IMPI: Making MPI Interoperable

William L. George
John G. Hagedorn
Judith E. Devaney

April 25, 2000

Abstract

The Message Passing Interface (MPI) is the de facto
standard for writing parallel scientific applications in
the message passing programming paradigm. Imple-
mentations of MPI were not designed to interoperate,
thereby limiting the environments in which parallel
jobs could be run. We briefly describe a set of pro-
tocols, designed by a steering committee of current
implementors of MPI, that enable two or more im-
plementations of MPI to interoperate within a single
application. Specifically, we introduce the set of pro-
tocols collectively called Interoperable MPI (IMPI).
These protocols make use of novel techniques to han-
dle difficult requirements such as maintaining inter-
operability among all IMPI implementations while
also allowing for the independent evolution of the col-
lective communication algorithms used in IMPI. OQur
contribution to this effort has been as a facilitator for
meetings, editor of the IMPI Specification document,
and as an early testbed for implementations of IMPI.
This testbed is in the form of an IMPI conformance
tester, a system that can verify the correct operation
of an IMPI-enabled version of MPI.

Keywords: MPI, message passing, parallel pro-
cessing, distributed processing, interoperable, confor-
mance testing

1 Introduction

The Message Passing Interface (MPI) [6, 7] is the
de facto standard for writing scientific applica-
tions in the message passing programming paradigm.

MPI was first defined in 1993 by the MPI Forum
(http://www.mpi-forum.org), comprised of repre-
sentatives from United States and international in-
dustry, academia, and government laboratories. The
protocol introduced here, the Interoperable MPI pro-
tocol (IMPI), extends the power of MPI by allowing
applications to run on heterogeneous clusters of ma-
chines with various architectures and operation sys-
tems, each of which in turn can be a parallel machine,
while allowing the program to use a different imple-
mentation of MPI on each machine. This is accom-
plished without requiring any modifications to the
existing MPI specification. That is, IMPI does not
add, remove, or modify the semantics of any of the
existing MPI routines. All current valid MPI pro-
grams can be run in this way without any changes to
their source code.

The purpose of this paper is to introduce IMPI,
indicate some of the novel techniques used to make
IMPI work as intended, and describe the role NIST
has played in its development and testing. As of
this writing, there is one MPI implementation, Lo-
cal Area Multicomputer (LAM) [19], that supports
IMPI, but others have indicated their intent to im-
plement IMPT once the first version of the protocol
has been completed. A more detailed explanation of
the motivation for and design of IMPI is given in the
first chapter of the IMPI Specification document [3],
which is included in its entirety as an appendix to
this paper.

The need for interoperable MPI is driven by the
desire to make use of more than one machine to run
applications, either to lower the computation time or



to enable the solution of problems that are too large
for any available single machine. Another anticipated
use for IMPI is for computational steering in which
one or more processes, possibly running on a ma-
chine designed for high-speed visualization, are used
interactively to control the raw computation that is
occurring on one or more other machines.

Although current portable implementations of
MPI, such as MPICH [14] (from the MPICH doc-
umentation: The “CH” in MPICH stands for
“Chameleon,” symbol of adaptability to one’s envi-
ronment and thus of portability.), and LAM (Local
Area Multicomputer) [2] support heterogeneous clus-
ters of machines, this approach does not allow the use
of vendor-tuned MPI libraries and can therefore sac-
rifice communications performance. There are sev-
eral other related projects. PVMPI [4] (PVMPI is a
combination of the acronyms PVM, which stands for
Portable Virtual Machine (another message passing
system) and MPI) and its successor MPI-Connect [5],
use the native MPI implementation on each system,
but use some other communication channel, such
as PVM, when passing messages between processes
in the different systems. One main difference be-
tween the PVMPI/MPI-Connect interoperable MPI
systems and IMPT is that no collective communica-
tion operations, such as broadcasting (MPI_Bcast) or
synchronizing (MPI Barrier), are not supported be-
tween MPI implementations. MAGPIE [16, 17] is a
library of collective communications operations built
on top of MPI (using MPICH) and optimized for wide
area networks. Although this system allows for col-
lective communications across all MPI processes, you
must use MPICH on all of the machines and not the
vendor tuned MPI libraries. Finally, MPICH-G [§],
is a version of MPICH developed in conjunction with
the Globus project [9] to operate over a wide area
network. This also bypasses the vendor tuned MPI
libraries.

Several ongoing research projects take the concept
of running parallel applications on multiple machines
much further. The concept variously known as meta-
computing, wide area computing, computational grids,
or the IPG (Information Power Grid), is being pur-
sued as a viable computational framework in which
a program is submitted to run on a geographically

»

distributed group of Internet-connected sites. These
sites form the Grid which provides all of the re-
sources, including multiprocessor machines, needed
to run large jobs. The many and varied protocols and
infrastructures needed to realize this is an active re-
search topic [9, 10, 11, 13, 15]. Some of the problems
under study include computational models, resource
allocation, user authentication, resource reservations,
and security. A related project at NIST is WebSub-
mit [18], a web-based user interface that handles user
authentication and provides a single point of contact
for users to submit and manage long running jobs on
any of our high-performance and parallel machines.

2 The IMPI Steering Commit-
tee meetings

The Interoperable MPI steering committee first met
in March 1997 to begin work on specifying the In-
teroperable MPI protocol. This first meeting was or-
ganized and hosted by NIST at the request of the
attending vendor and academic representatives. All
of these initial members (with one neutral excep-
tion) expressed the view that the role of NIST in
this process would be vital. As a knowledgeable neu-
tral party, NIST would help facilitate the process and
provide a testbed for implementations. At this first
meeting, only representatives from within the United
States attended, but the question of allowing inter-
national vendors to participate was introduced. This
was later agreed to and several foreign vendors ac-
tively participated in the IMPI meetings. All partic-
ipating vendors are listed in the IMPI document (see
appendix).

There were eight formal meetings of the IMPI
steering committee from March 1997 to March 1999,
augmented with a NIST-maintained mailing list for
ongoing discussions between meetings.

NIST has had three main roles in this effort: facili-
tator for meetings and maintaining an on-line mailing
list, editor for the IMPI protocol document, and con-
formance testing. It is this last task, conformance
testing, that required our greatest effort.



3 Design Highlights of the

IMPI Protocols

The IMPI protocols were designed with several im-
portant guiding principles. First, IMPI was not to
alter the MPI interface. That is, no user level MPI
routines were to be added and no changes were to be
made to the interfaces of the existing routines. Any
valid MPI program must run correctly using IMPT if
it runs correctly without IMPI. Second, the perfor-
mance of communication within an MPI implemen-
tation should not be noticeably impacted by support-
ing IMPI. IMPI should only have a noticeable impact
on communication performance when a message is
passed between two MPI implementations (the suc-
cess of this goal will not be known until implemen-
tations are completed). Finally, IMPI was designed
to allow for the easy evolution of its protocols, espe-
cially its collective communications algorithms. It is
this last goal that is most important for the long-term
usefulness of IMPI for MPT users.

An IMPI job, once running, consists of a set of
MPI processes that are running under the control of
two or more instances of MPI libraries. These MPI
processes are typically running on two or more sys-
tems. A system, for this discussion, is a machine,
with one or more processors, that supports MPI pro-
grams running under control of a single instance of an
MPI library. Note that under these definitions, it is
not necessary to have two different implementations
of MPI in order to make good use of IMPL. In fact,
given two identical multiprocessor machines that are
only linked via a LAN (Local Area Network), it is
possible that the vendor supplied MPI library will
not allow you to run a single MPI job across all of
the processors of both machines. In this case, IMPI
would add that capability, even though you are run-
ning on one architecture and using one implementa-
tion of MPI.

The remainder of this section outlines some of the
more important design decisions made in the devel-
opment of IMPI. This is a high-level discussion of
a few important aspects of IMPI with many details
omitted for brevity.

3.1 Common Communication Proto-

col

As few assumptions as possible were made about the
systems on which IMPT jobs would be run; however
some common attributes were assumed in order to
begin to obtain interoperability.

The most basic assumption made, after some de-
bate, was that TCP/IP would be the underlying
communications protocol between IMPI implementa-
tions. TCP/IP (Transfer Control Protocol/Internet
Protocol), is one of the basic communications proto-
cols used over the Internet. It is important to note
that this decision does not mandate that all machines
running the MPT processes be capable of communi-
cating over a TCP/IP channel, only that they can
communicate, directly or indirectly, with a machine
that can. IMPI does not require a completely con-
nected set of MPI processes. In fact, only a small
number of communications channels are used to con-
nect the MPI processes on the participating systems.

The decision to use only a few communications
channels to connect the systems in an IMPI job,
rather than requiring a more dense connection topol-
ogy, was made under the assumption that these IMPI
communications channels would be slower, in some
cases many times slower, than the networks con-
necting the processors within each of the systems.
Even as the performance of networking technology
increases, it is likely that the speed of the dedicated
internal system networks will always meet or exceed
the external network speed.

Other communications mediums, besides TCP/IP,
could be added to IMPI as needed, for example to
support IMPI between embedded devices. However,
the use of TCP/IP was considered the natural choice
for most computing sites.

3.2 Start-up

One of the first challenges faced in the design of IMPI
was determining how to start an IMPI job. The main
task of the IMPI start-up protocol is to establish com-
munication channels between the MPI processes run-
ning on the different systems.

Initially, several procedures for starting an IMPI



job were proposed. After several iterations a very
simple and flexible system was designed. A sin-
gle, implementation-independent process, the IMPI
server, is used as a rendezvous point for all participat-
ing systems. This process can be run anywhere that is
network-reachable by all of the participating systems,
which includes any of the participating systems or
any other suitable machine. Since this server utilizes
no architecture specific information, a portable im-
plementation can be shared by all users. As a service
to the other MPI implementors, the Laboratory for
Computer Science at the University of Notre Dame
(the current developers of LAM/MPI), has provided
a portable IMPI server that all vendors can use. The
IMPI server is not only implementation independent,
it is also immune to most changes to IMPI itself. The
server is a simple rendezvous point that knows noth-
ing of the information it is receiving; it simply relays
the information it receives to all of the participating
systems. All of the negotiations that take place dur-
ing the start-up are handled within the individual
IMPI/MPI implementations. The only information
that the server needs at start-up is how many sys-
tems will be participating.

One of the first things the IMPI server does is print
out a string containing enough information for any
of the participating systems to be able to contact
it. This string contains the Internet address of the
machine running the IMPI server and the TCP/IP
port that the server is listening on for connections
from the participating systems.

The conversation that takes place between the par-
ticipating systems, relayed through the IMPI server,
is in a simple “tokenized” language in which each to-
ken identifies a certain piece of information needed to
configure the connections between the systems. For
example, one particular token exchanged between all
systems indicates the maximum number of bytes each
system is willing to send or receive in a single mes-
sage over the IMPI channels. Messages larger that
this size must be divided into multiple packets, each
of which is no larger than this maximum size. Once
this token is exchanged, all systems choose the small-
est of the values as the maximum message size.

Many tokens are specified in the IMPI protocol,
and all systems must submit values for each of these

tokens. However, any system is free to introduce
new tokens at any time. Systems unfamiliar with
any token it receives during start-up can simply ig-
nore it. This is a powerful capability that requires no
changes to either the IMPI server, or to the current
IMPT specification. This allows for experimentation
with IMPI without requiring the active participation
of other IMPI/MPI implementors. Once support for
IMPT version 0.0 has been added to them, any of
the freely available implementations of MPI, such as
MPICH or LAM, can be used by anyone interested
in experimenting with IMPI at this level. If a new
start-up parameter appears to be useful, then it can
be added to an IMPI implementation and be used as
if it were part of the original IMPI protocol.

One particular parameter, the IMPI version num-
ber, is intended for indicating updates to one or more
internal protocols or to indicate the support for a new
set of collective communications algorithms. For ex-
ample, if one or more new collective algorithms have
been shown to enhance the performance of IMPI,
then support for those new algorithms by a system
would be indicated by passing in the appropriate
IMPI version number during IMPT start-up. All sys-
tems must support IMPI version 0.0 level protocols
and collective communications algorithms, but may
also support any number of higher level sets of algo-
rithms. This is somewhat different than traditional
version numbering in that an IMPI implementation
must indicate not only its latest version, but all of the
previous versions that it currently supports (which
must always include 0.0). Since all systems must
agree on the collective algorithms to be used, the
IMPI version numbers are compared at start-up and
the highest version supported by all systems will be
used. It is possible for an IMPI implementation to
allow the user to control this negotiation partially by
allowing the user to specify a particular IMPI version
number (as a command-line option perhaps). The de-
cision to provide this level of flexibility to the user is
completely up to those implementing IMPI.

3.3 Security

As an integral part of the IMPI start-up protocol,
the IMPI server accepts connections from the partic-



ipating systems. In the time interval between the
starting of the IMPI server and the connection of
the last participating system to the server, there is
the possibility that some other rogue process might
try to contact the server. Therefore, it is important
for the IMPI server to authenticate the connections
it accepts. This is especially true when connecting
systems that are either geographically distant or not
protected by other security means such as a network
firewall. The initial IMPT protocol allows for authen-
tication via a simple 64 bit key chosen by the user at
start-up time. Much more sophisticated authentica-
tion systems are anticipated so IMPI includes a flex-
ible security system that supports multiple authenti-
cation protocols in a manner similar to the support
for multiple IMPI versions. Each IMPI implemen-
tation must support at least the simple 64 bit key
authentication, but can also support any number of
other authentication schemes.

Just as the collective communications algorithms
that are to be used can be partially controlled by
the user via command-line options, the authentica-
tion protocol can also be chosen by the user. More
details of this are given in Sec. 2.3.3 of the IMPI
Specification document.

If security on the IMPI communication channels
during program execution is needed, that is, between
MPI processes, then updating IMPI to operate over
secure sockets could be considered. Support for this
option in an IMPI implementation could be indicated
during IMPIT start-up.

3.4 Topology Discovery

The topology of the network connecting the IMPI
systems, that is, the set of network connections avail-
able between the systems, can have a dramatic effect
on the performance of the collective communications
algorithms used. It is not likely that any static col-
lective algorithm will be optimal in all cases. Rather,
these collective algorithms will need to dynamically
choose an algorithm to use based on the available
network. The initial IMPI collective algorithms ac-
knowledge this in that, in many cases, they choose
between two algorithms based on the size of the mes-
sages involved and the number of systems involved.

Algorithms for large messages try to minimize the
amount of data transmitted (do not transmit data
more than once if possible) and algorithms for small
messages try to minimize the latency by paralleliz-
ing the communication if possible (by using a binary
tree network for a gather operation for example). In
order to assist in the implementation of dynamically
tunable collective algorithms, IMPT has included four
topology parameters, to be made available at the user
level (for those familiar with MPI, these parameters
are made available as cached attributes on each MPI
communicator). These attributes identify which pro-
cesses are close, that is, within the same system,
and which are distant, or outside the local system.
Communication between processes within a system
will almost always be faster than communications
between systems since communication between sys-
tems will take place over the IMPI channels. These
topology attributes give no specific communications
performance information, but are provided to assist
in the development of more dynamic communications
algorithms.

Through NIST’s SBIR, (Small Business Innovative
Research) program, we have solicited help in improv-
ing collective communications algorithms for IMPI as
well as for clustered computing in general.

4 Conformance Tester

The design of the IMPI tester, which we will refer to
simply as the tester, is unique in that it is accessed
over the Web and operates completely over the In-
ternet. This design for a tester has many advantages
over the conventional practice of providing confor-
mance testing in the form of one or more portable
programs delivered to the implementors site and com-
piled and run on their system. For example, the ma-
jority of the IMPI tester code runs exclusively on a
host machine at NIST, regardless of who is using the
tester, thus eliminating the need to port this code to
multiple platforms, the need for documents instruct-
ing the users how to install and compile the system,
and the need to inform users of updates to the tester
(since NIST maintains the only instance of this part
of the tester). There are two components of the tester



that run at the user’s site. The first of these compo-
nents is a small Java applet that is down-loaded on
demand each time the tester is used, so this part of
the tester is always up to date. Since it is written
in Java and runs in a JVM (Java Virtual Machine),
there is no need to port this code either. The other
part of the tester that runs at the user’s site is a
test interpreter (a C/MPI program) that exercises
the MPI implementation to be tested. This program
is compiled and linked to the vendor’s IMPI/MPI li-
brary. Since this C/MPI program is a test interpreter
and not a collection of tests, it will not be frequently
updated. This means that it will most likely need to
be downloaded only once by a user. All updates, cor-
rections, and additions to the conformance test suite
will take place only at NIST.

This design was inspired by the work of Brady and
St. Pierre at NIST and their use of Java and CORBA
in their conformance testing system [1]. In their sys-
tem, CORBA was used as the communication inter-
face between the tests and the objects under test
(objects defined in IDL). In our IMPI tester, since
we are testing a TCP/IP-based communications pro-
tocol, we used the Java networking packages for all
communications.

5 Enhancements to IMPI

This initial release of the IMPI protocol will enable
users to spread their computations over multiple ma-
chines while still using highly-tuned native MPI im-
plementations. This is a needed enhancement to MPI
and will be useful in many settings such as here at
NIST. However, several enhancements to this initial
version of IMPI are envisioned.

First, the IMPI collective communications algo-
rithms will benefit from the ongoing Grid/IPG re-
search on efficient collective algorithms for clusters
and WANs [12, 16, 17, 20]. IMPT has been designed
to allow for experimenting with improved algorithms
by allowing the participating MPI implementations
to negotiate, at program start-up, which version of
collective communications algorithms will be used.
Second, although IMPI is currently defined to oper-
ate over TCP /IP sockets, a more secure version could

be defined to operate over a secure channel such as
SSL (Secure Socket Layer). Third, start-up of an
IMPI job currently requires that multiple steps be
taken by the user. This start-up process could be au-
tomated, possibly using something like WebSubmit
[18], in order to simplify the starting and stopping of
IMPT jobs.

IMPI-enabled clusters could be used in a WAN
(Wide Area Network) environment using Globus [9],
for example, for resource management, user authen-
tication, and other management tasks needed when
operating over large distances and between separately
managed computing facilities. If two or more locally
managed clusters can be used via IMPI to run a sin-
gle job, then these resources could be described as a
single resource in a Grid computation so that it can
be offered and reserved as a unit in the Grid.

References

[1] K. G. Brady and J. St. Pierre. Conformance
testing object-oriented frameworks using Java.
Technical Report NISTIR 6202, NIST, 1998.

[2] Greg Burns, Raja Daoud, and James R. Vaigl.
LAM: An open cluster environment for MPI. In
Supercomputing Symposium 94, pages 379-386,
University of Toronto, June 1994.

[3] IMPI Steering Committee. IMPI: Interoperable
Message Passing Interface, January 2000. Pro-
tocol Version 0.0, http://impi.nist.gov/IMPI.

[4] G.Fagg,J. Dongarra, and A. Geist. PVMPI pro-
vides interoperability between MPI implementa-
tions. In Proc. 8th SIAM Conf. on Parallel Pro-
cessing. STAM, 1997.

[5] G. E. Fagg and K. S. London. MPI inter-
connection and control. Technical Report Tech
Rep. 98-42, Corps of Engineers Waterways Ex-
periment Station Major Shared Resource Cen-
ter, 1998.

[6] Message Passing Interface Forum. MPIL A
message-passing interface standard. The Inter-
national Journal of Supercomputer Applications



[10]

[11]

[12]

[13]

[14]

[15]

and High Performance Computing, 8(3/4), 1994.
Special issue on MPI.

Message Passing Interface Forum. MPI-2: A
Message-Passing Interface standard. The In-
ternational Journal of Supercomputer Applica-
tions and High Performance Computing, 12(1-
2), 1998.

I. Foster and N. Karonis. A grid-enabled MPI:
Message passing in heterogeneous distributed
computing systems. In Proceedings of SC 98,
1998.

I. Foster and C. Kesselman. Globus: A meta-
computing infrastructure toolkit. Int’l J. of Su-
percomputing Applications, 11(2):115-128, Au-
gust 1997. see http://www.globus.org.

I. Foster and C. Kesselman. Computational
grids. In The Grid: Blueprint for a New Com-
puting Infrastructure [11].

I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

Patrick Geoffray, Loic Prylli, and Bernard
Tourancheau. BIP-SMP:High performance mes-
sage passing over a cluster of commodity SMPs.
In Proceedings of SC ’99, 1999.

A. Grimshaw and Wm. A. Wulf. Legion—A view
from 50,000 feet. In Proceedings of the Fifth
IEEE International Symposium on High Per-
formance Distributed Computing, Los Alamitos,
CA, August 1996. Computer Society Press.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
A high-performance, portable implementation
of the MPI message passing interface standard.
Parallel Computing, 22(6):789-828, September
1996.

William E. Johnson, Dennis Gannon, and Bill
Nitzberg. Grids as production computing envi-
ronments: The engineering aspects of NASA’s
information power grid. In Eighth IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing. IEEE, August 1999.

[16] Thilo Kielmann, Rutger F. H. Hofman, Henri E.
Bal, Aske Plaat, and Raoul A. F. Bhoedjang.
MAGPIE: MPT’s collective communication op-
erations for clustered wide area systems. In
Seventh ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming
(PPoPP’99), pages 131-140, Atlanta, GA, May
1999.

[17] Thilo Kielmann, Rutger F. H. Hofman, Henri E.
Bal, Aske Plaat, and Raoul A. F. Bhoedjang.
MPT’s reduction operations in clustered wide
area systems. In Message Passing Interface De-
veloper’s and User’s Conference (MPIDC’99),

pages 43-52, Atlanta, GA, March 1999.

[18] Ryan McCormack, John Koontz, and Judith De-
vaney. Seamless computing with WebSubmit. J.
of Concurrency: Practice and Experience: Spe-
cial issue on Aspects of Seamless Computing,

11(12):1-15, 1999.

[19] Jeff M. Squyres, Andrew Lumsdaine, William L.
George, John G. Hagedorn, and Judith E. De-
vaney. The interoperable message passing inter-
face (IMPI) extensions to LAM/MPI. In Mes-
sage Passing Interface Developer’s Conference

(MPIDC2000), Cornell University, May 2000.

[20] Steve Sustare, Rolf van de Vaart, and Eugene
Loh. Optimization of MPI collectives on col-
lections of large scale SMPs. In Proceedings of

SC 99, 1999.

About the authors: William L. George and John
G. Hagedorn are computer scientists in the Scientific
Applications and Visualization Group, High Perfor-
mance Systems and Services Division, of the NIST
Information Technology Laboratory. Judith E. De-
vaney is Group Leader of the Scientific Applications
and Visualization Group in the High Performance
Systems and Services Division of the NIST Infor-
mation Technology Laboratory. The National Insti-
tute of Standards and Technology is an agency of
the Technology Administration, U.S. Department of
Commerce.



