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Consider well-posed forward problem wt = Lw, t > 0,
with L a 2nd order elliptic differential operator.

Pure Explicit wn+1 = wn + ∆tLwn, ideal.

Leapfrog wn+1 = wn−1 + 2∆tLwn, better.

Crank-Nicholson 2wn+1 + ∆tLwn+1 = 2wn + ∆tLwn.

Pure Explicit ⇒ impractically small ∆t (Courant).

Leapfrog always unstable no matter how small ∆t.

Crank-Nicholson ⇒ large algebraic problem at each n.

Stabilize explicit schemes. Apply to difficult multidi-
mensional nonlinear well-posed forward problems. Avoid
implicit scheme algebraic computations at each n.

Stabilized schemes can also be run backward in time.
Solve previously intractable ill-posed problems.



EXAMPLES OF IRREVERSIBLE PDE PROBLEMS

Advection dispersion equation
wt = σ∆w −∇.(β w)

Wave propagation in viscous fluid
wtt = c2∆w + γ∆wt

Coupled sound and heat flow
wtt = c2∆w − c2∆u,
ut = σ∆u − λwt

Nonlinear variations. Other coupled systems.



ENVIRONMENTAL FORENSICS

Groundwater Pollution

Identify source of groundwater contamination by

solving advection dispersion eqn backward in time.



   Shirley Temple image               Plot of intensity values
          IMAGES MAKE GOOD TEST PROBLEMS



Consider PDE problem: wt = Lu, 0 ≤ t ≤ T, w(0) = f.

Assume L linear selfadjoint second order elliptic op-
erator, with variable coefficients independent of t.

Eigenvalues {λm}∞m=1; 0 < |λ1| ≤ |λ2| ≤ · · · ≤ |λm| ≤↑ ∞

PDE well-posed if all λm < 0, ill-posed if all λm > 0.

For any q > 0, operator (L2)q/2 has eigenvalues |λm|q.

For small ω > 0, q ≥ 2, define smoothing operator

S = exp{−ω∆t(L2)q/2}. Define βq = ω1/(1−q).

Operator S can be synthesized in terms of eigenpairs
{λm, φm} of L, assumed known or precomputed.

Consider compensated pure explicit scheme

wn+1 = Swn + ∆tSLwn, n ≥ 0, w0 = f .



S = exp{−ω∆t(L2)q/2}, βq = ω1/(1−q),

wn+1 = Swn + ∆tSLwn, n ≥ 0, w0 = f .

Theorem 1: Compensated pure explicit scheme
always stable and ‖ wn+1 ‖2≤ (1 + βq∆t) ‖ wn ‖2, if
n ≥ 0. Hence, if tn = n∆t, ‖ w(tn) ‖2≤ exp(βqtn) ‖ f ‖2.

Leapfrog scheme wn+1 = wn−1 + 2∆tLwn, n ≥ 1.
Put vn = wn−1, and consider equivalent system
vn+1 = wn, wn+1 = vn + 2∆tLwn, n ≥ 1.

Define Un = [vn, wn], ‖ Un ‖2
2≡‖ vn ‖2

2 + ‖ wn ‖2
2

With ω, q, βq, S, as above, compensated leapfrog,
vn+1 = Swn, wn+1 = Svn + 2∆tSLwn, n ≥ 1.

Theorem 2: Compensated leapfrog scheme always

stable, and ‖ Un+1 ‖2≤ (1 + 2βq∆t) ‖ Un ‖2, if n ≥ 1.
Hence, if tn = n∆t, ‖ U(tn) ‖2≤ exp(2βqtn) ‖ U(t1) ‖2.



Remark. Theorems valid even if wt = Lw ill-posed !!!

Replace inconvenient smoothing operator S with

Laplacian-based S∆ = exp{−ǫ∆t(−∆)p}.

Known characteristic pairs of ∆ in several geometries.

Rectangular domain ⇒ fast FFT synthesis of S∆.

Major Assumption: ‖ S∆g ‖2≤‖ Sg ‖2 . More pre-
cisely, given ω > 0, and q > 2, ∃ ǫ > 0 and real
p ≥ q, ∋ ∀g ∈ L2 and sufficiently small ∆t > 0,

‖ exp{−ǫ∆t(−∆)p}g ‖2≤‖ exp{−ω∆t(L2)q/2}g ‖2 .

Above inequality not proved. Appears verified in many
interesting computational examples. Related to Gaus-

sian lower bounds for heat kernels. Deep theory.

Theorems 1 and 2 remain valid with S∆ replacing S.



Error bounds for well-posed wt = Lw, 0 ≤ t ≤ T .

Given exact initial data f . Schemes stable, but do
not converge as ∆t ↓ 0. Smoothing ⇒ residual error.

Let wex(t) be exact solution of wt = Lw, 0 ≤ t ≤ T .

Let e(tn) = wex(t) − w(tn) be the error at tn = n∆t.

Let B = sup0≤t≤T {‖ (−∆)pwex(t) ‖2} .

For compensated pure explicit well-posed case

‖ e(tn) ‖2≤ (Bǫ/ω)(eβqtn − 1)/(βq)q + O(∆t)

(Bǫ/ω)(eβqtn − 1)/(βq)q ≡ Stabilization Penalty.
Involves parameters ǫ, p, ω, q

For compensated leapfrog well-posed case

‖ e(tn) ‖2≤ (Bǫ/ω)(e2βqtn − 1)/2(βq)q + O(∆t2)

(larger stabilization penalty).



(Bǫ/ω)(eβqtn−1)/(βq)q ≡ Explicit stabilization penalty.

Example 1 If ω = 1.0E − 8, q = 2.75, T = 1.0E − 4,
then βq = 37276, (eβqT −1) = 41, (βq)q = 3.73E12, ⇒
Explicit stabilization penalty=(Bǫ/ω) × 1.1E − 11.

Error bounds for ill-posed wt = Lw, 0 ≤ t ≤ T .

Noisy initial data fδ, not exact f , with ‖ fδ − f ‖2≤ δ.

Let e(tn) = wex(tn)− wn, denote the error at tn = n∆t.

With B = supt{‖ (−∆)pwex(t) ‖2}, Pure Explicit error

‖ e(tn) ‖2≤ δeβqtn + (Bǫ/ω)(eβqtn − 1)/(βq)q + O(∆t)

With prescribed L2 bound ‖ wex(T) ‖2≤ M , choosing
βq = (1/T) log(M/δ), ⇒ quasi optimal error bound:

‖ e(tn) ‖2≤ M tn/Tδ(T−tn)/T+O(∆t) + stabilization penalty.

Quasi optimal error also in compensated leapfrog.



Linear autonomous selfadjoint analysis

Compensated pure explicit and leapfrog can perform
well on limited but significant class of problems with
small T , and small stabilization penalty.

Stablity in time-reversed problem ⇒ Quasi-optimal
results, within fundamental uncertainty M (T−t)/Tδt/T .

Stabilizing pair (ǫ, p) for S∆ located interactively.

Nonlinear problems

Explicit schemes extremely advantageous in multi-
dimensional nonlinear problems on fine meshes.

Laplacian smoother S∆ effective with nonlinear L ???
Small stabilization penalty in nonlinear case ???
Stability in nonlinear time-reversed problems ???



FORWARD LEAPFROG COMPUTATION

wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

   Sharp 1024x1024 USAF chart image          Nonlinear parabolic leapfrog blur                

   STABILIZED  LEAPFROG FORWARD TIME MARCHING IN LARGE ARRAY
                                                                    

Painless Leapfrog O(∆t2) computation. Crank-Nicholson
⇒ solve nonlinear system of order 106 at each n.



TIME-REVERSED LEAPFROG COMPUTATION

wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

       SHARP JOAN CRAWFORD IMAGE       LEAPFROG NONLINEAR DEBLUR 

                          NONLINEAR LEAPFROG EXPERIMENT DONE ON SEPT 3 2015
SUCCESSFUL STABILIZED LEAPFROG FORWARD AND BACKWARD TIME MARCHING

     LEAPFROG NONLINEAR BLUR

IN NONLINEAR PARABOLIC EQUATION WITH VARIABLE TIME DEPENDENT COEFFICIENTS

Moderate nonlinearity allows full leapfrog backward re-
covery, from t = T to t = 0.



ONLY PARTIAL LEAPFROG RECOVERY

wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

Nonlinear Parabolic Leapfrog Blur        30% Partial Leapfrog Deblur

Leapfrog nonlinear parabolic blurring of sharp 512x512
Joan Crawford image, with partial Leapfrog deblurring.

                          (Experiments performed on Sept 18  2015)

Stronger nonlinearity only allows partial leapfrog back-
ward recovery, from t = T to t = 0.7T .



LEAPFROG RECOVERY MAY FAIL AS t ↓ 0.

wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

INPUT BLURRED IMAGE   t=T           PARTIAL DEBLURRING  t= 0.7 T       PARTIAL DEBLURRING  t= 0.6 T

PARTIAL DEBLURRING  t= 0.5 T      PARTIAL DEBLURRING  t= 0.4 T      PARTIAL DEBLURRING  t=0.2 T

      STABILIZED LEAPFROG SCHEME MARCHED BACKWARD IN TIME
Nonlinear parabolic blurring and deblurring of 512x512 image



Larger nonlinear uncertainty= M1−µ(t)δµ(t), where
µ(t) ↓ 0 exponentially as t decreases from t = T .

MAY NOT PERMIT FULL RECONSTRUCTION.

Autonomous, linear
self adjoint problem

Nonlinear problem

Behavior of Holder exponent in backward problems



PURE EXPLICIT SCHEME SURPRISE!
RECOVERS FROM BLURRED LEAPFROG DATA

wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

       SHARP GENE TIERNEY IMAGE               AFTER LEAPFROG NONLINEAR BLUR     AFTER EXPLICIT NONLINEAR DEBLUR 

                         HEAVIER NONLINEAR LEAPFROG/EXPLICIT EXPERIMENT DONE ON SEPT  1  2015
  LEAPFROG FORWARD TIME MARCHING FOLLOWED  BY  PURE EXPLICIT BACKWARD TIME

MARCHING  IN HEAVIER NONLINEAR PARABOLIC EQUATION



REMARKABLE DATA SURFACE RECOVERY

wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

SHARP GENE TIERNEY DATA SURFACE       AFTER LEAPFROG NONLINEAR BLUR     AFTER EXPLICIT NONLINEAR DEBLUR 

         HEAVIER NONLINEAR LEAPFROG/EXPLICIT EXPERIMENT DONE ON SEPT 1 2015
  LEAPFROG FORWARD TIME MARCHING FOLLOWED  BY  PURE EXPLICIT BACKWARD TIME

MARCHING  IN HEAVIER NONLINEAR PARABOLIC EQUATION



EXPLICIT RECOVERY FROM LEAPFROG.
wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

   HEAVY NONLINEAR PDE BLURRING 
USING STABILIZED LEAPFROG SCHEME

  NONLINEAR PARTIAL DEBLURRING 
USING STABILIZED EXPLICIT SCHEME



EXPLICIT RECOVERY FROM LEAPFROG.
wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

     Nonlinear parabolic leapfrog blur                 Pure explicit parabolic deblur

   STABILIZED  EXPLICIT FORWARD AND BACKWARD TIME MARCHING
                                                                    Experiment done on July 14 2015



EXPLICIT RECOVERY FROM LEAPFROG.
wt = exp(σw)∇.{q(x, y, t)∇w} + c(w)wx + d(w)wy

   HEAVY NONLINEAR PDE BLURRING 
USING STABILIZED LEAPFROG SCHEME

  NONLINEAR PARTIAL DEBLURRING 
USING STABILIZED EXPLICIT SCHEME



UNEXPECTED PURE EXPLICIT ADVANTAGE

Autonomous, linear
self adjoint problem

Behavior of Holder exponent in backward problems

Pure Explicit
Nonlinear

Leapfrog Nonlinear



NON RECTANGULAR REGIONS Ω

Embed region Ω in larger square Γ.
At each n∆t, apply difference scheme inside Ω.
Extend computed solution by zero in Γ − Ω.
Apply FFT-Laplacian smoothing operator S∆ on Γ.
Return to Ω for next time step (n + 1)∆t.

   

STABILIZED  LEAPFROG FORWARD TIME MARCHING IN 1/4CIRCLE REGION
                                                                       Quarter circle radius of 875 pixel embedded in 1024x1024 pixel array

At each n, PDE applied inside 1/4circle, extended by zero to whole square, then FFT Laplacian smoothed



NON RECTANGULAR REGIONS Ω
Same strategy to march backward on Ω.

   

STABILIZED PURE EXPLICIT BACKWARD MARCHING IN 1/4CIRCLE REGION
                                                                    1/4Circle region with radius 875 pixel is embedded in 1024x1024 pixel array

At each n, PDE applied inside 1/4circle, extended by zero to whole square, then FFT Laplacian smoothed



BACKWARD VISCOUS WAVE PROPAGATION

Constants a, b > 0, L positive selfadjoint elliptic,
wtt + aLwt + bLw = 0 t > 0; w(0) = f, wt(0) = g.

    IRREVERSIBLE  VISCOELASTIC  WAVE  PROPAGATION  RUN
  BACKWARD  IN  TIME, USING   STABILIZED  EXPLICIT  SCHEME.

ORIGINAL DISPLACEMENT       AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

ORIGINAL VELOCITY              AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR


