
Combinatorial Security Testing:
Combinatorial Testing Meets Information Security

Dimitris E. Simos

SBA Research

Applied & Computational Mathematics Division Seminar Series
National Institute of Standards and Technology (NIST)

Gaithersburg, MD, USA
September 22, 2015

Who is Talking?
• Current Positions

I 03.2014 - now: Key Researcher, SBA Research, Austria
I 03.2014 - now: Combinatorics, Codes and Information Security (CCIS) Group Leader,

SBA Research, Austria
◦ Design Combinatorics and Codes
◦ Error Correcting Codes for Post-quantum Cryptography
◦ Combinatorial Testing for Information Security

I 03.2014 - now: Adjunct Lecturer, Vienna University of Technology
• Past Positions

I 03.2013 – 02.2015: Marie Curie Fellow, SBA Research, Austria
I 03.2012 – 02.2013: Marie Curie Fellow, INRIA Paris-Rocquencourt, SECRET Team,

France
• Ph.D. Thesis

I 11.2011: Discrete Mathematics & Combinatorics, NTUA, Greece
• Honors and Awards

I 03.2012: Fellow of the Institute of Combinatorics and its Applications (FTICA), ICA,
Canada

I 12.2011: ERCIM “Alain Bensoussan” Fellowship, ERCIM/EU co-fund
• Publication Record

I Around 60 papers in Discrete Mathematics and their applications in Computer Science

2/46

Acknowledgements for this Talk

• CCIS Group @ SBA Research: Bernhard Garn, Kristoffer Kleine,
Ludwig Kampel, Peter Aufner

• CCIS Alumni: Manuel Leitner, Raschin Tavakoli, Ioannis Kapsalis
• Collaborators @ SBA Research: Artemios Voyiatzis, Martin Graf,
Severin Winkler, Andreas Bernauer

• External Collaborators: Raghu Kacker, Rick Kuhn, Jeff Lei, Franz
Wotawa, Josip Bozic, Paris Kitsos, Jose Torres-Jimenez

3/46

SBA Research at a Glance
Mission
• Advance the field of Information Security through basic & applied
research

• The largest non-profit research center in Austria that exclusively
addresses Information Security (≈ 80 researchers & security experts)

Figure: Research Programme for 2017-2025
4/46

Outline of the Talk
Introduction

Combinatorial Testing
Recent Results

Web Security Testing
Challenges
Milestones

Kernel Testing
Challenges
Milestones

Combinatorial Security Testing
Achievements
Vision
Network Security
Hardware Malware

Research Problems

5/46

Outline of the Talk
Introduction

Combinatorial Testing
Recent Results

Web Security Testing
Challenges
Milestones

Kernel Testing
Challenges
Milestones

Combinatorial Security Testing
Achievements
Vision
Network Security
Hardware Malware

Research Problems

5/46

Outline of the Talk
Introduction

Combinatorial Testing
Recent Results

Web Security Testing
Challenges
Milestones

Kernel Testing
Challenges
Milestones

Combinatorial Security Testing
Achievements
Vision
Network Security
Hardware Malware

Research Problems

5/46

Outline of the Talk
Introduction

Combinatorial Testing
Recent Results

Web Security Testing
Challenges
Milestones

Kernel Testing
Challenges
Milestones

Combinatorial Security Testing
Achievements
Vision
Network Security
Hardware Malware

Research Problems

5/46

Outline of the Talk
Introduction

Combinatorial Testing
Recent Results

Web Security Testing
Challenges
Milestones

Kernel Testing
Challenges
Milestones

Combinatorial Security Testing
Achievements
Vision
Network Security
Hardware Malware

Research Problems
5/46

Combinatorial Testing

Motivation: Why Combinatorial Testing for Information Security?
• We cannot test everything
• Combinatorial explosion: Exhaustive search of input space increases
time needed exponentially

• Domain-specific: Modeling of security vulnerabilities

Combinatorial Testing (CT)
• Provide 100% coverage of t-way combinations of input parameters;
higher interaction strength t reveals more faults (conjecture)

• Ensure automation during test generation
• Fault localization, coverage measurement

6/46

Empirical Evidence: Fault Coverage vs. Interactions

• Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical Combinatorial Testing: Beyond
Pairwise. IT Professional 10, 3 (May 2008), 19-23.
http://dx.doi.org/10.1109/MITP.2008.54

• 1 interaction: enter value age > 100 and device crashes
• 2 interactions: age > 100 and zip-code = 5001, DB push fails
• 3 interactions: a = 2 and b = FALSE and update = Tuesday, system
enters infinite loop 7/46

http://dx.doi.org/10.1109/MITP.2008.54

Technical Challenges
Technical Challenges
• Generation of optimal covering arrays is NP-hard

I These arrays form test suites
• Modeling parameters, values, constraints (domain specific)

I Generate test inputs or system configurations

Figure: A covering array (CA) with 10 boolean parameters and 13 tests. Every
3-way combination is covered at least once 8/46

Recent Results

Focus
• Modelling of Covering Arrays (CAs)
• Optimization algorithms for combinatorial testing
• Relation of CAs with error-correcting codes

Milestones (ACA2015, RTA2015)
• Modelling vertical extension of In-Parameter-Order (IPO) strategy (Lei
et al.) in terms of computational algebra algorithms

• Construction of symbolic test suites
I Expressing the constraints as systems of multivariate polynomial

systems
I Rewriting techniques (equational unification) via Groebner bases

9/46

Components of a Testing Framework

Test suite
generator

Test case
execution

Test suite

Policy

SUT

Check
output

PASS FAIL

Model

This Talk
• Automated generation of test cases for security testing
• Evaluation of the applicability of combinatorial testing 10/46

Web Security Testing

Focus
• Modelling of attack vectors and exploitation of XSS vulnerabilities
• SUTs: Everything running in your browser!

Challenges
• Reduce the JavaScript language complexity to (XSS) injection attacks

I Semantically infeasible to determine
I XSS one of top vulnerabilities in OWASP Top 10

• Ensure automation, generate quality vectors and saving of resources
I Most testing tools (BURP, ZAP) require interaction from the

tester; reduction of test suites w.r.t. bypassing defense mechanisms;
• Real-world testing far away from academic approaches

I Translation between combinatorics, software testing and
penetration testing;

11/46

Generation of XSS Attack Vectors
Cross-Site-Scripting (XSS)
• Inject client-side script(s) into web-pages viewed by other users
• Malicious (JavaScript) code gets executed in the victim’s browser

Valid URLs vs Attack Vectors
• normal case: http://www.foo.com/error.php?msg=hello

• attacker injects client-side script in parameter msg:
http://www.foo.com/error.php?msg=<script>alert(1)</script>

Input Parameter Modelling for XSS Attack Vectors
AV := (parameter1, parameter2, . . . , parameterk) 12/46

http://www.foo.com/error.php?msg=hello
http://www.foo.com/error.php?msg=

A BNF Grammar for XSS Attack Vectors
A Fragment of The Grammar G
JSO(15)::= <script> | <img | ...
WS1(3)::= tab | space | ...
INT(14)::= "’; | ">> | ...
WS2(3)::= tab | space | ...
EVH(3)::= onLoad(| onError(| ...
WS3(3)::= tab | space | ...
PAY(23)::= alert(’XSS’) | ONLOAD=alert(’XSS’) | ...
WS4(3)::= tab | space | ...
PAS(11)::= ’) | ’> | ...
WS5(3)::= tab | space | ...
JSE(9)::= </script> | > | ...

Table: Different sizes of test suites for MCA(t, 11, (3, 3, 3, 3, 3, 3, 9, 11, 14, 15, 23))

Str. G G_c
IPOG IPOG-F IPOG IPOG-F

2 345 345 250 252
3 4875 4830 1794 2012
4 53706 53130 8761 9760

13/46

A Sample of XSS Attack Vectors

Figure: Figure in ACTS generation tool (Courtesy of NIST)

14/46

Evaluation Results

Figure: Exploitation Rate (#pos
#tot) Comparison: IPOG vs IPOG-F for G_c using BURP in DVWA

15/46

Comparison: CT vs fuzzers

Figure: Exploitation Rate (#pos
#tot) Comparison: Attack Pattern-based CT vs fuzzers

16/46

Measurement Analysis in CCM Tool

Figure: Comparison of combination coverage measurement for passing tests in DVWA (inp_id 1,
DL 0) when their respective test suites are generated in IPOG-F with interaction strength t = 2.

17/46

Multiple XSS Vulnerabilities in Koha Library
Penetration Tests for Koha Library
• SUT: open source Integrated Library System (used by Museum of
Natural History in Vienna, UNESCO, Spanish Ministry of Culture)

• Results: unauthenticated SQL Injection, Local File Inclusions, XSS
• References: CVE-2015-4633, CVE-2015-4632, CVE-2015-4631

Figure: One of the vulnerabilities found by XSSInjector (Prototype tool for
automated mounting of XSS attacks) 18/46

W3C Vulnerability
Scan of the Whole W3C Website
• www: 122 URLs, Services: 1 URL, Validator: 56 URLs
• Acknowledgements: Ted Guild and Rigo Wenning (W3C Team)

Figure: Vulnerability found in tidy service using XSSInjector (Prototype
tool for automated mounting of XSS attacks)

19/46

Milestones
Expertise at SBA Research
• Knowledge transfer of combinatorial designs =⇒ combinatorial testing
• Benefit from experts’ domain knowledge (penetration testers)

Milestones (AST/ICSE2014, JAMAICA/ISSTA2014, IWCT/ICST2015, QRS2015)
• Modelling: Combinatorial attack grammars via IPM

I Automated translation layers =⇒ largest repo of XSS attack
vectors (ahead of IBM AppScan, OWASP Xenotix)

• XSSInjector: Prototype tool for automated mounting of XSS attacks
• Experience Reports: Multi-dimensional (Comparison of SUTs, attack
grammars, algorithms, fuzzers, penetration testing tools)

I Exploits caused due to interaction of a few parameters
I Combinatorial coverage measurement (CCM) of passing tests

• Real-World Vulnerabilities: XSS in tidy service (HTML validation) of
W3C portal, multiple XSS in Koha Library 20/46

Kernel Testing
Focus
• Modelling of Linux system call API
• SUTs: Everything (system calls) the kernel needs to be operational!

Challenges
• The kernel of an operating system is the central authority to enforce and
control security

I Large user base (e.g. 1.5 million Android devices activated per day,
Google 2013); Critical bugs must be detected early enough!

• Ensure automation, reliability and quality assurance
I Manual testing approaches (Trinity fuzzer, Linux test project by

IBM, Cisco, Fujitsu, OpenSuse, Red Hat) only; reduction of test
suites w.r.t. revealing kernel bugs;

• Kernel testing far away from combinatorial modelling
I Translation between combinatorics, software testing and software

engineering; 21/46

ERIS: Combinatorial Kernel Testing
ERIS: Combinatorial Kernel Testing
• Focus: Reliability and quality assurance of kernel software
• Motivation: Kernel is the central authority to ensure security
• SUTs: System calls of every git-commit of any (variant of) Linux
• Evaluation: Various kernel crashes for RCs and distribution kernels

22/46

Combinatorial API Testing
Testing APIs Function Calls
• Modeling: Combinatorial models:

I IPM via equivalence- and category partitioning
I IPM via novel flattening methodology

Abstr. Parameter Parameter values
ARG_CPU 1, 2, 3, 4, ..., 8
ARG_MODE_T 1, 2, 3, 4, ..., 4095, 4096
ARG_PID -3, -1, $pid_cron, $pid_w3m, 999999999
ARG_ADDRESS null, $kernel_address, $page_zeros, $page_0xff, $page_allocs, ...
ARG_FD fd1, fd2, fd3, . . . , fd15
ARG_PATHNAME pathname1, pathname2, pathname3, . . . , pathname15

23/46

Automated Test Execution Framework
Some Features
• Ease of use: Only high-level parameters needed, everything else handled
by the system

• Test generation: Your favorite CT generation tool
• Test-runs: Each invocation runs in a dedicated virtual machine
• Logging: Extensive information is captured

I Adjustable to user demands / needs
• Database: Allows sophisticated post-processing queries

24/46

Sample Query and Results

25/46

Milestones
Expertise at SBA Research
• Knowledge transfer of combinatorial designs =⇒ combinatorial testing
• Benefit from senior developers and software engineering experts

Milestones (IWCT/ICST2014, RTA2015)
• Modelling: System call arguments via IPM and categories

I Automated t-way testing and translation layers
• ERIS: Highly configurable testing framework encompassing CT,
execution environment, logging and database infrastructure

• Experience Reports: Real-world testing
I Multiple kernel versions
I Reproducibility of interesting test vectors (compared to other

manual-testing approaches)
• Evaluation: Various kernel failures depending on crash oracles; two
system calls flagged for detailed analysis; 26/46

Achievements
Our Contributions
• Proven applicability of combinatorial testing to

I Web security testing
I Operating system kernels

• Automation during the testing process
I Greatly in demand in both academia and industry
I Two prototype (combinatorial) testing frameworks

• Extensive experience reports for academia and real-world scenarios
I Bridging the gap between discrete mathematics and information

security through combinatorial testing
I Security flaws are caused due to the interaction of a few parameters

of the SUT

Critical Reflection
Established combinatorial security testing as a viable alternative to traditional
testing methods (fuzzing, learning approaches, etc.) 27/46

Vision

Spoiler
• Efficient combinatorial security testing everywhere!

I Deploy to all layers of Information Security
◦ Application Security, Network Security, Systems Security

I Advancement of the theory of combinatorial testing is needed
• Standardize the research methodologies

Long-term Plan and Objectives
• Combinatorial security testing will go mainstream in 2016-2021
• Optimization and automation of security tests

I Interplay between basic and applied research
I New application domains
I Feedback cycle to secure software engineering

28/46

Application Security

Next Steps in Web Security Testing
• Automated testing for real world applications

I Access to large-scale test servers and automated setup
environments is needed!

• Prioritization of XSS attack vectors; Guided combinatorial testing
• Wider study of how CT algorithms affect XSS (report)
• Release of XSSInjector to the research community

Future Directions
• Modelling SQL Injection attacks
• Directly applicable to database and application security
• Notorious Examples: Microsoft SQL Server Databases (2009), Yahoo!
stolen credentials ≈ 500k (2012), Russian hackers theft of 1.2 billion
credentials (2014)

29/46

Operating Systems Security

ERIS∞ for Combinatorial Kernel Testing
• Extend to Android APIs/SELinux targeting mobile security features
• OS Kernels =⇒ Systems security

I Testing of security patches to ensure attack-free environments
I Industrial Automation Control Systems (IACS) testing
I Cyber-physical Systems (CPS) testing

ERIS∞ in a Nutshell
• Sequences of systems calls
• Continuous integration tests of kernel versions
• Web monitoring platform

30/46

Network Security
Protocol Testing
• Motivation: Major security breaches recently; NIST is currently revising
the RFCs (standards)

• SUTs: TLS, SSL, SSH (cf. Internet Protocol Suite)
• Goal: Quality assurance of protocol implementations

Protocol Interaction Testing
• Aim: Assure proper error handling
• Test protocol implementations for erroneous configurations that lead to
security flaws; IPM for protocol parameters

Table: IPM for TLS Cipher Suite Registry

Value KEX/Auth Cipher Mode MAC Standard
0x00,0x03 RSA_EXPORT RC4_40 - MD5 RFC4346/RFC6347
0x00,0x23 KRB5 3DES EDE_CBC MD5 RFC2712
0x00,0x37 DH/RSA AES_256 CBC SHA RFC5246

... 31/46

Measurement Analysis for TLS Cipher Suites

Figure: CCM analysis for the 317 cipher suite specifications of TLS.

Evaluation (Work in Progress)
• Coverage of t-way combinations extremely low

I For t ∈ {2, 3, 4} =⇒ cov = 37.56%, 9.39%, 2.03%
• Question: Can this cause error handling problems? 32/46

Network Security
Certificate Testing
• Standards for public key infrastructure (PKI)
• Attack vectors have the purpose to forge certificates
• Oracle: Test whether the server/client accepts them as valid

Figure: A sample X.509 certificate chain. 33/46

Frankencerts: How to Generate Test Certificates?
Random Selection of CA Parts (Brubaker et al., IEEE S&P 2014)
• Create X.509 certificates using randomly picked syntactically valid parts

I How can we generate a large set of such syntactically valid pieces
without reading X.509 specifications?

I Scan the Internet for input certificates: 243,246 certs
I Break them into parts and recombine them randomly: ≈ 8 millions

• Likely to violate some semantic constraints, e.g. will generate “bad” test
certificates (as needed)

34/46

Can We Do Better?
CT Approach for Certificate Test Generation (Work in Progress)
• Reverse engineered an input model; generated certificates (up to t = 5)
• Use differential testing to check for discrepancies

I Compared validation results of OpenSSL, GnuTLS, CYASSL,
PolarSSL so far

Method Number of tests Discrepancies
CT 2-way 23 3
CT 3-way 110 3
CT 4-way 470 5
CT 5-way 1670 6

Frankencerts 500,000 8 35/46

Network Security

Figure: Handshake Message Sequence Diagram

Research Problem for t-way Sequence Testing?
Model the event sequence of TLS Handshake (conformance testing)
• Every t-way permutation of events x1, . . . , xp is covered by at least one
test (events not necessarily adjacent)

• Example: six events a, b, c, d , e, f ; (a, d , c, f , b, e) covers the 3-way
sequence (d , b, e) =⇒(Client Hello, Server Hello, Finish) 36/46

Hardware Malware
Hardware Malware
• Scenario: Trojans reside inside cryptographic circuits that perform
encryption and decryption in FPGA technologies

I Examples: Block ciphers (AES), Stream Ciphers (Mosquito)
• Goal: Hardware Trojan horse (HTH) detection

Instances of Hardware Trojan Horses
• Combinational: Activate when a specific combination of key bits appear
• Sequential: Activate after a counter has elapsed (time-bombs)

37/46

Hardware Malware

Figure: Design of a (Combinational) Hardware Trojan Horse

Hardware Trojan Horse Function
• The trigger part consists of 7 AND gates and monitors 8 key bits
• When at least one input is "0", the Trojan does nothing malicious
• When all inputs are "1", the Trojan payload part (just 1 XOR gate!) is
activated

• The payload part reverses the mode of operation (encryption or
decryption) =⇒ DoS attack until key is changed 38/46

Exciting (Triggering) Hardware Trojan Horses
Threat Model
• The attacker can control the key or the plaintext input and can observe
the ciphertext output

• The attacker combines only a few signals for the activation

IPM for Ciphers
• Triggering Sequence: Trojan monitors k << 128 key bits of AES-128
• Attack vectors: Model triggering sequences of the Trojan (black-box
testing); 128 binary parameters for AES-128

• Input space: 2128 = 3.4× 1038 for 128 bits key

Test Execution
• Hardware implementation: Verilog-HDL model with the Sakura-G
FPGA board

• Oracle: Compare the output with a Trojan-free design of AES-128 (e.g.
software implementation) 39/46

Hardware Malware Detection
Table: Comparison of test suite sizes using the constant weight vectors (CWV) procedure and
the CA generation methods.

n t other CWV ours
128 2 27 129 11
128 3 - 256 37
128 4 213 8, 256 112
128 5 - 16, 256 252
128 6 - 349, 504 720
128 7 - 682, 752 2, 462
128 8 223 11, 009, 376 17, 544

Table: Test suite strength (t) vs. Trojan length (k)

Suite Number of activations
t size k = 2 k = 4 k = 8
2 11 5 3 0
3 37 12 4 0
4 112 32 7 1
5 252 62 14 1
6 720 307 73 6
7 2462 615 153 10
8 17544 4246 1294 178 40/46

Finding a Key in the Haystack

Our Results (to appear in ISSRE2015)
• There are about 366 trillion possible combinations for the Trojan
activation;

• The whole space is covered with less than 18 thousands vectors
• .. and these vectors activate the Trojan hundreds of times.

What about Sequential Trojans?
• Recall that they activate after a counter has elapsed
• Good news: Model triggering sequences with orthogonal arrays (every

t-way combination covered exactly λ times)
• Bad news: Orthogonal arrays do not exist for all numbers of possible
parameters (mainly in power of two)

41/46

Analysis of Security Vulnerabilities

Analysis of Test Suites
• Countless Common Vulnerabilities and Exposures (CVEs)
• Dedicated CVE database for security community

Can we Do Better?
• No notion of combinatorial coverage measurement has been applied
• Number of parameters of the SUT and exact parameter value
configurations that trigger security vulnerabilities is (mostly)
undetermined so far (e.g. Heartbleed bug, Hardware Trojans)

Measuring t-wise Coverage for Combinatorial Security Testing
• Requirements: CCM, classifiers, feature model extraction
• Analogue to NIST study for NASA spacecrafts, medical devices
• Goal: Automation, reduction, fault-localization as proactive defenses

42/46

(Generic) Research Problems

Related to Security Protocols
• Recently Post-quantum variants of security protocols have emerged (e.g.
Lattice-based crypto for TLS)

• Testing of their implementations (weakest link)?
• Fault location analysis (FLA)

Related to Hardware Malware Detection
• Generate (optimal) test suites for sequential Trojans
• Identification of key bit locations (FLA)

Other Application Domains for Combinatorial Security Testing
Internet of Things (IoT)? Your ideas?

43/46

Summary

Highlights
1. Proven applicability of combinatorial testing to:

I security testing of web applications
I quality assurance of kernel software

2. Extend it to new promising application domains for
I assuring proper error handing of security protocols
I ensuring Hardware malware detection

3. Vision for combinatorial security testing

Future Work
Solve (some) of the open research problems!

44/46

References

L. Yu, Y. Lei, R. Kacker, and D. Kuhn, “ACTS: A combinatorial test generation tool,” in Software Testing, Verification and
Validation (ICST), 2013 IEEE Sixth International Conference on, 2013, pp. 370–375.

P. Kitsos, D. E. Simos, J. Torres-Jimenez and A. G. Voyiatzis, “Exciting FPGA Cryptographic Trojans using Combinatorial
Testing”, to appear in the 26th IEEE International Symposium on Software Reliability Engineering (ISSRE 2015).

J. Bozic, B. Garn, I. Kapsalis, D. E. Simos, S. Winkler, and F. Wotawa, “Attack pattern-based combinatorial testing with
constraints for web security testing,” 2015, The 2015 IEEE International Conference on Software Quality, Reliability and
Security (QRS).

C. Brubaker, S. Jana, B. Ray, S. Khurshid und V. Shmatikov, “Using Frankencerts for Automated Adversarial Testing of
Certificate Validation in SSL/TLS Implementations,” IEEE Symposium on Security and Privacy, pp. 114-129, 2014.

B. Garn, I. Kapsalis, D. E. Simos, and S. Winkler, “On the applicability of combinatorial testing to web application security
testing: A case study,” in Proceedings of the 2nd International Workshop on Joining AcadeMiA and Industry Contributions to
Testing Automation (JAMAICA’14). ACM, 2014.

J. Bozic, B. Garn, D. E. Simos, and F. Wotawa, “Evaluation of the IPO-Family algorithms for test case generation in web
security testing," in Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on, vopp.1-10, 2015

B. Garn and D. E. Simos, “Eris: A Tool for Combinatorial Testing of the Linux System Call Interface," In Proceedings of the
2014 IEEE International Conference on Software Testing, Verification, and Validation Workshops (ICSTW ’14). IEEE Computer
Society, Washington, DC, USA, 58-67.

45/46

Questions - Comments

Thank you for your Attention!

dsimos@sba-research.org

46/46

	Introduction
	Combinatorial Testing
	Recent Results

	Web Security Testing
	Challenges
	Milestones

	Kernel Testing
	Challenges
	Milestones

	Combinatorial Security Testing
	Achievements
	Vision
	Network Security
	Hardware Malware

	Research Problems

