
A Generalized Approach for Transferring Data-Types with Arbitrary
Communication Libraries

Martial MICHEL

NIST, USA
RÉSÉDAS, France

martial.michel@nist.gov

Judith Ellen DEVANEY

NIST, USA
judith.devaney@nist.gov

Abstract

We present a generalized algorithm for implementing a
communications library for dynamic data structures cre-
ated with heterogeneous composed data types such as mul-
tiple C structs, and where the data-types may be nested and
may contain pointers. This algorithm is divided into an ab-
solute part that is the same for all instantiations, and a rel-
ative part that is specific to the communications mechanism
used, such as PVM or MPI. We describe the algorithm in
terms of our AutoMap/AutoLink implementation in C/MPI.

First, we will talk of the MPI case and of the AutoMap
and AutoLink solutions (with ideas from version 3.0). Then
we discuss what is to be followed in order to generalize the
data-types transfer concepts presented in this article.

With this addition to AutoMap/AutoLink we can extend
the functions provided from the current send and receive
functions (blocking and non blocking) available for any
data-types, to any kind of transfer function; from broadcast
to reduce (as long as the reduce called process is “message
aware”). This will also simplify the extension of this work
to data-types load balancing.

1 Introduction

Data structures, including dynamic ones, are an inte-
gral part of effective computing. Yet message passing sys-
tems for parallel and distributed computation, such as Paral-
lel Virtual Machine (PVM) and Message Passing Interface
(MPI), do not provide the capability to send and receive dy-
namic data structures as part of their standard. If one cre-
ated decision trees on multiple processors and wanted to
send and receive these trees between processors for com-
parisons, one would have to develop specialized software
to accomplish this for each message passing scheme used.
This would involve flattening the data structure, sending it,
receiving it, and then reconstituting it. In MPI the software

to accomplish this is laborious to create. In contrast, lan-
guages such as Java provide a mechanism to flatten data
structures, called serialization. One can send such serializa-
tions simply. However, Java does not have the amenities of
MPI such as broadcast, or topologies. This work describes
a general methodology that can be used to create serializa-
tions in C that can be used with any message passing sys-
tem.

Note that we have already looked over the CORBA
methods in [8].

2 Generalizing data-type transfer

2.1 Notation

First we define two names : complex data-types and dy-
namic data-types.

2.1.1 Complex data-types

Every composed data-type using C data-types (basic or con-
structed) without pointers (see figure 1).

Figure 1 Example of Complex data-type
typedef struct pen {
char brand[20];
int content;
long unit_price;

}

2.1.2 Dynamic data-types

Every “complex” data-type using pointers to refer to other
data-type(s) (see figure 2).

Figure 2 Example of Dynamic data-type
typedef struct penbox {
char brand[20];
pen *content[20];

}

2.2 Dynamic data-type transfer

Dynamic data-type transfer is an issue on all distributed
systems, and if a message passage library provides means
to transfer complex data-types, few provide their dynamic
data-type counterpart.

In essence to be able to transfer dynamic data-types,
there are a few basic steps that are to followed. Those steps
are, for the sending part of the transfer process :

1. Graph traversal,

2. Address abstraction,

3. Data transfer.

And for the receiving part :

1. Data transfer,

2. Reverse address abstraction.

This provides a means for “data-type serialization”.
As we will show later in this article, the AutoLink al-

gorithm matches (and specializes) those criteria. To fully
understand this, we will present the MPI data-type problem
that AutoMap and AutoLink solve.

3 AutoMap & AutoLink

3.1 MPI issues

Message passing is used widely on distributed memory
parallel machines and clusters of computers. The MPI stan-
dard defines an easy way to work with such concepts, by
providing support for :

� Point-to-point communication

� Collective operations

� Process groups

� Communication contexts

� Process topologies

� . . .

The binding of the standard with the C language provides
a way to address issues such as data-types, where in MPI
this is done through opaque objects accessed via handles.

Still, the MPI library can only transfer data-types that it
knows about, and the C implementation of MPI only knows
about basic types in C. Extending the range of those data-
types is allowed by creating user defined MPI data-types;
a long, repetitive and complicated process, that can be de-
scribed in six operations :

1. Set up an array defining the number of data of each
kind that will be used (in the same order as the struc-
ture definition).

2. Set up an array that will contain the type specification
for each element contained in the structure.

3. Set up an internal displacement array containing the
memory offset of each field.

4. Give a name to the MPI data-type.

5. Build the new MPI type. Set the container of the MPI
data-type .

6. Validate the type existence to be used with MPI.

Such complex data-types can only be sent and received
once they are described to the MPI library, but in the case
of dynamic data-types, it is left to the user to enforce the
packing and unpacking required.

AutoMap and AutoLink are solutions to these needs us-
ing the MPI library;

� AutoMap creates user defined MPI data-types from C
structs after reading them from a file.

� AutoLink gives the MPI user a means to transfer dy-
namic data-types simply from one MPI node to an-
other.

3.2 AutoMap

AutoMap[1, 3] is designed to simplify the MPI user’s
task when creating complex data-types. It is a source-to-
source compiler designed to read from user C data-types
definition files typedef and struct entries, recognizing
special directives (placed inside of C comments) and gener-
ating a set of files containing MPI data-type definition and
creation procedures.

3.3 AutoLink

AutoLink[3] is a library extension to MPI, designed to
allow users to transfer dynamic data-types via MPI (the

marshalling/unmarshalling process of CORBA[8]). It re-
quires AutoMap to parse the user data-type entries and pro-
vides high level functions to transfer them. The file genera-
tion process is shown in figure 3.

The public transfer operations are based on the MPI
functions of the same name, and are preceded by AL 1.

Figure 3 AutoMap and AutoLink files generation;
struct.h is the user type definition file, useprog.c is
the C source that uses the output of AutoMap/AutoLink

userprog.cstruct.h

is used by

autolink.inc

userprog.o al_internals.o

mpitypes.inc

mpitypes.h

userprog

al_internals.h

is included by

generates

C compilation

optional

AutoMap alone
used files

autolink.h

al_internals.c

al_routines.inc al_common.h

AutoMap

C linker
(with MPI)

logbook.txt

AutoLink works with Packets (elements of the same
data-types put together in order to fasten the transfer pro-
cess), and its transfer functions can be described easily by :

Send Starts from the user data-type entry point, follows
each pointer link in a breadth first traversal, stores data
into “Packets”, and sends them.

Recv Receives all the data, stores it, recreates the links be-
tween the fields of the data-structures, and return the
entry point to the user.

AutoLink performance is influenced by the use of
PACKETs. This is studied in [7].

4 Transfer operations

AutoLink transfer operations are based on send and re-
ceive algorithms that are generic enough so that the basic
concept and order presented can be used both in blocking
and non blocking operations (even if the lower level code
needs to be different to process the requests generated by
non blocking operations).

1AL Send for example

4.1 Internal data-types

To fully understand the simplified algorithms to be pre-
sented hereafter, one must understand the specific data-
types developed for AutoLink.

NEXT Elements to traverse.

mark Elements already traversed

ADDRESS Addresses –memory representation– of ele-
ments.

LINKS Information required to perform the reverse ad-
dress conversion of recreated elements.

PACKET Used to “pack” elements of the same data-type
together before transfer.

4.2 Initial message

The new algorithm for AutoLink reduces the number of
communications from two messages for each partial send
to one initial message and one for each partial send. This
is done by separating computation and transfer while in the
previous version of the algorithm, both overlapped.

The initial message contains two pieces of information :

1. Number of elements to be sent; total number of ele-
ments to be send for each data-type.

2. Initial element, so that we can recreate the data-type by
knowing which element is the leading element of the
reconstructed dynamic data-type.

4.3 Send Algorithm

The send simplified algorithm is given in figure 4. Lines
preceded by “@” are found in the AutoMap generated code,
and entries preceded by “*” are MPI specialized.

4.4 Reception Algorithm

It could be found in figure 5, and follow the same rules
that are defined for figure 4.

5 Communication system dependencies

Some functions of the algorithm need to be specialized in
order to work properly with a given communications system
such as MPI or PVM.

There are three types of items that need consideration :

1. data-type specification. In MPI, composed data-types
may be created, and this simplifies sending and receiv-
ing.

Figure 4 Send Algorithm

|Add entry node in ADDRESS and NEXT,
| and MARK it
|While there is a element in NEXT
| |Get Current Node (CN) from NEXT
| |@For each children of CN
| |@If the child in not MARKed
| |@Then |@If the child exists
| |@ |@Then |@Add child in
| | | | ADDRESS and NEXT,
| | | | and MARK it
| |Go to next in NEXT
|*Send initial message
|For each (=i) data-type
| |For each (=j) element of ADDRESS[i]
| | |Add ADDRESS[i][j] (Current Node)
| | | in PACKET (will work on copy)
| | |@For each child of CN
| | | |@If the child does not exist
| | | |@Then |@Add ‘‘NO CHILD’’ to
| | | | | LINKS
| | | |@Else |@Add child’s MARK to
| | | | | LINKS
| | |*If PACKET is full, send it

2. data-type representation between heterogeneous ma-
chines. For example, MPI has predefined data-types
such as MPI Integer that are guaranteed to be trans-
fered successfully between machines.

3. method to aggregate data into a packet. For example,
PVM has a Pack/Unpack construct. MPI does also, but
this method is considered inefficient and a higher level
data-type may be constructed.

6 Generalizing the AutoLink solution

When looked at from a general point of view, the specific
algorithms developed for AutoLink are in the essence :

� Send :

1. Graph traversal (marked)

2. Address conversion (absolute to relative)

3. Data transfer (using packets)

� Receive :

1. Data reception (and memory creation)

2. Graph links recreation (reverse address conver-
sion)

Figure 5 Receive Algorithm

|*Receive Initial Message
|While there are PACKETs to receive
| |*Receive PACKET
| |For each element of PACKET
| | |@Memory create the element
| | |Add created element information
| | | in ADDRESS
|@For each element in LINKS
| |@If ‘‘NO CHILD’’
| |@Then |@Set child to no child
| |@Else |@Set child to ADDRESS’s
| | | reference
|@Result is Initial Element with
| recreated links

Also, the only specialized part required for the AutoLink
algorithm to work properly is to have AutoMap generate a
few specialized functions for traversal and reconstruction of
those user created data-types (C structs).

The generalization splits the send and receive functions
in two parts : communication (eg MPI) specific and com-
munication non specific, so that one can use the non specific
part to create a genuine “message” that he can then transfer
using methods of the communication mechanism chosen,
and simply use on the other end the reverse message cre-
ation process to recreate the data-types in memory.

To do so, we would have to modify the algorithm so
that there are only two data-type specific functions (com-
munication system independent) : message aggregation and
message expansion. The first one would generate a mes-
sage by packing together the multiple nodes of the dynamic
data-type to be sent. The second, would perform the re-
verse message generation process, and memory reconstruct
the received message. It may be required to have a part that
makes the data-type specific functions “communication sys-
tem aware”; so that there is an actual mapping between the
created message and the communication system.

The actual data transfer part (communication system de-
pendent) would then be left open to the user discretion, un-
derstanding that in the case of the MPI standard, a simple
MPI send/receive.

Then one will not be limited by the functions provided by
AutoLink in the sense that as of now only the send and re-
ceive functions (blocking and non blocking) would be avail-
able to use on the data-type but any kind of transfer function
from broadcast to reduce (as long as the reduce called pro-
cess is “message aware”).

7 Conclusion

The software evolution required here is for future ver-
sions of the “MPI data-types tools” project, making it pos-
sible to evolve into a “data-types transfer tools”.

We will not speak of future implementations issues yet
for those ideas are still to be looked into more closely, but
this makes it possible for us to think of other possibilities re-
garding issues such as load balancing of data-types through
nodes of distributed systems.

HTTP references

� MPI data-type tools :
http://www.nist.gov/itl/div895/savg/
auto/

� NIST :
http://www.nist.gov/

� RÉSÉDAS :
http://www.loria.fr/equipes/resedas/

� SAVG :
http://www.nist.gov/itl/div895/savg/

References

[1] J. E. Devaney, M. Michel, J. Peeters, and E. Baland. Au-
toMap: A Software Tool for the Automatic Creation of MPI
Data Structures From User Code. Technical report, NIST,
April 1997. http://www.itl.nist.gov/div895/
savg/parallel/.

[2] J. E. Devaney, M. Michel, J. Peeters, and K. Vrielink.
AutoLink: An MPI C Library For Sending and Receiv-
ing Dynamic Data Structures. Technical report, NIST,
April 1997. http://www.itl.nist.gov/div895/
savg/parallel/.

[3] D. S. Goujon, M. Michel, J. Peeters, and J. E. Devaney. Au-
tomap and autolink : Tools for communicating complex and
dynamic data-structures using mpi. Lectures Notes in Com-
puter Science, 1362:98, 1998. Presented at CANPC’98.

[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
The MIT Press, Cambridge, MA, 1994.

[5] B. W. Kernighan and D. M. Ritchie. The C Programming
Language, second edition. Prentice Hall PTR, Englewood
Cliffs, NJ, 1988.

[6] Message Passing Interface Forum. MPI : A Message-
Passing Interface Standard.

[7] M. Michel and J. E. Devaney. Fine packet size tuning with
autolink. Proceedings of the 1999 ICPP Workshops, page
295, 1999. Presented at IWPC’99.

[8] M. Michel, A. Schaff, and J. E. Devaney. Managing data-
types : the corba approach and automap/autolink, an mpi so-
lution. Proceedings of the third MPI Developer’s and User’s
Conference, page 143, 1999. Presented at MPIDC’99.

[9] MPI: A Message Passing Interface Standard. HTML
document, 1994. http://www.mcs.anl.gov/
Projects/mpi/index.html.

[10] K. H. J. Vrielink, E. C. Baland, and J. E. Devaney. Au-
toLink: An MPI Library for Sending and Receiving Dy-
namic Data Structures. In International Conference on Par-
allel Computing. University of Minnesota Supercomputer
Institute, october 3-4, 1996.

Disclaimer

Certain commercial products may be identified in order
to adequately specify or describe the subject matter of this
work. In no case does such identification imply recommen-
dation or endorsement by the NATIONAL INSTITUTE OF

STANDARDS AND TECHNOLOGY, nor does it imply that
the products identified are necessarily the best available for
the purpose.

License statement regarding AutoMap and
AutoLink

This software was developed at the NATIONAL INSTI-
TUTE OF STANDARDS AND TECHNOLOGY by employees
of the Federal Government in the course of their official du-
ties. Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright protection and
is in the public domain.

AutoMap and AutoLink are experimental systems. NIST
assumes no responsibility whatsoever for their use by other
parties, and makes no guarantees, expressed or implied,
about their quality, reliability, or any other characteristic.

We would appreciate acknowledgement if the software
is used.

