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Who is Talking?
• Current Positions

I 03.2014 - now: Key Researcher, SBA Research, Austria
I 03.2014 - now: Combinatorics, Codes and Information Security (CCIS) Group Leader,

SBA Research, Austria
◦ Design Combinatorics and Codes
◦ Error Correcting Codes for Post-quantum Cryptography
◦ Combinatorial Testing for Information Security

I 03.2014 - now: Adjunct Lecturer, Vienna University of Technology
• Past Positions

I 03.2013 – 02.2015: Marie Curie Fellow, SBA Research, Austria
I 03.2012 – 02.2013: Marie Curie Fellow, INRIA Paris-Rocquencourt, SECRET Team,

France
• Ph.D. Thesis

I 11.2011: Discrete Mathematics & Combinatorics, NTUA, Greece
• Honors and Awards

I 03.2012: Fellow of the Institute of Combinatorics and its Applications (FTICA), ICA,
Canada

I 12.2011: ERCIM “Alain Bensoussan” Fellowship, ERCIM/EU co-fund
• Publication Record

I Around 60 papers in Discrete Mathematics and their applications in Computer Science
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SBA Research at a Glance
Mission
• Advance the field of Information Security through basic & applied
research

• The largest non-profit research center in Austria that exclusively
addresses Information Security (≈ 80 researchers & security experts)

Figure: Research Programme for 2017-2025
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Combinatorial Testing

Motivation: Why Combinatorial Testing for Information Security?
• We cannot test everything
• Combinatorial explosion: Exhaustive search of input space increases
time needed exponentially

• Domain-specific: Modeling of security vulnerabilities

Combinatorial Testing (CT)
• Provide 100% coverage of t-way combinations of input parameters;
higher interaction strength t reveals more faults (conjecture)

• Ensure automation during test generation
• Fault localization, coverage measurement
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Empirical Evidence: Fault Coverage vs. Interactions

• Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical Combinatorial Testing: Beyond
Pairwise. IT Professional 10, 3 (May 2008), 19-23.
http://dx.doi.org/10.1109/MITP.2008.54

• 1 interaction: enter value age > 100 and device crashes
• 2 interactions: age > 100 and zip-code = 5001, DB push fails
• 3 interactions: a = 2 and b = FALSE and update = Tuesday, system
enters infinite loop 7/46

http://dx.doi.org/10.1109/MITP.2008.54


Technical Challenges
Technical Challenges
• Generation of optimal covering arrays is NP-hard

I These arrays form test suites
• Modeling parameters, values, constraints (domain specific)

I Generate test inputs or system configurations

Figure: A covering array (CA) with 10 boolean parameters and 13 tests. Every
3-way combination is covered at least once 8/46



Recent Results

Focus
• Modelling of Covering Arrays (CAs)
• Optimization algorithms for combinatorial testing
• Relation of CAs with error-correcting codes

Milestones (ACA2015, RTA2015)
• Modelling vertical extension of In-Parameter-Order (IPO) strategy (Lei
et al.) in terms of computational algebra algorithms

• Construction of symbolic test suites
I Expressing the constraints as systems of multivariate polynomial

systems
I Rewriting techniques (equational unification) via Groebner bases
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Components of a Testing Framework

Test suite
generator

Test case
execution

Test suite

Policy

SUT

Check
output

PASS FAIL

Model

This Talk
• Automated generation of test cases for security testing
• Evaluation of the applicability of combinatorial testing 10/46



Web Security Testing

Focus
• Modelling of attack vectors and exploitation of XSS vulnerabilities
• SUTs: Everything running in your browser!

Challenges
• Reduce the JavaScript language complexity to (XSS) injection attacks

I Semantically infeasible to determine
I XSS one of top vulnerabilities in OWASP Top 10

• Ensure automation, generate quality vectors and saving of resources
I Most testing tools (BURP, ZAP) require interaction from the

tester; reduction of test suites w.r.t. bypassing defense mechanisms;
• Real-world testing far away from academic approaches

I Translation between combinatorics, software testing and
penetration testing;
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Generation of XSS Attack Vectors
Cross-Site-Scripting (XSS)
• Inject client-side script(s) into web-pages viewed by other users
• Malicious (JavaScript) code gets executed in the victim’s browser

Valid URLs vs Attack Vectors
• normal case: http://www.foo.com/error.php?msg=hello

• attacker injects client-side script in parameter msg:
http://www.foo.com/error.php?msg=<script>alert(1)</script>

Input Parameter Modelling for XSS Attack Vectors
AV := (parameter1, parameter2, . . . , parameterk) 12/46

http://www.foo.com/error.php?msg=hello
http://www.foo.com/error.php?msg=


A BNF Grammar for XSS Attack Vectors
A Fragment of The Grammar G
JSO(15)::= <script> | <img | ...
WS1(3)::= tab | space | ...
INT(14)::= "’; | ">> | ...
WS2(3)::= tab | space | ...
EVH(3)::= onLoad( | onError( | ...
WS3(3)::= tab | space | ...
PAY(23)::= alert(’XSS’) | ONLOAD=alert(’XSS’) | ...
WS4(3)::= tab | space | ...
PAS(11)::= ’) | ’> | ...
WS5(3)::= tab | space | ...
JSE(9)::= </script> | > | ...

Table: Different sizes of test suites for MCA(t, 11, (3, 3, 3, 3, 3, 3, 9, 11, 14, 15, 23))

Str. G G_c
IPOG IPOG-F IPOG IPOG-F

2 345 345 250 252
3 4875 4830 1794 2012
4 53706 53130 8761 9760
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A Sample of XSS Attack Vectors

Figure: Figure in ACTS generation tool (Courtesy of NIST)
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Evaluation Results

Figure: Exploitation Rate (#pos
#tot ) Comparison: IPOG vs IPOG-F for G_c using BURP in DVWA

15/46



Comparison: CT vs fuzzers

Figure: Exploitation Rate (#pos
#tot ) Comparison: Attack Pattern-based CT vs fuzzers
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Measurement Analysis in CCM Tool

Figure: Comparison of combination coverage measurement for passing tests in DVWA (inp_id 1,
DL 0) when their respective test suites are generated in IPOG-F with interaction strength t = 2.
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Multiple XSS Vulnerabilities in Koha Library
Penetration Tests for Koha Library
• SUT: open source Integrated Library System (used by Museum of
Natural History in Vienna, UNESCO, Spanish Ministry of Culture)

• Results: unauthenticated SQL Injection, Local File Inclusions, XSS
• References: CVE-2015-4633, CVE-2015-4632, CVE-2015-4631

Figure: One of the vulnerabilities found by XSSInjector (Prototype tool for
automated mounting of XSS attacks) 18/46



W3C Vulnerability
Scan of the Whole W3C Website
• www: 122 URLs, Services: 1 URL, Validator: 56 URLs
• Acknowledgements: Ted Guild and Rigo Wenning (W3C Team)

Figure: Vulnerability found in tidy service using XSSInjector (Prototype
tool for automated mounting of XSS attacks)
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Milestones
Expertise at SBA Research
• Knowledge transfer of combinatorial designs =⇒ combinatorial testing
• Benefit from experts’ domain knowledge (penetration testers)

Milestones (AST/ICSE2014, JAMAICA/ISSTA2014, IWCT/ICST2015, QRS2015)
• Modelling: Combinatorial attack grammars via IPM

I Automated translation layers =⇒ largest repo of XSS attack
vectors (ahead of IBM AppScan, OWASP Xenotix)

• XSSInjector: Prototype tool for automated mounting of XSS attacks
• Experience Reports: Multi-dimensional (Comparison of SUTs, attack
grammars, algorithms, fuzzers, penetration testing tools)

I Exploits caused due to interaction of a few parameters
I Combinatorial coverage measurement (CCM) of passing tests

• Real-World Vulnerabilities: XSS in tidy service (HTML validation) of
W3C portal, multiple XSS in Koha Library 20/46



Kernel Testing
Focus
• Modelling of Linux system call API
• SUTs: Everything (system calls) the kernel needs to be operational!

Challenges
• The kernel of an operating system is the central authority to enforce and
control security

I Large user base (e.g. 1.5 million Android devices activated per day,
Google 2013); Critical bugs must be detected early enough!

• Ensure automation, reliability and quality assurance
I Manual testing approaches (Trinity fuzzer, Linux test project by

IBM, Cisco, Fujitsu, OpenSuse, Red Hat) only; reduction of test
suites w.r.t. revealing kernel bugs;

• Kernel testing far away from combinatorial modelling
I Translation between combinatorics, software testing and software

engineering; 21/46



ERIS: Combinatorial Kernel Testing
ERIS: Combinatorial Kernel Testing
• Focus: Reliability and quality assurance of kernel software
• Motivation: Kernel is the central authority to ensure security
• SUTs: System calls of every git-commit of any (variant of) Linux
• Evaluation: Various kernel crashes for RCs and distribution kernels
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Combinatorial API Testing
Testing APIs Function Calls
• Modeling: Combinatorial models:

I IPM via equivalence- and category partitioning
I IPM via novel flattening methodology

Abstr. Parameter Parameter values
ARG_CPU 1, 2, 3, 4, ..., 8
ARG_MODE_T 1, 2, 3, 4, ..., 4095, 4096
ARG_PID -3, -1, $pid_cron, $pid_w3m, 999999999
ARG_ADDRESS null, $kernel_address, $page_zeros, $page_0xff, $page_allocs, ...
ARG_FD fd1, fd2, fd3, . . . , fd15
ARG_PATHNAME pathname1, pathname2, pathname3, . . . , pathname15
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Automated Test Execution Framework
Some Features
• Ease of use: Only high-level parameters needed, everything else handled
by the system

• Test generation: Your favorite CT generation tool
• Test-runs: Each invocation runs in a dedicated virtual machine
• Logging: Extensive information is captured

I Adjustable to user demands / needs
• Database: Allows sophisticated post-processing queries
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Sample Query and Results
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Milestones
Expertise at SBA Research
• Knowledge transfer of combinatorial designs =⇒ combinatorial testing
• Benefit from senior developers and software engineering experts

Milestones (IWCT/ICST2014, RTA2015)
• Modelling: System call arguments via IPM and categories

I Automated t-way testing and translation layers
• ERIS: Highly configurable testing framework encompassing CT,
execution environment, logging and database infrastructure

• Experience Reports: Real-world testing
I Multiple kernel versions
I Reproducibility of interesting test vectors (compared to other

manual-testing approaches)
• Evaluation: Various kernel failures depending on crash oracles; two
system calls flagged for detailed analysis; 26/46



Achievements
Our Contributions
• Proven applicability of combinatorial testing to

I Web security testing
I Operating system kernels

• Automation during the testing process
I Greatly in demand in both academia and industry
I Two prototype (combinatorial) testing frameworks

• Extensive experience reports for academia and real-world scenarios
I Bridging the gap between discrete mathematics and information

security through combinatorial testing
I Security flaws are caused due to the interaction of a few parameters

of the SUT

Critical Reflection
Established combinatorial security testing as a viable alternative to traditional
testing methods (fuzzing, learning approaches, etc.) 27/46



Vision

Spoiler
• Efficient combinatorial security testing everywhere!

I Deploy to all layers of Information Security
◦ Application Security, Network Security, Systems Security

I Advancement of the theory of combinatorial testing is needed
• Standardize the research methodologies

Long-term Plan and Objectives
• Combinatorial security testing will go mainstream in 2016-2021
• Optimization and automation of security tests

I Interplay between basic and applied research
I New application domains
I Feedback cycle to secure software engineering
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Application Security

Next Steps in Web Security Testing
• Automated testing for real world applications

I Access to large-scale test servers and automated setup
environments is needed!

• Prioritization of XSS attack vectors; Guided combinatorial testing
• Wider study of how CT algorithms affect XSS (report)
• Release of XSSInjector to the research community

Future Directions
• Modelling SQL Injection attacks
• Directly applicable to database and application security
• Notorious Examples: Microsoft SQL Server Databases (2009), Yahoo!
stolen credentials ≈ 500k (2012), Russian hackers theft of 1.2 billion
credentials (2014)
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Operating Systems Security

ERIS∞ for Combinatorial Kernel Testing
• Extend to Android APIs/SELinux targeting mobile security features
• OS Kernels =⇒ Systems security

I Testing of security patches to ensure attack-free environments
I Industrial Automation Control Systems (IACS) testing
I Cyber-physical Systems (CPS) testing

ERIS∞ in a Nutshell
• Sequences of systems calls
• Continuous integration tests of kernel versions
• Web monitoring platform
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Network Security
Protocol Testing
• Motivation: Major security breaches recently; NIST is currently revising
the RFCs (standards)

• SUTs: TLS, SSL, SSH (cf. Internet Protocol Suite)
• Goal: Quality assurance of protocol implementations

Protocol Interaction Testing
• Aim: Assure proper error handling
• Test protocol implementations for erroneous configurations that lead to
security flaws; IPM for protocol parameters

Table: IPM for TLS Cipher Suite Registry

Value KEX/Auth Cipher Mode MAC Standard
0x00,0x03 RSA_EXPORT RC4_40 - MD5 RFC4346/RFC6347
0x00,0x23 KRB5 3DES EDE_CBC MD5 RFC2712
0x00,0x37 DH/RSA AES_256 CBC SHA RFC5246

... ... ... ... ... ... 31/46



Measurement Analysis for TLS Cipher Suites

Figure: CCM analysis for the 317 cipher suite specifications of TLS.

Evaluation (Work in Progress)
• Coverage of t-way combinations extremely low

I For t ∈ {2, 3, 4} =⇒ cov = 37.56%, 9.39%, 2.03%
• Question: Can this cause error handling problems? 32/46



Network Security
Certificate Testing
• Standards for public key infrastructure (PKI)
• Attack vectors have the purpose to forge certificates
• Oracle: Test whether the server/client accepts them as valid

Figure: A sample X.509 certificate chain. 33/46



Frankencerts: How to Generate Test Certificates?
Random Selection of CA Parts (Brubaker et al., IEEE S&P 2014)
• Create X.509 certificates using randomly picked syntactically valid parts

I How can we generate a large set of such syntactically valid pieces
without reading X.509 specifications?

I Scan the Internet for input certificates: 243,246 certs
I Break them into parts and recombine them randomly: ≈ 8 millions

• Likely to violate some semantic constraints, e.g. will generate “bad” test
certificates (as needed)
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Can We Do Better?
CT Approach for Certificate Test Generation (Work in Progress)
• Reverse engineered an input model; generated certificates (up to t = 5)
• Use differential testing to check for discrepancies

I Compared validation results of OpenSSL, GnuTLS, CYASSL,
PolarSSL so far

Method Number of tests Discrepancies
CT 2-way 23 3
CT 3-way 110 3
CT 4-way 470 5
CT 5-way 1670 6

Frankencerts 500,000 8 35/46



Network Security

Figure: Handshake Message Sequence Diagram

Research Problem for t-way Sequence Testing?
Model the event sequence of TLS Handshake (conformance testing)
• Every t-way permutation of events x1, . . . , xp is covered by at least one
test (events not necessarily adjacent)

• Example: six events a, b, c, d , e, f ; (a, d , c, f , b, e) covers the 3-way
sequence (d , b, e) =⇒(Client Hello, Server Hello, Finish) 36/46



Hardware Malware
Hardware Malware
• Scenario: Trojans reside inside cryptographic circuits that perform
encryption and decryption in FPGA technologies

I Examples: Block ciphers (AES), Stream Ciphers (Mosquito)
• Goal: Hardware Trojan horse (HTH) detection

Instances of Hardware Trojan Horses
• Combinational: Activate when a specific combination of key bits appear
• Sequential: Activate after a counter has elapsed (time-bombs)
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Hardware Malware

Figure: Design of a (Combinational) Hardware Trojan Horse

Hardware Trojan Horse Function
• The trigger part consists of 7 AND gates and monitors 8 key bits
• When at least one input is "0", the Trojan does nothing malicious
• When all inputs are "1", the Trojan payload part (just 1 XOR gate!) is
activated

• The payload part reverses the mode of operation (encryption or
decryption) =⇒ DoS attack until key is changed 38/46



Exciting (Triggering) Hardware Trojan Horses
Threat Model
• The attacker can control the key or the plaintext input and can observe
the ciphertext output

• The attacker combines only a few signals for the activation

IPM for Ciphers
• Triggering Sequence: Trojan monitors k << 128 key bits of AES-128
• Attack vectors: Model triggering sequences of the Trojan (black-box
testing); 128 binary parameters for AES-128

• Input space: 2128 = 3.4× 1038 for 128 bits key

Test Execution
• Hardware implementation: Verilog-HDL model with the Sakura-G
FPGA board

• Oracle: Compare the output with a Trojan-free design of AES-128 (e.g.
software implementation) 39/46



Hardware Malware Detection
Table: Comparison of test suite sizes using the constant weight vectors (CWV) procedure and
the CA generation methods.

n t other CWV ours
128 2 27 129 11
128 3 - 256 37
128 4 213 8, 256 112
128 5 - 16, 256 252
128 6 - 349, 504 720
128 7 - 682, 752 2, 462
128 8 223 11, 009, 376 17, 544

Table: Test suite strength (t) vs. Trojan length (k)

Suite Number of activations
t size k = 2 k = 4 k = 8
2 11 5 3 0
3 37 12 4 0
4 112 32 7 1
5 252 62 14 1
6 720 307 73 6
7 2462 615 153 10
8 17544 4246 1294 178 40/46



Finding a Key in the Haystack

Our Results (to appear in ISSRE2015)
• There are about 366 trillion possible combinations for the Trojan
activation;

• The whole space is covered with less than 18 thousands vectors
• .. and these vectors activate the Trojan hundreds of times.

What about Sequential Trojans?
• Recall that they activate after a counter has elapsed
• Good news: Model triggering sequences with orthogonal arrays (every

t-way combination covered exactly λ times)
• Bad news: Orthogonal arrays do not exist for all numbers of possible
parameters (mainly in power of two)
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Analysis of Security Vulnerabilities

Analysis of Test Suites
• Countless Common Vulnerabilities and Exposures (CVEs)
• Dedicated CVE database for security community

Can we Do Better?
• No notion of combinatorial coverage measurement has been applied
• Number of parameters of the SUT and exact parameter value
configurations that trigger security vulnerabilities is (mostly)
undetermined so far (e.g. Heartbleed bug, Hardware Trojans)

Measuring t-wise Coverage for Combinatorial Security Testing
• Requirements: CCM, classifiers, feature model extraction
• Analogue to NIST study for NASA spacecrafts, medical devices
• Goal: Automation, reduction, fault-localization as proactive defenses
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(Generic) Research Problems

Related to Security Protocols
• Recently Post-quantum variants of security protocols have emerged (e.g.
Lattice-based crypto for TLS)

• Testing of their implementations (weakest link)?
• Fault location analysis (FLA)

Related to Hardware Malware Detection
• Generate (optimal) test suites for sequential Trojans
• Identification of key bit locations (FLA)

Other Application Domains for Combinatorial Security Testing
Internet of Things (IoT)? Your ideas?

43/46



Summary

Highlights
1. Proven applicability of combinatorial testing to:

I security testing of web applications
I quality assurance of kernel software

2. Extend it to new promising application domains for
I assuring proper error handing of security protocols
I ensuring Hardware malware detection

3. Vision for combinatorial security testing

Future Work
Solve (some) of the open research problems!
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Questions - Comments

Thank you for your Attention!

dsimos@sba-research.org
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