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Abstract

Born-Oppenheimer approximation Hylleraas (Hy) variational calculations with up to 7034 ex-

pansion terms are reported for the 1Σ+
g ground state of neutral hydrogen at various internuclear

distances. The nonrelativistic energy is calculated to be −1.1744 7571 4220(1) hartree at R= 1.4

bohr, which is 4 orders of magnitude better than the best previous Hylleraas calculation, that

of Wolniewicz[1]. This result agrees well with the best previous variational energy, −1.1744 7571

4216 hartree, of Cencek[2], obtained using Explicitly Correlated Gaussians (ECG) [3–5]. The un-

certainty in our result is also discussed. The nonrelativistic energy is calculated to be −1.1744

7593 1399(1) hartree at the equilibrium R= 1.4011 bohr distance. This result also agrees well with

the best previous variational energy, −1.1744 7593 1389 hartree, of Cencek and Rychlewski[6, 7],

obtained using Explicitly Correlated Gaussians (ECG) [3–5].
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I. INTRODUCTION

Variational methods based on explicitly correlated wave functions are known to give the

most accurate upper bounds to energy states, and hence the inclusion of terms containing

the interelectronic distance rij in the wave function has become increasingly common, at

least for few-electron atomic systems (N ≤ 4) (so common in fact that a book dealing entirely

with explicitly correlated functions has recently been produced [7]). The milestone in the

theory of the hydrogen molecule, the simplest molecular system containing an electron pair

bond, is the work of James and Coolidge [8]. Following the work of Hylleraas [9] on the

helium atom, they employed factors of r12 in the hydrogen molecule wave function (the full

bibliography on H2 calculations through 1960 is given in [10]) and established beyond a doubt

the usefulness of including the interelectronic distance explicitly in the wave function. Kolos,

Roothaan, and Wolniewicz [1, 11, 12] generalized the approach of James and Coolidge to get

a more accurate description of dissociation. Wave functions using their “generalized James-

Coolidge” wave functions are commonly referred to as Hylleraas (Hy) or more specifically

Kolos-Wolniewicz (KW) wave functions [7]. In addition to Hy wave function calculations,

the Hylleraas-Configuration Interaction (Hy-CI) technique (developed by us [13] and also

independently by Woźnicki [14]) has been applied to diatomic molecules (including H2) by

Clary and coworkers [15–18] and Clementi and coworkers [19–24]. In Hy-CI calculations the

wave function is expanded as a linear combination of correlated configuration state functions

(CSFs), where the unique part of each CSF is a product of orbitals (σ, π, δ, etc.) and at

most one rij raised to some power (See the review article by Rychlewski [5] and Section 2.4

Rychlewski [7] for a discussion of Hy-CI wave functions). However the Clementi, et. al.

calculations for H2 did not achieve the accuracy of purely Hy calculations, the best of which

were the KW calculations of Wolniewicz [1].

In this work we extend the work of Kolos, Roothaan, and Wolniewicz [1, 11, 12] to

calculate energies of 1Σ+
g states of H2 using expansions in confocal elliptical coordinates

with explicit inclusion of interelectronic distance coordinates up through r7
12. We calculate

Born-Oppenheimer (BO) energies for various internuclear distances in the range of 0.4 bohr

to 6.0 bohr. We also determine the BO ground state energy more precisely than the best

previous calculation [6, 7].

The calculations reported are similar to those described in the classic paper of Kolos and
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Roothaan [11], (see this paper for algorithmic details of our calculations) but go far beyond

those as a reflection of the improved capability of modern computers. We also note that the

best previous calculation to date on the H2 ground state is neither Hy (KW) nor Hy-CI,

but one employing exponentially correlated gaussian (ECG) functions [3–5, 7]. While the

results that have been obtained with this technique have been impressive, this technique

suffers from the same inability to represent the electron cusp behavior at rij = 0 as a strictly

orbital CI calculation. Many authors have emphasized that the wave function should have

a cusp-like behavior [25] at r12 = 0 such that

(
1

Ψ

∂Ψ

∂r12
)r12=0 =

1

2
. (1)

The ECG wave function cannot properly represent this behavior. However progress towards

overcoming this defect has recently been made by Pachucki and Komasa [26, 27]. They add

terms linear in ri and rij to an ECG calculation to produce what they call a LECG (Linear

ECG) basis.

II. WAVE FUNCTIONS

Since the time-independent, nonrelativistic electronic Schrödinger equation in the Born-

Oppenheimer (BO) (or so-called clamped nuclei) approximation is not separable in the

electron coordinates, basis sets which incorporate the r12 interelectronic coordinate are most

efficient. The wave function we use for the H2 ground state is

Ψ(r1, r2) =
N∑

K=1

CKΦK(r1, r2). (2)

The terms ΦK have the form

ΦK(r1, r2) = (1 + P12)[r
µ
12 ξn

1 η
j
2 ξn̄

1 η
j̄
2 e−(αξ1+ᾱξ2)], (3)

where ξ and η are confocal elliptic coordinates [28] and n,j,n̄,j̄,α,ᾱ, and µ must be specified

for each expansion term K. For 1Σ+
g states, j + j̄ must be even. Terms in the KW wave

function differ from ours in that they include exponential factors e−(βη1+β̄η2) in η1 and η2

providing proper asymptotic behavior of the wave function at large internuclear distance

R (recently the KW approach has been extended by Kubacki and Komasa [29] to allow

multiple parameters, e.g., 132 in the calculation reported in Table 3). Setting β = β̄ = 0
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in the KW wave function limits the range of R for which high precision energies can be

obtained. For us that range turns out to be 0.4 bohr to 6.0 bohr (we could handle R < 0.4

with the current basis if we used normalized orbitals, but even then, for technical reasons

our existing code would not allow R to approach 0). In practice for the ground state one can

let α = ᾱ in each term K as James and Coolidge originally did. Thus our wave function has

α = ᾱ for each K, but to speed up convergence we use two sets of terms ΦK and Φ′

K , one

set with α = ᾱ = α1, the other with α = ᾱ = α2 (we refer to these as 2 alpha expansions).

Results and Discussion

In Table I we give the results of a 7034 term calculation for R = 1.4 bohr. In the table we

show in each row the results of adding to the previous calculation terms with an rij power

given by µ and containing all n and j powers of ξ1 and η1, respectively, that satisfy n+j ≤ k,

and all n̄ and j̄ powers of ξ2 and η2, respectively, satisfying n̄+ j̄ ≤ k. In addition for a 1Σ+
g

state j + j̄ must be even, so terms with odd j + j̄ are not included. The last term selection

criterion is that n, n̄, j, and j̄ must be ≤ ν. This and the value of α ( = ᾱ) for each line

completely specifies the wave function expansion in sufficient detail that the calculation can

be repeated, in contrast to any of the previous large scale calculations on H2. This is one

reason we made no attempt to further select the terms being used (it then becomes difficult

to specify the final wave function terms in print without giving a detailed list).

The first 8 lines are for adding successively high powers of rij with α1 = 1.32075, then

terms corresponding to α2 = 6.32075 are added. Energies for each expansion length N are

tabulated as well as the improvement over the previous level.

We note that ∆E for µ = 7 is greater then that for µ = 6, whereas one might expect a

monotone decrease as the power of r12 is raised. However, the terms in our expansion are of

two types, those with even powers of r12, which are basically (complicated) CI type terms,

and those with odd powers of r12, which treat electron-electron interactions in an essentially

different fashion. The ∆E contributions from both of these term types are indeed monotone

decreasing as expected but there is nothing that requires the combination to be similarly

monotone decreasing, especially since one has reached the point where it is getting difficult

to describe the electron distribution with a single non-linear parameter. In this connection,

we note that the reordered 2 alpha expansion results presented in Table II exhibit no such
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TABLE I: Calculations of the BO energy of the ground state of the H2 molecule at internuclear

distance R = 1.4 bohr. See text for what is tabulated in each column.

µ k ν α ∆N N Energy(E) in hartrees ∆E

0 11 10 1.32075 0 1491 -1.1615 1824 0453 5174

1 10 10 1.32075 1131 2622 -1.1744 3703 3907 7737 -0.12918×10−1

2 9 10 1.32075 790 3412 -1.1744 7526 7311 5136 -0.38233×10−4

3 8 10 1.32075 535 3947 -1.1744 7570 6160 3207 -0.43884×10−6

4 7 10 1.32075 346 4293 -1.1744 7571 3814 8606 -0.76545×10−8

5 7 10 1.32075 346 4639 -1.1744 7571 4083 1845 -0.26832×10−9

6 6 10 1.32075 214 4853 -1.1744 7571 4100 1853 -0.17000×10−10

7 6 10 1.32075 214 5067 -1.1744 7571 4145 0115 -0.44826×10−10

0 8 8 6.32075 535 5602 -1.1744 7571 4190 6843 -0.45672×10−10

1 8 8 6.32075 535 6137 -1.1744 7571 4210 5233 -0.19839×10−10

2 7 8 6.32075 346 6483 -1.1744 7571 4216 4017 -0.58783×10−11

3 6 8 6.32075 214 6697 -1.1744 7571 4218 7116 -0.23099×10−11

4 6 8 6.32075 214 6911 -1.1744 7571 4219 8181 -0.11065×10−11

5 5 8 6.32075 123 7034 -1.1744 7571 4220 0755 -0.2574×10−12

anomalous behavior.

Based on the rate of convergence that is observed here, we conclude that the energy has

converged to 12 decimal places and the 13th digit is 0 or 1, i.e, E = −1.1744 7571 4220(1)

hartree. Optimization of α at the 7034 term level changes things only in the 15th decimal

(16th digit), i.e., the energy surface in α space is very flat. Varying the expansion terms

beyond 7034 systematically gave energy improvements occurring only in the 13th and 14th

decimal places, further evidence that our result has converged to 13 digits.

In Table II we again give results for the 7034 term calculation but with terms reordered

to show the energy contribution of each power of rij (µ). Energies for each expansion length

N are tabulated as well as the improvement over the previous level.

Our final energy is also listed in Table III and compared with previous results. The

2400 ECG result in Table III has been communicated to us by W. Cencek to correct his
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TABLE II: Calculations of the BO energy of the ground state of the H2 molecule at R = 1.4 bohr

expressed in hartrees. Terms are organized by rij power µ; α1 = 1.32075, α2 = 6.32075

.

µ ∆N N Energy(E) in hartrees ∆E

0 2026 -1.1615 2330 0229 8360

1 1656 3682 -1.1744 3733 6488 6086 -0.12914×10−1

2 1146 4828 -1.1744 7528 0326 4709 -0.37943×10−4

3 749 5577 -1.1744 7570 6942 0231 -0.42661×10−6

4 560 6137 -1.1744 7571 4069 2123 -0.71271×10−8

5 469 6606 -1.1744 7571 4216 3899 -0.14717×10−9

6 214 6820 -1.1744 7571 4219 9248 -0.35349×10−11

7 214 7034 -1.1744 7571 4220 0755 -0.1507×10−12

calculation reported in [6]. As communicated to us by Cencek [2], he gets −1.1744 7571 4216

hartree and then the numerical stability of the wave function deteriorates so that the last

digit starts fluctuating. Which means the −1.1744 7571 4223 hartree reported in [6] is not a

true last digit upper bound since the last digits suffer from numerical instabilities. Cencek’s

error estimate is 1 × 10−10 hartree. As stated previously, we believe that our result has

converged to 1.1744 7571 4220(1), two orders of magnitude better than the error estimate of

the best previous calculations [2, 6] . In Table III we label our calculations with a single α

as 1 alpha and those with both an α1 and an α2 as 2 alpha. The JC, KW, ECG and Hy-CI

designations in this and following tables are those of Rychlewski[7].

In Kolos and Roothaan’s original paper[11] the highest power of r12 used was 2. Terms

with r2
12 introduce the equivalent of π(1)π(2) configuration interaction type terms. So only

σ−σ type terms were explicitly correlated in Kolos and Roothaan’s original study. r3
12 factors

will introduce the equivalent of π(1)π(2)r12 terms. In Table III it can be seen that using

only a single α we are able to compute the energy to 8 digits (7 decimal places) with r12 ≤ 3.

It is interesting that with r12 ≤ 5 (r5
12 puts in δ(1)δ(2)r12) we are able to do better than all

previous Hy calculations employing many terms with high powers of ξ1 and ξ2 as well as the

accurate 1200 term ECG calculation of Cencek and Kutzelnigg [31]. The energy calculated
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TABLE III: Comparison with previous explicitly correlated calculations for the BO energy of the

ground state of the hydrogen molecule (R = 1.4 bohr) expressed in hartrees.

Technique Author N Energy(E) in hartrees

many alpha Kubacki and Komasa [29] 22 a -1.1744 7477

JC Bishop and Cheung [30] 249 -1.1744 7565

KW Kolos (includes r3
12) [12] 370 -1.1744 7568 5

1 alpha This work (includes r3
12) 3947 -1.1744 7570 6160

2 alpha This work (includes r3
12) 5577 -1.1744 7570 6942

KW Wolniewicz (includes r6
12) [1] 883 -1.1744 7571 3565

ECG Cencek and Kutzelnigg [31] 1200 -1.1744 7571 4037

1 alpha This work (includes r5
12) 4639 -1.1744 7571 4083

1 alpha This work (includes r7
12) 5067 -1.1744 7571 4145

2 alpha This work (includes r5
12) 6606 -1.1744 7571 4216

ECG Cencek[2] 2400 -1.1744 7571 4216

2 alpha This work (includes r7
12) 7034 -1.1744 7571 4220

a132 nonlinear parameters

with the ECG wave function was obtained only after a very time-consuming optimization

process in which 5 nonlinear parameters per basis function (which means 6000 parameters

for the 1200 term wave function) were optimized. In contrast the optimization for our single

α wave function is based on the selection of the terms of the form of Equation 3 and the

optimization of only the single parameter α. By going up to r7
12 we effectively correlate up

to φ(1)φ(2) type products. Table III shows that a single nonlinear parameter is adequate for

a 0.1 nanohartree level of accuracy, but is not as good as the 2400 term ECG wave function.

By adding a second α at the r5
12 level we were able to exceed our single α r7

12 result as well as

the 2400 ECG result. Going up to r7
12 with α1 and r5

12 with α2 achieves an 0.001 nanohartree

level of accuracy.

Table IV summarizes previous results at the equilibrium bond distance R = 1.4011 bohr.

The improvement of this wave function over the ECG 2400 term Cencek and Rychlewski
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wave function parallels the relationship of ECG to Hy at R = 1.4 bohr.

TABLE IV: BO energy for the ground state of the hydrogen molecule at R = 1.4011 bohr

Technique Author N Energy(E) in hartrees

Hy-CI Clementi [22, 23] 586 -1.1744 7467

KW Wolniewicz [1] 883 -1.1744 7593 0742

ECG Rychlewski,Cencek, and Komasa [32] 700 -1.1744 7593 1197

ECG Cencek and Rychlewski [6] 2400 -1.1744 7593 1389

2 alpha This work (includes r7
12) 7034 -1.1744 7593 1399 84

We find in this work that very good energies are obtained with our wave functions up to

and including R = 6.0 bohr. The fact that we do so well for such large R values without a

β nonlinear parameter in the wave function is presumably because we have numerous terms

with high powers of η1 and η2. In Table V we show that the comparison of single α results

versus ECG results holds not only for a single internuclear distance but for a whole range of

R using the 5067 term single α wave function. We are basically assuming that the expansion

terms used for R=1.4 will be adequate for the other R values. We are also assuming that

since α1 and α2 are not tightly coupled, we can use the α1 values from Table VI for a good

single nonlinear parameter calculation. It is striking how well these results agree with the

1200 term ECG results, which are better than the best previous Hy results, the KW results

of Wolniewicz [1].

Drake[33] has pointed out the practical need for “doubling” basis sets so there is a natural

partition of the basis set into two distinct distance scales - one appropriate to the complex

correlated motion near the nucleus, and the other appropriate for further out. Drake uses

just two sets of orbitals to accelerate convergence. In our He calculations we found that the

importance of the second orbital exponent came in around the 13th digit. In our present

calculations we found it difficult to get the 10th digit (0.1 nanohartree accuracy) without

taking into account the detailed description of the wave function near the protons by incor-

porating elliptical orbitals with large orbital exponents to describe the charge distribution

near the nucleus. This effect did not enter in the He calculations until we wanted more than

13 decimal places. The greater need for two scale parameters is probably to be expected in
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TABLE V: BO energy (in hartrees) of the ground state of the hydrogen molecule at selected

internuclear distances (expressed in bohr) calculated using the 1200 ECG wave function (Table 2.8

in [7]) and our 5067 term single α wave function (terms defined in Table I,lines 1-8). The α1 values

used here are those presented in Table VI.

R 1200 Term ECG 5067 term 1 α

1.0 -1.1245 3971 95 -1.1245 3971 9462 06

1.2 -1.1649 3524 33 -1.1649 3524 3354 69

1.4 -1.1744 7571 40 -1.1744 7571 4145 01

1.6 -1.1685 8337 33 -1.1685 8337 3287 03

1.8 -1.1550 6873 75 -1.1550 6873 7548 57

2.0 -1.1381 3295 70 -1.1381 3295 7074 81

3.0 -1.0573 2626 87 -1.0573 2626 8835 43

4.0 -1.0163 9025 28 -1.0163 9025 2933 31

6.0 -1.0008 3570 76 -1.0008 3570 7653 04

H2 where much of the electron correlation energy is associated with the region far from the

nuclei, unlike He where the space close to the nucleus is energetically important for both

electron-electron and electron-nucleus interactions.

In Table VI we give our final results (7034 term wave functions) for the BO energy of the

ground state of the H2 molecule at internuclear distances ranging from 0.4 bohr to 6.0 bohr

using two nonlinear parameters, α1 and α2. In Table VI we also tabulate the contribution of

all the α2 terms versus R (the column labeled ∆E(α2) ×1012). As previously discussed, we

estimate the error in the energy at the internuclear distance R = 1.4 bohr to be no more than

0.001 nanohartree. We have not investigated this question for the other R values. In the

table we give energies to 16 digits for the record and also for the benefit of anyone wanting

to repeat a calculation. The table is very interesting, showing clearly how as R increases the

electrons interact less and less, particularly around the nuclei. Each nucleus has an electron

and the probability for both being around the same nucleus is small, as one would expect.

Being able to demonstrate this is a side effect of our way of choosing the wave function. In

a calculation with lots of nonlinear parameters one would not be able to see this so clearly.
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TABLE VI: BO energy of the ground state of the H2 molecule

at internuclear distances R from 0.4 to 6.0 bohr. N = 7034.

See text for Table I for what is tabulated in each column.

R α1 α2 Energy(E) in hartrees ∆E(α2) ×1012

0.4 0.5075 0.98286 -0.1202 3034 1177 8644 285.9

0.5 0.605 1.28144 -0.5266 3875 8742 3172 152.1

0.6 0.6875 1.65 -0.7696 3542 9485 3568 118.1

0.7 0.78 2.0 -0.9220 2746 1527 0152 93.8

0.8 0.86125 2.445 -1.0200 5666 6360 1389 88.5

0.9 0.9395 3.0075 -1.0836 4323 9958 5087 86.6

1.0 1.0175 3.6794 -1.1245 3971 9546 5791 84.5

1.1 1.09325 4.445 -1.1500 5736 7738 2885 83.0

1.2 1.16 5.1975 -1.1649 3524 3440 0281 85.3

1.3 1.2275 5.945 -1.1723 4714 9037 7800 86.1

1.4 1.32075 6.32075 -1.1744 7571 4220 0755 75.0

1.5 1.39 6.945 -1.1728 5507 9578 1447 74.3

1.6 1.43 7.35125 -1.1685 8337 3370 9263 83.9

1.7 1.525 7.695 -1.1624 5872 6897 8088 72.6

1.8 1.625 7.82 -1.1550 6873 7610 8071 62.2

1.9 1.705 8.07 -1.1468 5069 7028 7210 58.2

2.0 1.775 8.32 -1.1381 3295 7131 5035 56.7

2.1 1.851 8.445 -1.1291 6383 6099 9721 53.8

2.2 1.94 8.44575 -1.1201 3211 6847 6391 48.9

2.3 1.985 9.07 -1.1111 8176 5202 6448 51.2

2.4 2.05 9.445 -1.1024 2260 6009 2978 49.9

2.5 2.125 9.57 -1.0939 3812 9953 5998 47.0

2.6 2.225 9.32 -1.0857 9123 7393 5887 40.4

2.7 2.2875 9.695 -1.0780 2848 4181 0479 40.2

2.8 2.35 9.82 -1.0706 8323 3478 4095 38.9
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TABLE VI: – continued from previous page

R α1 α2 Energy(E) in hartrees ∆E(α2) ×1012

2.9 2.425 10.07 -1.0637 7800 8802 7916 36.3

3.0 2.5 10.195 -1.0573 2626 8869 2439 33.8

3.1 2.6 9.945 -1.0513 3377 2264 4516 29.9

3.2 2.65 10.32 -1.0457 9966 1428 7338 29.0

3.3 2.75 10.07 -1.0407 1736 5347 5985 25.7

3.4 2.825 10.21 -1.0360 7539 5186 9195 23.7

3.5 2.875 10.695 -1.0318 5808 4851 2230 22.5

3.6 2.95 10.7575 -1.0280 4630 8375 8766 20.5

3.7 3.025 11.07 -1.0246 1818 8407 1472 18.6

3.8 3.115 10.82 -1.0215 4979 5529 9109 16.6

3.9 3.1675 11.32 -1.0188 1582 7692 8498 15.3

4.0 3.23 11.60125 -1.0163 9025 2947 1283 13.8

4.2 3.38 11.8825 -1.0123 5995 9679 9189 11.0

4.4 3.525 12.15 -1.0092 5651 6258 6632 8.7

4.6 3.6 13.32 -1.0068 9522 3820 1211 6.9

4.8 3.75 13.32 -1.0051 1600 6098 0952 5.3

5.0 3.9 13.195 -1.0037 8565 8581 9889 4.0

5.2 3.95 14.75 -1.0027 9681 6309 5431 3.2

5.4 4.1 14.00 -1.0020 6505 7208 2353 2.4

5.6 4.15 14.82 -1.0015 2525 1885 3549 1.9

5.8 4.2 15.57 -1.0011 2788 0851 3214 1.5

6.0 4.3 15.00 -1.0008 3570 7654 2279 1.2

In this paper we have restricted our calculations to the BO energies. Recently there has

been much interest in a direct nonadiabatic (which is non-BO) variational approach using

correlated Gaussian basis sets. The best result using this approach is that of Adamowicz, et.
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al. [34]. This approach yields energies of about 10 digits accuracy. However the feasibility

of this approach to systems with more than two electrons has not been demonstrated. And

for the two-electron case, we have been able to obtain results using traditional methods that

yield energies to about 13 digit accuracy.

III. HY VERSUS HY-CI

As there is a close relationship between the Hy wave functions we use and an essentially

equivalent Hy-CI treatment, these Hy results can provide insight into what is needed in

Hy-CI calculations. This can be seen by considering what a σ(1)σ(2)r2
12 term expands out

to, using

r2
12 = r2

1 + r2
2 − 2r1r2 cos θ12. (4)

For high precision, Hy wave functions [1, 8, 11, 12] must have the r12 power k > 1, whereas

Hy-CI wave functions need only have r12 raised to at most the first power.

In elliptical coordinates,

r2
12 = (

R

2
)2[p − 2q cos (φ1 − φ2)], (5)

where

p = ξ2
1 + η2

1 + ξ2
2 + η2

2 − 2 − 2ξ1η1ξ2η2

q = [(ξ2
1 − 1)(1 − η2

1)(ξ
2
2 − 1)(1 − η2

2)]
1

2 . (6)

Expanding Equation 5, the first term is just a polynomial in ξ1, η1, ξ2, η2. Hence multiply-

ing it by σ(1)σ(2) just produces another σ(1)σ(2) charge distribution with higher powers of

ni, ji. The second term in Equation 5 is proportional to q cos (φ1 − φ2). But q cos (φ1 − φ2)

is a linear combination of π(1)π(2) products with M=0 (but without the exponential fac-

tors). This gets multiplied by the σ(1)σ(2) part (which does have the exponential factors).

The π(1)π(2) term gets multiplied by the σ(1)σ(2) part of the σ(1)σ(2)r2
12 term, so the final

result is a special linear combination of σσ and ππ CI configurations. As long as the powers

of ξ and η in the CI part of Hy-CI are greater than or equal to powers of ξ and η in the

r2
12 term in the Hy expansion for both σσ and ππ one will get just as good an answer with

Hy-CI as Hy. Similar results apply for r4
12 and r6

12 (this same point was made by Clary[17]).
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Although other (radial) factors will be different in the two methods, they are essentially

equivalent methods (for two-electron problems). We note that an equivalent Hy-CI calcula-

tion would have orbitals up to and including δ with one r12 raised to at most the first power.

A really good Hy-CI for H2 would start out with a CI calculation including all the different

term types (σσ, ππ, δδ, φφ, etc.), then add to this each of the terms multiplied by r12. But in

general with different non-linear parameters. In particular, we note that where calculations

have been done (CI for H2, Hy-CI for He) orbital exponents tend to increase at least for ππ

(pp for He) terms resulting in significantly improved convergence of the expansion.

In this paper we go beyond both the Clementi, et. al. molecular Hy-CI calculations and

the purely Hy calculations to achieve the best results for both types of calculations. Since

the Hy and Hy-CI methods are computationally equivalent for all practical purposes for

two-electron molecular systems (we have demonstrated this for the Helium atom [35]), an

Hy-CI calculation should be able to achieve comparable or better energies than these results

with shorter expansions.

Comparison with Experiment

For a review of the status of our knowledge of the dissociation energy of H2 through the

year 2000 (theoretical and experimental), see Stoicheff [36]. Currently the best experimental

value for the dissociation energy D0 for H2 is 36118.062(10) cm−1 [37]. The best theoretical

value is 36118.058 cm−1 [7]. The previous best theoretical values were 36118.069 cm−1 [38]

and 36118.049 cm−1 [1], respectively. These theoretical values are obtained starting from

accurate values for the Born-Oppenheimer (BO) electronic energies for the ground state

of the H2 molecule over a range of internuclear distances R. This defines a BO potential

energy (PE) curve. The results presented in Table VI are the definitive values for these BO

energies defining the PE curve. These can be used with separate calculations of adiabatic,

relativistic, and radiative (QED) corrections to obtain a theoretical dissociation energy (See,

for example, [7]). Our results are good enough to pin down the theory to 0.001 wavenumber

if one can calculate the other corrections accurately enough. As new values of adiabatic,

relativistic, and QED corrections are obtained they can be combined with our BO energies

to obtain new theoretical values. So maybe the experiment needs to be redone using 0.001

wavenumber as the level of accuracy to shoot for. That is, an order of magnitude reduction

13



in the current experimental uncertainties.
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APPENDIX A: SPECIAL FEATURES OF THE CALCULATION

For a discussion of integral techniques needed to solve the H2 electronic secular equation

using ellipsoidal coordinates, see Kolos and Roothaan[11, 39] and references therein, and in

particular the definitive paper of Rüdenberg [40].

A parallel eigensolver proved essential for obtaining results over a range of R from 0.4 to

6.0 bohr. This involves solving the N-dimensional generalized eigenvalue problem

HC = λSC (A1)

by the inverse iteration method [41]. We solve this secular equation using our own portable

parallel inverse iteration solver [42]. The generation of the matrices H and S is order

N2 while the solution of the secular equation Equation A1 is order N3. Since for us N

is large and interprocessor communication is only order N2, the parallelization of the H

and S matrices is largely a matter of convenience (since no restructuring of the code is

required, just a suitable selection of columns by each process). We calculated the basic

integrals on each process, since this takes up only a small fraction of the total time, but

parallelized the H and S matrix construction since that allows the total memory needed to be

spread across the processors and eliminates a need to communicate matrix elements between

processors. The result was that the whole process is almost “embarrassingly parallel” with

near linear “speedup”. For example, for a 4190 term wave function we achieved a factor

of 30 speedup on 32 processors for the order N3 step running on the National Institute of

Standards and Technology (NIST)’s 147 processor cluster of Pentium (the identification of

any commercial product or trade name does not imply endorsement or recommendation by

either the National Institute of Standards and Technology or Indiana University) , Athlon,

and Intel processors running RedHat Linux.

Almost all results reported in this paper were obtained using quadruple precision (∼

30+ digits) floating point subroutines written in Fortran 90 using Alan Miller’s [43] quadru-

ple precision package which we augmented to interface to other data types (where native

quadruple precision exists complete agreement with Miller’s package was always obtained).

Much of the present code was developed on a conventional desktop PC running Windows

98 and using Fortran compilers that did not include quadruple precision as a native For-

tran data type. It was here that Miller’s package proved extremely useful. Recently Yozo

Hida[44]’s very efficient quadruple precision package (coded in C++) has become available.
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We have our own, portable Fortran 90 version of this excellent package [42], but there was

no need in this work to switch from the Miller package which we have been using from the

very beginning.

In addition to the Miller quadruple precision package, we made use of Richard Brent’s

arbitrary multiple precision floating point arithmetic package [45, 46] for the Rüdenberg

φ [40] function, on which all integrals depend. The Rüdenberg φ function is computed

in multiple precision using the Brent MP package interfaced to Fortran 90 using the user

defined datatype mechanism with associated interface block definitions for the MP arithmetic

operations and intrinsic functions.

The Rüdenberg φ function is

φMl
nn′(α, α′) = φMl

n′n(α′, α)

= (−1)M (l − M)!

(l + M)!

∫
∞

1
dξQM

l (ξ)(ξ2 − 1)M/2

× {e−αξξn
∫ ξ

1
dxP M

l (x)(x2 − 1)M/2e−ᾱxxn̄

+ e−ᾱξξn̄
∫ ξ

1
dxP M

l (x)(x2 − 1)M/2e−αxxn}, (A2)

where the P M
l are Legendre polynomials and the QM

l are associated Legendre functions of

the second kind (see [40], footnote 4 for detailed definitions).

Rüdenberg gives complicated recursion schemes for raising n, n′, l, and M starting from

φ00
00. Upper limits on n, n′ depend on the values of l and M required, which in turn depend

on the expansion basis being used (maximum powers of ξ and η). In the present work values

of l up to 40 and n,n′ up to 81 were used. The recursion relations are unstable for all

indices but for l is particularly pathological involving the loss of one to two decimal digits

of accuracy each time l is raised by 1. Raising M from 0 to its maximum value of 7 (in

this work) involves only minor loss of accuracy through differencing. Conversion back to

quadruple precision was then done and the r
µ
ij integrals evaluated in quadruple precision.

To address these differencing problems we systematically increased the number of decimal

digits used for only the φ part of the calculation up to a maximum of 160 decimal digits.

We note that Kolos and Wolniewicz [1, 12] worked in double precision and evaluated the

rij integrals numerically using an efficient charge distribution scheme (also introduced by

Rüdenberg). This numerical approach is not applicable in this work due to the general need

for higher precision values for all the basic integrals.
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The code development used a desktop PC (Athlon, 0.5Gb memory,Windows 98) until

the memory capacity of the system was exceeded, at which time we moved over to larger

systems with more memory and somewhat later, parallelized the code to run on cluster

systems at Indiana University (AVIDD)and NIST (raritan). The parallelization proved

extremely helpful not only for speeding the calculation up but also by spreading the total

memory needed across the nodes of the cluster.
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