussed, we estimate the error in the energy at the internu-
clear distance R=1.4 bohr to be no more than 0.001 nhartree.
We have not investigated this question for other R values. In
the table we give energies up to 16 digits for the record and
also for the benefit of anyone wanting to repeat a calculation.
The table is very interesting, showing clearly how as R in-
creases the electrons interact less and less, particularly
around the nuclei. Each nucleus has an electron and the prob-
ability for both being around the same nucleus is small, as
one would expect. Being able to demonstrate this is a side
effect of our way of choosing the wave function. In a calcu-
lation with lots of nonlinear parameters one would not be
able to see this so clearly.

In this paper we have restricted our calculations to the
BO energies. Recently there has been much interest in a
direct nonadiabatic �which is non-BO� variational approach
using correlated Gaussian basis sets. The best result using
this approach is that of Cafiero et al.32 This approach yields
energies of about ten digits accuracy. However, the feasibil-
ity of this approach to systems with more than two electrons
has not been demonstrated. And for the two-electron case,
we have been able to obtain results using traditional methods
that yield energies to about 13 digit accuracy.

III. Hy VS Hy-CI

As there is a close relationship between the Hy wave
functions we use and an essentially equivalent Hy-CI treat-

en molecule at R=1.4011 bohr.

N Energy �E� �hartree�

586 −1.174 474 67
883 −1.174 475 930 742
700 −1.174 475 931 197

2400 −1.174 475 931 389
7034 −1.174 475 931 399 84
ydrog

8�

6�
f. 21�
�

ment, these Hy results can provide insight into what is
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needed in Hy-CI calculations. This can be seen by consider-
ing what a ��1���2�r12

2 term expands out to using

r12
2 = r1

2 + r2
2 − 2r1r2 cos �12. �4�

For high precision, Hy wave functions2,5–7 must have the r12

power k�1, whereas Hy-CI wave functions need only have
r12 raised to at most the first power.

TABLE VI. BO energy of the ground state of the H2 molecule at internu-
clear distances R from 0.4 to 6.0 bohrs. N=7034. See text for Table I for
what is tabulated in each column.

R �1 �2 Energy �E� �hartree� �E��2��1012

0.4 0.507 5 0.982 86 −0.120 230 341 177 864 4 285.9
0.5 0.605 1.281 44 −0.526 638 758 742 317 2 152.1
0.6 0.687 5 1.65 −0.769 635 429 485 356 8 118.1
0.7 0.78 2.0 −0.922 027 461 527 015 2 93.8
0.8 0.861 25 2.445 −1.020 056 666 360 138 9 88.5
0.9 0.939 5 3.007 5 −1.083 643 239 958 508 7 86.6
1.0 1.017 5 3.679 4 −1.124 539 719 546 579 1 84.5
1.1 1.093 25 4.445 −1.150 057 367 738 288 5 83.0
1.2 1.16 5.197 5 −1.164 935 243 440 028 1 85.3
1.3 1.227 5 5.945 −1.172 347 149 037 780 0 86.1
1.4 1.320 75 6.320 75 −1.174 475 714 220 075 5 75.0
1.5 1.39 6.945 −1.172 855 079 578 144 7 74.3
1.6 1.43 7.351 25 −1.168 583 373 370 926 3 83.9
1.7 1.525 7.695 −1.162 458 726 897 808 8 72.6
1.8 1.625 7.82 −1.155 068 737 610 807 1 62.2
1.9 1.705 8.07 −1.146 850 697 028 721 0 58.2
2.0 1.775 8.32 −1.138 132 957 131 503 5 56.7
2.1 1.851 8.445 −1.129 163 836 099 972 1 53.8
2.2 1.94 8.445 75 −1.120 132 116 847 639 1 48.9
2.3 1.985 9.07 −1.111 181 765 202 644 8 51.2
2.4 2.05 9.445 −1.102 422 606 009 297 8 49.9
2.5 2.125 9.57 −1.093 938 129 953 599 8 47.0
2.6 2.225 9.32 −1.085 791 237 393 588 7 40.4
2.7 2.287 5 9.695 −1.078 028 484 181 047 9 40.2
2.8 2.35 9.82 −1.070 683 233 478 409 5 38.9
2.9 2.425 10.07 −1.063 778 008 802 791 6 36.3
3.0 2.5 10.195 −1.057 326 268 869 243 9 33.8
3.1 2.6 9.945 −1.051 333 772 264 451 6 29.9
3.2 2.65 10.32 −1.045 799 661 428 733 8 29.0
3.3 2.75 10.07 −1.040 717 365 347 598 5 25.7
3.4 2.825 10.21 −1.036 075 395 186 919 5 23.7
3.5 2.875 10.695 −1.031 858 084 851 223 0 22.5
3.6 2.95 10.757 5 −1.028 046 308 375 876 6 20.5
3.7 3.025 11.07 −1.024 618 188 407 147 2 18.6
3.8 3.115 10.82 −1.021 549 795 529 910 9 16.6
3.9 3.167 5 11.32 −1.018 815 827 692 849 8 15.3
4.0 3.23 11.601 25 −1.016 390 252 947 128 3 13.8
4.2 3.38 11.882 5 −1.012 359 959 679 918 9 11.0
4.4 3.525 12.15 −1.009 256 516 258 663 2 8.7
4.6 3.6 13.32 −1.006 895 223 820 121 1 6.9
4.8 3.75 13.32 −1.005 116 006 098 095 2 5.3
5.0 3.9 13.195 −1.003 785 658 581 988 9 4.0
5.2 3.95 14.75 −1.002 796 816 309 543 1 3.2
5.4 4.1 14.00 −1.002 065 057 208 235 3 2.4
5.6 4.15 14.82 −1.001 525 251 885 354 9 1.9
5.8 4.2 15.57 −1.001 127 880 851 321 4 1.5
6.0 4.3 15.00 −1.000 835 707 654 227 9 1.2
In elliptical coordinates,
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r12
2 = �R

2
�2

�p − 2q cos��1 − �2�� , �5�

where

p = 	1
2 + 
1

2 + 	2
2 + 
2

2 − 2 − 2	1
1	2
2,

�6�
q = ��	1

2 − 1��1 − 
1
2��	2

2 − 1��1 − 
2
2��1/2.

Expanding Eq. �5�, the first term is just a polynomial in
	1, 
1, 	2, and 
2. Hence multiplying it by ��1���2� just
produces another ��1���2� charge distribution with higher
powers of ni and ji. The second term in Eq. �5� is propor-
tional to q cos��1−�2�. But q cos��1−�2� is a linear combi-
nation of ��1���2� products with M =0 �but without the ex-
ponential factors�. This gets multiplied by the ��1���2� part
�which does have the exponential factors�. The ��1���2�
term gets multiplied by the ��1���2� part of the ��1���2�r12

2

term, so the final result is a special linear combination of ��
and �� CI configurations. As long as the powers of 	 and 

in the CI part of Hy-CI are greater than or equal to powers of
	 and 
 in the r12

2 term in the Hy expansion for both �� and
��, one will get an Hy-CI answer just as good as an answer
with Hy. Similar results apply for r12

4 and r12
6 �this same point

was made by Clary12�.
Although other �radial� factors will be different in the

two methods, they are essentially equivalent methods �for
two-electron problems�. We note that an equivalent Hy-CI
calculation would have orbitals up to and including � with
r12 raised to at most the first power. A really good Hy-CI for
H2 would start out with a CI calculation including all the
different term types ��� ,�� ,�� ,��, etc.� and then add to
this each of the terms multiplied by r12 but in general with
different nonlinear parameters. In particular, we note that
where calculations have been done �CI for H2 and Hy-CI for
He� orbital exponents tend to increase at least for �� �pp for
He� terms resulting in significantly improved convergence of
the expansion.

In this paper we go beyond both the molecular Hy-CI
calculations of Clementi et al. and the purely Hy calculations
to achieve the best results for both types of calculations.
Since the Hy and Hy-CI methods are computationally
equivalent for all practical purposes for two-electron molecu-
lar systems �we have demonstrated this for the helium
atom33�, a Hy-CI calculation should be able to achieve com-
parable or better energies than these results with shorter ex-
pansions.

A. Comparison with experiment

For a review of the status of our knowledge of the dis-
sociation energy of H2 until the year 2000 �theoretical and
experimental�, see Stoicheff.34 Currently the best experimen-
tal value for the dissociation energy D0 for H2 is
36 118.062�10� cm−1.35 The best theoretical value is
36 118.058 cm−1.1 The previous best theoretical values were
36 118.069 cm−1 �Ref. 36� and 36 118.049 cm−1,7 respec-
tively. These theoretical values are obtained starting from
accurate values for the Born-Oppenheimer �BO� electronic

energies for the ground state of the H2 molecule over a range
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of internuclear distances R. This defines a BO potential en-
ergy �PE� curve. The results presented in Table VI are the
definitive values for these BO energies defining the PE
curve. These can be used with separate calculations of adia-
batic, relativistic, and radiative �QED� corrections to obtain a
theoretical dissociation energy �see, for example, Ref. 1�.
Our results are good enough to pin down the theory to 0.001
wave number if one can calculate the other corrections accu-
rately enough. As new values of adiabatic, relativistic, and
QED corrections are obtained, they can be combined with
our BO energies to obtain new theoretical values. So maybe
the experiment needs to be redone using 0.001 wave number
as the level of accuracy to shoot for, that is, an order of
magnitude reduction in the current experimental uncertain-
ties.
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APPENDIX: SPECIAL FEATURES
OF THE CALCULATION

For a discussion of integral techniques needed to solve
the H2 electronic secular equation using ellipsoidal coordi-
nates, see Kolos and Roothaan5,37 and references therein and,
in particular, the definitive paper of Rüdenberg.38

A parallel eigensolver proved essential for obtaining re-
sults over a range of R from 0.4–6.0 bohrs. This involves
solving the N-dimensional generalized eigenvalue problem

HC = �SC �A1�

by the inverse iteration method.39 We solve this secular equa-
tion using our own portable parallel inverse iteration
solver.40 The generation of the matrices H and S is of order
N2 while the solution of the secular equation Eq. �A1� is of
order N3. Since for us N is large and the interprocessor com-
munication is only of order N2, the parallelization of the H
and S matrices is largely a matter of convenience �since no
restructuring of the code is required, just a suitable selection
of columns by each process�. We calculated the basic inte-
grals on each process, since this takes up only a small frac-
tion of the total time, but parallelized the H and S matrix
construction since that allows the total memory needed to be
spread across the processors and eliminates a need to com-
municate matrix elements between processors. The result

was that the whole process is almost “embarrassingly paral-
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lel” with near linear “speedup.” For example, for a 4190 term
wave function we achieved a factor of 30 speedup on 32
processors for the order N3 step running on the National
Institute of Standards and Technology �NIST� 147 processor
cluster of Pentium �the identification of any commercial
product or trade name does not imply endorsement or rec-
ommendation by either the National Institute of Standards
and Technology or Indiana University�, Athlon, and Intel
processors running REDHAT LINUX.

Almost all results reported in this paper were obtained
using quadruple precision ��30+ digits� floating point sub-
routines written in FORTRAN 90 using Miller’s41 quadruple
precision package which we augmented to interface to other
data types �where native quadruple precision exists and com-
plete agreement with Miller’s package was always obtained�.
Much of the present code was developed on a conventional
desktop personal computer �PC� running WINDOWS 98 and
using FORTRAN compilers that did not include quadruple pre-
cision as a native FORTRAN data type. It was here that
Miller’s package proved extremely useful. Recently Hida’s42

very efficient quadruple precision package �coded in C���
has become available. We have our own portable FORTRAN 90

version of this excellent package,40 but there was no need in
this work to switch from the Miller package which we have
been using from the very beginning.

In addition to Miller’s quadruple precision package, we
made use of Brent’s arbitrary multiple precision �MP� float-
ing point arithmetic package43,44 for the Rüdenberg �
function38 on which all integrals depend. The Rüdenberg �
function is computed in multiple precision using Brent’s MP
package interfaced to FORTRAN 90 using the user defined
data-type mechanism with associated interface block defini-
tions for the MP arithmetic operations and intrinsic func-
tions.

The Rüdenberg � function is

�nn�
Ml ��,��� = �n�n

Ml ���,��

= �− 1�M �l − M�!
�l + M�!	1

�

d	Ql
M�	��	2 − 1�M/2

�
e−�		n	
1

	

dxPl
M�x��x2 − 1�M/2e−�̄xxn̄

+ e−�̄		n̄	
1

	

dxPl
M�x��x2 − 1�M/2e−�xxn� ,

�A2�

where the Pl
M are Legendre polynomials and the Ql

M are
associated Legendre functions of the second kind �see Ref.
38, footnote 4 for detailed definitions�.

Rüdenberg gives complicated recursion schemes for
raising n, n�, l, and M starting from �00

00. Upper limits on n
and n� depend on the values of l and M required, which in
turn depend on the expansion basis being used �maximum
powers of 	 and 
�. In the present work values of l up to 40
and n and n� up to 81 were used. The recursion relations are
unstable for all indices, but for l they are particularly patho-

logical involving the loss of one to two decimal digits of
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accuracy each time l is raised by 1. Raising M from 0 to its
maximum value of 7 �in this work� involves only minor loss
of accuracy through differencing. Conversion back to qua-
druple precision was then done and the rij

� integrals were
evaluated in quadruple precision. To address these differenc-
ing problems we systematically increased the number of
decimal digits used for only the � part of the calculation up
to a maximum of 160 decimal digits.

We note that Kolos and Wolniewicz6,7 worked in double
precision and evaluated the rij integrals numerically using an
efficient charge distribution scheme �also introduced by
Rüdenberg�. This numerical approach is not applicable in
this work due to the general need for higher precision values
for all the basic integrals.

The code development used a desktop PC �Athlon,
0.5 Gbyte memory, WINDOWS 98� until the memory capacity
of the system was exceeded, at which time we moved over to
larger systems with more memory and somewhat later, par-
allelized the code to run on cluster systems at Indiana Uni-
versity �analysis and visualization of instrument-driven data
�AVIDD�� and NIST �Raritan�. The parallelization proved
extremely helpful not only for speeding the calculation but
also by spreading the total memory needed across the nodes
of the cluster.
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