Validation of Constraints Among
Configuration Parameters

Using (Search-Based) Combinatorial
Interaction Testing

Angelo Gargantini, Justyna Petke, Marco Radavelli, Paolo Vavassori

University of Bergamo, Bergamo, Italy

University College London, London, UK

NIST, August 31, 2016

Paper to be presented at SSBSE 2016

Few words about my city

- Bergamo — near to Milan (31 mi, 50 km)
- Around 120k habitants

1 history and art

University of Bergamo

- Public university
- Rather young (1968)

- Schools:
- Arts and Philosophy,
- Economics and Business Administration,
- Engineering,
- Foreign Languages, Literature and Communication,
- Law,

- Human and Social Sciences

- Around 15k students

Motivations

NIST - 2016

- Most software systems can be configured in order to
1mprove their capability to address user’s needs.

- Configuration of such systems is performed by parameters:

- software design stage (e.g., for software product lines, the designer
1dentifies the features unique to individual products and features
common to all products in its category),

- during compilation (e.g., to improve the efficiency of the compiled
code)

- while the software 1s running (e.g., to allow the user to switch on/off
a particular functionality).

- during load time, to decide which features to load.

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

Role of constraints among feature

NIST - 2016

- Constraints among features play a very important role,

- They 1dentify parameter interactions that lead to invalid

configurations
* Normally invalid configurations need not be tested,
* hence constraints can significantly reduce the testing effort.

- Certain constraints are defined to prohibit generation of test configurations under
which the system simply should not be able to run.

- Other constraints can prohibit system configurations that could
be valid, but need not be tested for other reasons.
- For example business constraints

- Identifying features is much easier than finding their
relationships

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Importance of validating constraints

NIST - 2016

- Constructing a CIT model of a large software system 1s a hard,
usually manual task.

- Modeling constraints among parameters is highly error prone.

- One might run into the problem of not only producing an
incomplete CIT model, but also one that is over-constrained.

« Even if the CIT model only allows for valid configurations to be generated,
1t might miss important system faults if one of the constraints is over-
restrictive.

- Moreover, even if the system 1s not supposed to run under certain

configurations, if there’s a fault, a test suite generated from a CIT model
that correctly mimics only desired system behavior will not find that error.

n
+~
S
o
<
~
+~
0]
g
o
(@)
(-
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

Our former work on constraint validation

NIST - 2016

- Validation of Models and Tests for Constrained Combinatorial
Interaction Testing, IWCT2014

- We used a SMT solver to fault faults in the constraints

- We focused on
* (meta)-errors: regardless the system they model

* Inconsistent constraints
- Constraints Vacuity
 Constraints minimality

- Here we focus on conformance faults
- As before we use CitLab (https://citlab.sf.net)

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Main GOAL

- The objective of this work 1s to use CIT techniques to
validate constraints of the model of the
system under test (SUT).

- We extend traditional CIT by devising a set of six policies
for generating tests that can be used to detect faults in the

CIT model as well as the SUT.

NIST - 2016

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Example 1

- Compile time configurable example:

Real software, greetings.c

CIT model, greetings.citl

#ifdef HELLO
char* msg = "Hello!\n";
#endif

#ifdef BYE
char* msg = "Bye bye!\n";
#endif

void main(void) {
printf(msg);
}

Model Greetings
Parameters:
Boolean HELLO;
Boolean BYE;
end
Constraints:

HELLO!=BYE
end

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
A
g
o
B
o]
~
=}
o0
=
=
o
(@)
on
g
©
g
<

NIST - 2016

(2) It can be a phisical system

File Edit Navigate Search Project Run Window Help
R ® 2w BB~ v~y ook 4
[Project Explorer £8 = g [Phone.citl §3 = g
Model WashMachine
BE & - Parameters:
Boolean HalflLoad;
»Fa Enumerative Rinse {Delicate Drain Wool} ;
. Numbers Spin {860 1200 1800};
end
Constraints:
#Halfload=>Spin< 1480%
end
0= Outline 3¢] Tesk L = g
a -
@-
— & ks 51 v = g
J HalfLoad
0items
L o 1| Description Resource | Path Location Type
1 Sein { 800 1200 1800 }
3 Constraint 1
3 Constraint 2
Writable Insert 10:51

Configurable system

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
e
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
A
g
o
B
o]
~
=}
o0
=
=
o
(@)
on
g
©
g
<

NIST - 2016

Some definitions

Oracle and configuration validity

NIST - 2016

- Configuration: assignment to parameters

- Given a model S and 1ts implementation I,

. Vals 1s the function that checks if a configuration satisfies the
constraints in S,
- valg (p) TRUEK if p makes the constraints in S true

. OI‘C&IQI checks if a configuration is valid for the implementation I
- orcale((p) 1s TRUE iff p 1s a valid configuration for I

- Computation of oracle can be expensive
- Some human intervention

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Correctness and faults

NIST - 2016

- We say that the Constrained CIT (CCIT) model 1s correct if,
for every configuration p, ValS(p) = orcaley(p)

- We say that a specification contains a conformance fault if
there exists a p such that Vals(ﬁ) # orcale(p)

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Example

#ifdef HELLO
char* msg = "Hello!\n";
#endif

#ifdef BYE
char* msg = "Bye bye!\n";
#endif

void main(void) {

printf(msg);
}

Oracle: the compiler

Model Greetings
Parameters:
Boolean HELLO;
Boolean BYE;
end
Constraints:

HELLO!=BYE
end

orcale

gcc —DBYE —DHELLO greetings.c 2 compilation error

Model Greetings
Parameters:
Boolean HELLO;
Boolean BYE;
end
Constraints=

HELLO or BYE

end
'

A possible configuration

HELLO: true
BYE: true
Vals

S o

n
+~
S
o
<
~
+~
0]
g
o
(@)
(-
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
.L:::
=
o
(@)
on
g
©
g
<

NIST - 2016

Discovering fault process

©
—i
o
N
=
2
=
Z

S:
CIT model: (CIT) Test
Parameters + generation
Constraints
‘ For each g
test 2
S,
Test= configuration = %
:12 ~
TRUE L2
£%
Validity in the _ Validity in the S
valg=orcale; g 2
model system S
= g
2 £
< <

FALSE

‘ Fault found \

Discovering faults

NIST - 2016

- In order to find possible faults the exhaustive exploration of
all the configurations of a large software system 1s usually

1mpractical.

- Some static techniques can be adopted
* TypeChef, ...
* In this work we use combinatorial testing

- We include both valid and invalid configurations
- Both selected with the same t-way interaction testing

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Invalid Configuration Testing

NIST - 2016

- In classical CIT only valid tests are generated,
* the focus is on assessing if the system under test produces valid outputs.

- We believe that invalid tests are also useful:

1. The model should minimize the constraints and the invalid
configuration set:

- invalid configurations, according to the model, should only be those that are
actually invalid in the real system.

- Avoid over-constraining the model.

2. Moreover, critical systems should be tested if they safely fail when
the configuration is incorrect.

3. Invalid configurations generated by the model at hand can help
]éeI\rflgal cgnlstramts within the system under test and help refine the
model.

- sclentific epistemology: not only tests (1.e., valid configurations) that
confirm our theory (1.e., the model), but also tests that can refute it.

n
+~
S
o
<
~
+~
0]
g
o
@)
Gy
o
(=
o
B
<
S
=
<
>
-
=
P
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

| policies |

Combinatorial
Testing Policies

Washing Machine eample

NIST - 2016

Model WashingMachine

Parameters:
Boolean HalflLoad;
Enumerative Rinse { Delicate Drain Wool };
Numbers Spin { 800 1200 1800 };

end

Constraints:

HalflLoad => Spin < 1400

Rinse == Delicate => (HalflLoad and Spin==800)

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
2
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

end

UC: Unconstrained CIT

- Ignore the constraints

- Tools that do not handle constraints can be used
- Both valid and invalid tests will be generated but there is no control

Parameters:
Boolean HalflLoad;
Enumerative Rinse { Delicate Drain Wool };
Numbers Spin { 800 1200 18600 };

end

a palrwise test suite with
at least 9 test cases,
including an invalid test
case where HalfLoad =
true 1n combination with
Spin =1800.

n
+~
S
o
<
~
+~
0]
g
o
(@)
(-
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

NIST - 2016

CC: Constrained CIT

- Classical approach, constraints are taken 1nto account and
only valid combinations among parameters are chosen.

- If a certain interaction among parameters is not possible, then it 1s
not considered

NIST - 2016

Model WashingMachine 7 tests for pairwise, all of

Parameters: . o .
" which satisfy the constraints.
Boolean HalflLoad;

Enumerative Rinse { Delicate Drain Wool };

n
+~
S
o
<
~
+~
0]
g
o
@)
Gy
o
(=
o
B
<
S
=
<
>
-
=
P
(=
<
on
~
<
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

Numbers Spin { 800 1200 1800 }; Some pairs are not covered:
end for instance HalfLoad =true
Constraints: . .

HalflLoad => Spin < 1400 # and Sp1n==1300 will not be
Rinse==Delicate => (HalflLoad and Spin==800) # covered.

end

CV: Constraints Violating CIT

- one wants to test the interactions of parameters that
produce errors, =2 tests violating the constraints
- complementary with respect to the CC

©
—i
o
N
B
2
=
Z

Constraints: : £
HalfLoad => Spin 6.test cases, all of Wthh :
Rinse == Delicate oad and Spin==800) # violate some constraint Of 2 B
end the model. s
For instance, a test has el
Constraints: Rinse = Delicate, R
. . . g2
L snapenm 6| Spin=s00, and
inse == Delicate => HalflLoad an in== g S
ond P HalfLoad =false. £

CuCV: Combinatorial Union

- CC: only valid, CV: only invalid

- Both may do not cover some requirements (pairs in pairwise)

©
—i
o
N
B
2
=
Z

- Take the union

AND Pt CC test suite So .

/ CONSTRAINTS § *083

CIT MODEL UNION CuCV S5
\ g gﬂ

b 5

AND - CV test suite 33 Cc;n

% &

< <

NOT CONSTRAINTS

ValC: CIT of Constraint Validity

- CuCV may produce big test suites:

- 1t covers all the desired parameter interactions that produce valid
configurations and all those that produce invalid ones

NIST - 2016

- We propose the ValC policy: requires the interaction of each
parameter with the validity of the whole CIT model.

- Good balance e test on how the single parameters contributes to the
validity

Parameters: CuCV generates 13 test
cases (6+7).

ValC requires only 11 test

Constr.'a%nts: cases.
validity <=>

(HalfLoad => Spin<maxSpinHL) &&

(Rinse== Delicate => HalflLoad and Spin==800) #
end

Boolean validity;

n
ey
S
o=
o]
~
o
0]
g
o
@)
Gy
o
(=
o
B
<
S
=
<
>
-
=
P
(=
<
on
~
(o]
@)
©
—
05}
o0
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

CCi: CIT of the Constraints

- Every constraint represents a condition over the system

- the constraint HalfLLoad => Spin < 1800 1dentifies the critical states
in which the designer wants a lower spin speed.

- Constraint =» system state property

©
—i
o
N
B
2
=
Z

- CC1 covers how each of these properties interact with each
other and with the other parameters.

Angelo Gargantini - Validation of Constraints

£

) . £
Parameters: CCi generates 11 test 5
(=

Boolean cO; SIS *§
Boolean c1; §
end &
Constraints: g
£

<

cO <=> (HalfLoad => Spin<maxSpinHL)
cl <=> (Rinse==Rinse.Delicate =>
HalfLoad and Spin==800) #

end

Experiments

Using CASA
with ACTS: bigger test suites but no out of memory problems

Benchmarks

NIST - 2016

- Banking1 represents the testing problem for a
configurable Banking applicationby Itai Segall and Rachel
Tzoref-Brill group

- libssh is a multi-platform library implementing SSHv1 and
SSHv2 written 1in C. The library consists of around 100
KLOC and can be configured by several options and several
modules (like an SFTP server and so on) can be activated
during compile time. We have analyzed the cmake files and
1identified 16 parameters and the relations among them.

n
ey
S
o
o]
~
o
0]
g
o
@)
Gy
o
(=
o
B
<
S
=
<
>
-
=
P
(=
<
on
~
(o]
@)
©
—
05}
o0
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

HeartbeatChecker (HC)

- HC 1s a small C program, written by us, that performs a Heartbeat test on a
given TLS server.

The Heartbeat Extension is a standard procedure (RFC 6520) that sends a “Heartbeat
Request” message.

. 'SU}cCh a message consists of a payload, a text string, along with its length as a 16-bit
integer.

- The receiving computer then must send exactly the same payload back to the sender.

NIST - 2016

- HC reads the data to use in the Heartbeat from a configuration file:

TLSserver : <IP>
TLS1 REQUEST Length : <nl> PayloadData : <datal»>
TLS1 RESPONSE Length : <n2> PayloadData : <data2>

Messages with nl equal to n2 and datal equal to data2 represent a successful
Heartbeat test (when the TLS-server has correctly responded to the request).

HC can be considered as an example of a runtime configurable system,

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
‘L‘:
=
o
(@)
on
g
©
g
<

The oracle is true if the Heartbeat test has been successfully performed with
the specified parameters.

django

- 1s a free and open source web application framework

NIST - 2016

- Each django project has a configuration file, which is loaded
every time the web server that executes the project (e.g. Apache)
1s started.

- We modeled the configuration file:
- one Enumerative and 23 Boolean parameters.

- We elicited the constraints from the documentation, including
several forum articles and from the code when necessary.

- We have also implemented the oracle, which i1s completely
automated and returns true if and only if the HTTP response
code of the project homepage 1s 200 (HTTP OK).

n
ey
S
o
o]
~
o
0]
g
o
@)
Gy
o
(=
o
B
<
S
=
<
>
-
=
P
(=
<
on
~
(o]
@)
©
—
05}
o0
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Benchmarks features

#VARS |#Const |#configurations | VR #pairs
raints

NIST - 2016

Bankingl 65.43%

Libssh 16 2 65536 50% 480
AlzEl B 4 3 65536 0.02% 1536
Checker

Django 24 3 33554432 18.75% 1196

~

VR - validity ratio: how

many configurations are : :
those valid #pairs: testing
requirements how may

pairs are to be covered

n
+~
S
o
<
S~
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
on
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
o
©
g
<

Results (global)
-

NIST - 2016

time size #Val Cov. time size #Val Cow time size #Val Cov. time size #Val Cov.
Uuc 0,22 12 11 100% 0,65 10 2 100% 0,25 8 4 100% 447 267 0 100%
CC 0,26 13 13 100% 1,24 10 10 91.8% 0,28 8 8 99.3% 2,74 141 141 6.2%
CV Out of memory 0,32 11 0 100% 0,25 8 0 99.3% Out of memory

Out of memory

CuCvVv Out of memory 1,58 21 10 100% 0,52 16 8 100%
ValC Out of memory 0,31 11 4 100% 0,29 8 5 100% Out of memory
CCi 6,22 12 9 100% 0,58 13 3 100% 0,3 8 2 100% 460 268 0 100%

Time: generation (ocracle excluded) in seconds.

Size: number of tests and how many of those are valid (#Val),

Cov.: The percentage of parameter interactions (pairs) that are covered.

Out of memory is due to constraint conversion into the CNF format required by CASA.

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
i
=
o
(@)
on
g
©
g
<

UC: invalid test

- Bankingl LibSSH HeartBeatChecker

size #Val V. size #Val OV. size #Val oVv. sSize #Val

ucC 12 11 100% 10 2 100 8 4 100 267
% %

- UC produces both a mix of valid and invalid tests.
* There 1s no control though.

- It may produce all invalid tests (especially if the constraints are
strong - see HeartbeatChecker).

NIST - 2016

100%

- Having all invalid tests may reduce test effectiveness.

n
+~
S
o
<
o
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
o
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
=i
o
B
o]
~
=}
o0
=
=
o
(@)
on
o
©
g
<

CC: coverage and test suite size

NIST - 2016

- Bankingl LibSSH HeartBeatChecker

size #Val Covw. size #Val Cov. size #Val Covw. size #Val Covw.

ucC 12 11 100% 10 2 100% 8 4 100% 267 0 100%

CC 13 13 100% 10 10 - 8 8 99.3% 141 141 -

- CC usually does not cover all the parameter interactions, since
some of them are infeasible because they violate constraints

- On the other hand, CC generally produces smaller test suites (as
1n the case of HeartbeatChecker). However, in some cases, CC 1s
able to cover all the required tuples at the expense of larger test
suites (as 1n the case of Bankingl).

n
+~
S
o
<
~
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
on
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
g
o
B
o]
~
=}
o0
i
=
o
(@)
on
o
©
g
<

CV: coverage and resources

- Bankingl LibSSH HeartBeatChecker

Pol. size #Val Cow. size #Val Cov.

- CV generally does not cover all the parameter interactions, since
1t produces only invalid configurations.

- However, in one case (Django) CV covers all the interactions.

- This means that 100% coverage of the tuples in some cases can be obtained
with no valid configuration generated: coverage and validity are not
strongly correlated

- Sometimes CV 1s too expensive to perform.

n
+~
S
o
<
o
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
o
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
=i
o
B
o]
~
=}
o0
i
=
o
(@)
on
o
©
g
<

NIST - 2016

CuCV

Bankingl Django LibSSH HeartBeatC
hecker

NIST - 2016

time size #Val Cov. time size #Val Cov.
CC 1,24 10 10 91.8% 0,28 8 8 99.3%
CV Out of memory 0,32 11 0 100% 0,25 8 0 99.3% Out of memory

- CuCV guarantees to cover all the interactions and it produces
both valid and invalid configurations.

- However, it produces the bigger test suites

n
+~
S
o
<
o
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
o
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
=i
o
B
o]
~
=}
o0
i
=
o
(@)
on
o
©
g
<

- and 1t may fail because 1t relies on CV
- With ACTS this was not the case !

ValC: faster and smaller

- Banking1 LibSSH HeartBeatChe
cker

NIST - 2016

time size #Val Cov. time size #Val Cov.
CuCV Out of memory 1,58 21 10 100% 0,52 16 8 100% Out of memory
ValC Out of memory 0,31 11 4 100% 0,29 8 5 100% Out of memory

- ValC covers all the interactions with both valid and invalid
configurations.

- It produces test suites smaller than CuCV and it 1s
generally faster, but as CuCV may not terminate.

n
+~
S
o
<
o
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
on
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
g
o
B
o]
~
=}
o0
i
=
o
(@)
on
o
©
g
<

CC1
- Bankingl LibSSH HeartBeatChecker

NIST - 2016

time size #Val Cov. time size #Val Cov. time size #Val Cov. time size #Val Cov.

CCi 6,22 12 9 100% 0,58 13 3 100% 0,3 8 2 100% 460 268 - 100%

CC1 covers all the interactions,

1t generally produces both valid and 1nvalid test.
- However, it may produce all invalid tests (see HeartbeatChecker), and

1t produces a test suite comparable in size with UC.
- however, it guarantees an interaction among the constraint validity.

n
+~
S
o
<
S~
+
0]
o
o
@
(-
o
o
o
o
+~
<
S
=
<
>
-
S
o
=
S
<
o
~
o]
@)
©
—
05}
on
<
<

n
~
Q
e
(b}
£
<
~
<
A
=i
o
B
o]
~
=}
o0
e
=
o
(@)
on
o
©
g
<

- It terminates, but it can be slightly more expensive than UC and CC.

Comparison

Ne)
—
()
(A
B
N
]
Z.

Valid and Test suite size Time/memory Coverage
invalid tests requirements

ucC

Depends

No guarantee

w0
2
cC Depends s
2
o
O)]
(-
cV Depends g
o 9
2 g
S o
[ay]
CuCVv >
1 .9
£
B 5
ValC Depends 5 e
S
5O
S 50
CCi No Guarantee Depends good S 2
< <

Fault detection capability

NIST - 2016

- Ok coverage but what about fault detection capability?

ints

- We have applied mutation analysis

- We have introduced (by hand) artificial faults and checking
1f the proposed technique is able to find (kill) them.

- Our technique 1s able to find conformance faults both in the
model and in the implementation, so we have modified both
the specification (S) and the implementation (I)

o]
~
o
0]
g
o
@)
Gy
o
(=
o
B
<
=
G
>
=
P
(=
<
on
~
(o]
@)
©
—
05}
o0
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Faults
—-—

NIST - 2016

LibSSH forgot all the constraints S
L2 remove a constraint S
L3 add a constraint S
L5 remove a dependency I
L6 add a dependency I

HeartBeatChecker H1 remove one constraint S
H2 ==to<= S
H4 &&to |

H5 ==to!=(all) I
H6 ==to !=(one) I
H7 HeartBleed I

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
=
=
o
(@)
on
g
©
g
<

F| SEF| SERVER, ARE YOU STILL THERE?
| FY IFSo,REPLY "HAT" (500 LETTERS),

Meg wants these 500 letters: HAT.

£

NIST - 2016

Meg wants these 500 letters: HAT.

v HAT, Lucas requests the "missed conme
ctions” page. BEve (acmuustrator) Wan
ts to set server’s master key to ' 148
350385347, Isabel wants pages about '
snakes but not too long". User Karen
wants to change account ;mssword to '

n
+~
S
o
<
~
+
0]
g
o
@
(-
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
A
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

Fault detection capability
mmmmmm

NIST - 2016

10/13

cc Vv v v v v v v 7/13
cv Vv v v v ? ? ? ? ? ? ? 4/13
cucv v v v v v ? ? ? ? ? ? ? 6/13
valc v v v ? ? ? ? ? ? ? 4/13
cCi v v v v v v v v v v v 12/13

- Testing invalid configurations is useful

- Overall CC1 was the best in terms of fault detection,
- 1t missed one of the injected faults (LL6).
- It was the only one to find the fault H7 (HeartBleed).

n
+~
S
o
<
~
+~
0]
g
o
(@)
(-
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
e
=
o
(@)
on
g
©
g
<

- This proves that testing how parameters can interact with
single constraints increases the fault detection capability

Conclusions

- CIT can be applied to test configurable systems
- Constraints are important but
- also invalid configurations should be generated

- There are several way to consider constraints
- New 4 policies
- Some proved to be more powerful in coverage and fault detection

b
dﬂﬂkB 15 ngtweasgnlgf(ur ederim

hthank yoggiees -+

dzwku
obrigado -3 SUk[IyakaukIJnklag éﬂg”fqglluhh_flBaltl[ﬂ!l?il_

MerCt

n
+~
S
o
<
~
+~
0]
g
o
(@)
Gy
o
(=
o
o
+~
<
S
=
<
>
-
=
o
+~
(=
<
on
~
o]
@)
©
—
05}
on
(=
<

n
~
Q
e
(b}
£
<
~
<
[«
g
o
B
o]
~
=}
o0
i
=
o
(@)
on
g
©
g
<

NIST - 2016

