
NISTIR 7066

Parallel Programming with
Interoperable MPI

 ��

William L. George
John G. Hagedorn
Judith E. Devaney

NISTIR 7066

Parallel Programming with
Interoperable MPI ��

William L. George
John G. Hagedorn
Judith E. Devaney

Mathematical and Computational Sciences Division
Information Technology Laboratory

December 2003

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

IMPI logo by Mike Mott (MottGrafix@aol.com)

Parallel Programming with Interoperable MPI

William L. George
John G. Hagedorn
Judith E. Devaney

January 15, 2004

1 Introduction

Modern computing centers provide their users with a variety of computing re-
sources ranging from single processor workstations to high-performance parallel
computers. Often included in the mix are Beowulf class machines [1], that is,
clusters of commodity personal computers (PCs) configured to operate as par-
allel computers. To implement portable parallel scientific applications for these
systems the message-passing library MPI (Message Passing Interface) [2] is typ-
ically used. This widely available library provides a C and Fortran interface to
routines for sending data (messages) between processors.

Parallel applications are normally run on a single parallel machine such as a
shared-memory multiprocessor, a distributed-memory machine such as a Beowulf
cluster, or more commonly, a hybid distributed-memory/shared-memory machine
consisting of a networked cluster of shared-memory compute nodes. However,
there is often a strong desire to harness the resources of two or more such ma-
chines, forming what we will call a multi-cluster, to perform a single computa-
tion. This would be required, for example, for simulations that are too large to
be performed on any one of the available parallel machines individually. While
MPI programs are supported on most parallel machines, through an MPI library
provided specifically for that machine, there is no mechanism within MPI to al-
low these disparate MPI libraries to cooperate. Interoperable MPI (IMPI) [3, 4]
provides a means to accomplish this with minimal effort on the part of the applica-
tion programmer. IMPI is a set of protocols, implemented within an MPI library,
that allow multiple MPI libraries to cooperate, acting like a single MPI library for

1

programs running on a multi-cluster. This article gives an introduction to IMPI
including several examples of how it can be used.

2 A crash course in MPI

For those unfamiliar with message-passing, we next describe some basics of this
programming style using C and MPI. Assuming we are running a program using�

processes1, each process will be identified in calls to MPI by an integer rank
from 0 to (

�����
). Figure 1 shows a simple C program that sends an integer from

the lowest rank process to the highest rank process.
Once this program is compiled and linked to the MPI library (normally by

using the -lmpi option on the link command), it can be executed by a command-
line utility program provided with the MPI library. Often this utility is named
mpirun. The command-line to run our program with 8 MPI processes could
look like:

mpirun -np 8 program1

assuming our executable is named program1 and -np is the command-line
switch for specifying the number of MPI processes (this syntax varies between
MPI implementations).

Examining the source code to this program, the MPI Init and MPI Finalize
calls are required in all MPI programs. No calls to MPI routines can be made be-
fore the call to MPI Init or after the call to MPI Finalize. To get the rank
of the local process we call MPI Comm rank and to get the total number of pro-
cesses we call MPI Comm size.

In most MPI routines, an MPI communicator is a required parameter. A com-
municator describes a set of processes, including the assignment of ranks to those
processes, and also defines a separate communications context. A message sent
using one communicator can only be received by a call using the same commu-
nicator. The predefined communicator MPI COMM WORLD simply includes all of
the processes, however subsets of MPI COMM WORLD are possible.

In this program, the communication is performed with the most basic MPI
communications routines MPI Send and MPI Recv. The parameters to these

1A process in this context is a separate asynchronous thread of control that, ideally, runs on a
dedicated processor, although it could timeshare a processor with other processes. All processes
in an MPI program can run concurrently and synchronize when they need to communicate.

2

//---
#include <mpi.h>

int main(int argc, char *argv[])
{
int my_rank, src, dst, tag, message, nprocs, count;
MPI_Status status;

count=1;
tag=100;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
src=0;
dst=nprocs-1;
if (my_rank == src) {
message=42;
MPI_Send(&message, count, MPI_INT, dst,

tag, MPI_COMM_WORLD);
} else if (my_rank == dst) {
MPI_Recv(&message, count, MPI_INT, src,

tag, MPI_COMM_WORLD, &status);
}
MPI_Finalize();
return 0;

}
//---

Figure 1: An MPI program that sends an int from the process with the lowest
rank (0) to the process with the highest rank.

3

routines describe the message to be sent/received (message, count, and MPI INT),
the rank of the destination process (dst for MPI Send) or source process (src
for MPI Recv), an arbitrary tag value, and an MPI communicator for message
matching. The status parameter to the MPI Recv routine holds details of the
status of the message once it has been received.

So where does IMPI fit into all of this? At the source code level, an IMPI
program is simply an MPI program. Adding IMPI support to an MPI library does
not add, remove, or change any user level MPI routines. However, as will be seen
in the description of some example IMPI applications later in this article, there
can be some additional considerations to take into account when writing an MPI
program that is specifically designed to be run on a heterogeneous collection of
parallel machines.

3 Starting an IMPI program

When running an MPI program on a multi-cluster with IMPI, each of the clusters
or parallel machines in the multi-cluster is referred to as an IMPI client. Before
running the program, the user must decide on an order for these clients. This
ordering determines the ranking of the processes in MPI COMM WORLD such that
the ranks of the processes in client 0 are the lowest ranks, followed by the ranks
of the processes in client 1, and so on. This client rank must be a number from
zero to one less than the number of clients.

Normally, an MPI program is started with a command such as:

mpirun -np <N> program-name <args>

where <N> is the number of processes to use and <args> are any command-line
arguments for the program. To run an MPI program using IMPI on a multi-cluster
an IMPI server process must first be started using the command

mpirun -server <count>

where <count> is the number of IMPI clients that will be started. The IMPI
server is the rendezvous point for the IMPI clients and acts as a relay between
the clients during the startup of the IMPI program. The IMPI server will print to
the terminal a string such as 192.168.0.1:12345, which gives the IP address
and the port number of the IMPI server. This information, in this exact form, is
needed to start the clients. Once the IMPI server is running, each of the clients
can be started with a command of the form:

4

mpirun -client <C> <host:port> <rest>

where <C> is the client number, <host:port> is the rendezvous information
from the IMPI server, and <rest> is the rest of the standard mpirun command-
line2.

Once an MPI program has started, all of the processes from all of the IMPI
clients are included in the MPI communicator MPI COMM WORLD and they are
ranked according to the ranks given to the IMPI clients.

4 Some IMPI Usage Patterns

Now that we have described the basics of parallel message-passing programming
with MPI and how to start an IMPI program, we now show how IMPI can be used
to expand the power of MPI programs. We will show several types of applications
that we anticipate will use IMPI to great advantage; there are most likely many
others we have not yet considered.

We are not describing new classes of parallel programs here; were are instead
describing types of parallel programs that are easily supported by IMPI and are
likely to be successfully run in a multi-cluster environment.

Case 1: Legacy data-parallel programs.
One immediate use that we anticipate for IMPI is to simply allow legacy MPI

programs to be run in a multi-cluster environment. The motivation for doing so
would be to either decrease the total execution time of the program or, more likely,
to enable the running of larger problems than would be possible on any one of the
clusters alone.

There are aspects of this use of IMPI that could require some modifications
to the programs in order to obtain reasonable performance. Unless the processing
nodes in the clusters of this environment are closely matched in speed, available
memory, and I/O (Input/Output) capabilities, some load-balancing that was not
needed on a homogeneous set of processing nodes may be required.

One other consideration that needs to be addressed in running legacy data-
parallel applications in a multi-cluster environment is the handling of file I/O. De-
pending on the configuration of the networks connecting the clusters, and whether
disk volumes are cross-mounted with some form of networked file system, some

2The command name “mpirun” is used in this example, but this name is not mandated by
MPI (or IMPI). Refer to the documentation for your MPI library for the correct command name.

5

Client 0 Client 1 Client 2

IMPI channels

communication
local MPI

communication

Stage 0

communication

Stage 1 Stage 2

local MPI local MPI

Figure 2: Using IMPI in a 3-stage large-grained parallel application. One IMPI
client is assigned to each stage of the computation.

pre-processing and post-processing to move input and output files to where they
are needed may also be required.

Case 2: Large-grained parallel programs.
Another anticipated use of IMPI is in support of applications designed as large

grain data-flow algorithms. A simple case of this is a computation comprised of
several large computational stages, structured such that each can be executed on
a separate parallel machine. One example of this type of application is a global
climate simulator. This simulator could include separate models (computational
stages) for the ocean, the lower atmosphere, and the upper atmosphere, with de-
fined physical boundaries between each of these modeled environments. Each of
these models could be run on separate parallel machines with the coupling be-
tween the models enabled by communication over the IMPI channels, that is, the
network connections between the IMPI clients (see Fig. 2).

In this type of application, each MPI process will need to know not only
its rank within the MPI COMM WORLD communicator, but also to which stage
of the computation it belongs and possibly which stage each of the processes in
MPI COMM WORLD belongs to. IMPI provides this information to the application
at run-time through the use of an existing MPI facility called attribute caching.
This allows for arbitrary information to be associated with an MPI communicator
for each process. For IMPI support, each process can determine which IMPI client

6

it belongs to by retrieving a cached attribute called the IMPI CLIENT COLOR
which is simply an integer. For the communicator MPI COMM WORLD, this inte-
ger will be identical to the client rank given to the mpirun command.

The term COLOR is used to match the terminology used in the MPI routine
MPI Comm Split(MPI Comm comm, int color, ...), a routine that
creates a set of new communicators, each of which consists of all of the MPI
processes that share the same color. For our large-grained parallel application,
each MPI process would pass in its IMPI client color. This is likely to be one of
the first operations completed in this type of IMPI application so that the processes
in each stage can obtain their own private communicator to use within its stage of
the computation. Here are the MPI calls needed to create the communicators for
each stage of the computation:

int *stage, stat, stage_rank;
MPI_Comm stage_comm;

MPI_Attr_get(MPI_COMM_WORLD, IMPI_CLIENT_COLOR,
&stage, &stat);

MPI_Comm_split(MPI_COMM_WORLD, *stage, 0, &stage_comm);
MPI_Comm_rank(stage_comm, &stage_rank);

Once these calls are completed, each MPI process will know to which stage
it belongs (*stage), have an MPI communicator for communications within the
set of processes that comprise that stage (stage comm), and will know its rank
within that set of processes (stage rank).

The third parameter in the call to MPI Comm split can be used to allow the
re-ordering (re-ranking) of the processes in stage comm if the MPI implemen-
tation would like to do so (presumably for performance reasons); 0 here means do
not re-order the processes.

Thus, using the IMPI supplied attribute IMPI CLIENT COLOR in addition to
the standard MPI routines for creating new communicators, you can implement
a large-grained parallel application that adapts to whatever size clusters (IMPI
clients) you have available. More work would be needed if you wanted, for load
balancing purposes, to either assign more than one client to one of the computa-
tional stages or more than one stage to a single client. For finer control of the load
balance, for example by allowing a single cluster to be split internally between
two stages, further work on this basic software architecture would be needed.

Example code for enabling communication between the three computational
stages, using the MPI routine MPI Intercomm create to create special MPI

7

communicators, can be found in the MPI 1.1 document, Section 5.6.3 Intercom-
munication Examples [5]. This is a standard MPI programming technique that is
not affected by the use of IMPI.

Case 3: Computational Steering/Interactive applications
The ability to monitor the progress of a large simulation, especially during

its initial development, can be of great help in debugging the code and in deter-
mining experimentally a set of reasonable simulation parameters. In this case,
we can use IMPI to run two or three sub-programs, all aware of each other and
connected via MPI. These extra programs are used for monitoring and controlling
the main simulation. This is close to the model-view-controller (MVC) style of
program [6, 7], for those familiar with developing graphical applications, except
that the coupling between the model, view, and controller is much looser. With the
size and computational complexity of the models (simulations), the time between
view updates may be from minutes to hours or even longer. Figure 3 shows a con-
figuration of IMPI clients for this type of parallel application. In this figure, MPI
processes are colored to indicate the various values of the IMPI CLIENT COLOR
attribute. Code similar to that shown for the large-grained parallel program could
be used to create MPI communicators for each of the distinct parts of the program
(simulator, monitor, and controller), and then, assuming the simulator is itself a
large-grained parallel program, create the communicators for each of the stages of
that simulator. The outline for this type of IMPI application is shown in Figure 4.

Note that each of the clients shown in Figure 4 can, and will likely, be running
on a different CPU architecture and operating system as well as using a different
implementation of MPI. To make this work, IMPI handles the conversion of data
types between these systems automatically when, for example, sending an inte-
ger or floating point value between machines with different internal data formats.
Also, collective communication operations, such as the broadcasting of a value
from one MPI rank to all of the other MPI ranks, are implemented in IMPI in
such a way so as to take advantage of the vendor tuned MPI libraries as much
as possible. That is, the “IMPI channels”, as shown in Figure 3, are assumed
to be slower (lower bandwidth, higher latency) than the internal networks on the
individual client clusters, and so their use is minimized in the IMPI collective
communications routines (such as broadcast).

As with the large-grained parallel program case, communication between the
the viewer, controller, and the simulator is enabled by creating special MPI com-
municators using the MPI routine MPI Intercomm create.

So, the model part of this program contains the simulation that is to be run on

8

Controller

��

��

��

�� �	
�

�
�� ����
������

Client 4
Client 3

IMPI Channels MPI Process

Client 2

Monitor

Simulator

Client 1

��

����
Client 0

�

!�!!�!"�""�"
#�##�#$�$$�$%�%%�%&�&&�&

'�''�''�'(
(

)�))�)*�**�* +,+,+-,-,-.,.,./,/,/0,0,00,0,01,1,11,1,12�22�22�23�33�3 4�44�4
4�4
5�55�5

6�66�6778�8
8�899:�::�:
:�:;;

<�<<�<=�==�=
>�>>�>??@�@@�@A�AA�A B�BB�BCCD�DD�DEE F,F,FG,G,G

H�HH�HII

J�JJ�JKK L,L,LM,M,MN,N,NO,O,O

PQ
RS
TUVWXY

Z,Z,Z[,[

\,\,\\,\,\],],]],],]^,^,^_,_,_`,`,`a,a,ab,b,bc,c,c

d,d,dd,d,de,ee,e
f,f,fg,gh,h,hi,i j,j,jk,k,kl,l,ll,l,lm,m,mm,m,m

Figure 3: Using IMPI for Computational Steering. One client is assigned to the
monitor, one to the controller, and three to the simulator. Each MPI process,
represented in this figure by a circle, has a value for the IMPI CLIENT COLOR
attribute that is cached onto MPI COMM WORLD. These attribute values, which
match the associated client numbers shown in the figure, are emphasized here by
mapping each value to a separate color (and fill pattern for black and white copies
of this figure).

9

//---
int *color, stat, rank;
MPI_Comm comm;

MPI_Attr_get(MPI_COMM_WORLD, IMPI_CLIENT_COLOR,
&color, &stat);

/* Simulator gets all clients > 1 */
if (color > 1) color=2;
MPI_Comm_split(MPI_COMM_WORLD, *color, 0, &comm);
switch (color) {
case 0: /* Call the Controller */ break;
case 1: /* Call the Monitor */ break;
case 2: /* Call the Simulator */; break;
}

//---

Figure 4: Using the IMPI CLIENT COLOR attribute.

one or more clusters. This part of the program can be a data-parallel or large-grain
pipelined program as previously described or any other type of MPI program. It is
also possible for this simulator to be a multi-threaded program that runs on a large
shared-memory machine which uses MPI only to communicate with the view and
controller parts of the IMPI program.

The second program is a monitor program (the view portion of MVC) that
performs the following steps in a loop: accept image data from the simulation,
possibly once every iteration of its main loop; render this data into a form suitable
for the target display; and display the image, either on your workstation or other
suitable device. If the simulation is not working as expected, you will know this as
early as possible. To minimize the effect of this monitoring on the performance of
the simulator, the communication between the simulation and the monitor can be
reduced by decimating the image data or reducing the frequency of image updates.

The third program, if needed, allows for some amount of interactivity with
the simulation, perhaps allowing you to modify the controlling parameters of the
simulation or, more drastically, allowing you to kill it or restart the simulation
from within the main simulation. This control could also allow you to turn on and
off the monitoring of the simulation as needed.

10

5 Conclusion

IMPI allows legacy MPI programs to be run unaltered on multi-clusters consisting
of two or more computing resources such as parallel machines, clusters, worksta-
tions, and single or multiprocessor PCs. Also, applications can be written specif-
ically to be run in such a multi-cluster allowing greater control over various as-
pects of the application such as load-balancing and file I/O. One major design
advantage of IMPI over other available solutions to the problem of running on a
multi-cluster is that IMPI uses the vendor-tuned MPI libraries for optimum com-
munication within each parallel machine while still allowing the unrestrained use
of all of MPI, including optimized collective communications operations that in-
volve all of the processes in the multi-cluster.

If you wish to experiment with IMPI, the freely available MPI library LAM/MPI
[8] currently supports IMPI. Full implementations of IMPI are included in the MPI
libraries from Hewlett-Packard Co., MPI Software Technology, Inc., and Pallas
GmbH (for Fujitsu). Other implementations of IMPI are anticipated in the future.

Disclaimer: Certain commercial equipment, instruments, or materials are
identified in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Tech-
nology, nor does it imply that the materials or equipment identified are necessarily
the best available for the purpose.

References

[1] Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F. Savarese.
How to Build a Beowulf. MIT Press, 1999. � http://www.beowulf.org � .

[2] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface. Scientific and
Engineering Computation Series. MIT Press, 1999.

[3] William George, John Hagedorn, and Judith Devaney. IMPI: Mak-
ing MPI interoperable. Journal of Research of the National In-
stitute of Standards and Technology, 105(3), 2000. May-June is-
sue. Article includes the entire IMPI specification as an appendix.

� http://nvl.nist.gov/pub/nistpubs/jres/jres.htm � .

11

[4] William George, John Hagedorn, and Judy Devaney. A Java-based tool for
testing interoperable MPI protocol performance. In Proceedings of the First
International Conference and Exhibition on the Practical Application of Java,
pages 111–124. The Practical Application Company Ltd., April 1999. Lon-
don, UK.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, June 1995. � http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html � .

[6] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model view
controller user interface paradigm in smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August/September 1988.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns Elements of Reusable Object-Orientated Software. Addison-Wesley,
1995.

[8] Jeffrey M. Squyres, Andrew Lumsdaine, William L. George, John G. Hage-
dorn, and Judith E. Devaney. The interoperable message passing interface
(IMPI) extensions to LAM/MPI. In Proceedings, MPIDC’2000, March 2000.

12

