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The Nullstellensatz Linear Algebra (NulLA) Algorithm

Let x = {x1, ..., xn} and fi ∈ K[x1, . . . , xn] (K ususally C or F2)

INPUT:

A system of polynomial equations

f1(x) = 0, f2(x) = 0, . . . fs(x) = 0

OUTPUT:

1 yes, there is a solution.
2 no, there is no solution

, along with a Nullstellensatz certificate
of infeasibility

.
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Hilbert’s Nullstellensatz

Theorem (1893): Let K be an algebraically closed field and
f1, . . . , fs be polynomials in K[x1, . . . , xn]. Given a system of
equations such that f1 = f2 = · · · = fs = 0, then this system
has no solution if and only if there exist polynomials
β1, . . . , βs ∈ K[x1, . . . , xn] such that

1 =
s∑

i=1

βifi . 2

1 6= 0

x2
1 − 1 = 0 , x1 + x2 = 0 , x2 + x3 = 0 , x1 + x3 = 0

(−1)︸ ︷︷ ︸
β1

(x2
1 − 1)︸ ︷︷ ︸
f1

+

(
1

2
x1

)
︸ ︷︷ ︸

β2

(x1 + x2)︸ ︷︷ ︸
f2

+

(
− 1

2
x1

)
︸ ︷︷ ︸

β3

(x2 + x3)︸ ︷︷ ︸
f3

+

(
1

2
x1

)
︸ ︷︷ ︸

β4

(x1 + x3)︸ ︷︷ ︸
f4(

1

2
+

1

2
− 1

)
x2

1 + 1 +

(
1

2
− 1

2

)
x1x2 +

(
− 1

2
+

1

2

)
x1x3 = 1
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Hilbert’s Nullstellensatz

Theorem (1893): Let K be an algebraically closed field and
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This polynomial identity is a Nullstellensatz certificate.

Definition: Let d = max
{

deg(β1), deg(β2), . . . , deg(βs)
}

.
Then d is the degree of the Nullstellensatz certificate.
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Nullstellensatz Degree Upper Bounds

Recall n is the number of variables, and the number of monomials
of degree d in n variables is

(n+d−1
n−1

)
.

Theorem: (Kollár, 1988) The deg(βi ) is bounded by

deg(βi ) ≤
(

max
{

3,max{deg(fi )}
})n

.

(bound is tight for certain pathologically bad examples)

Theorem: (Lazard 1977, Brownawell 1987) The deg(βi ) is
bounded by

deg(βi ) ≤ n
(

max{deg(fi )} − 1
)
.

(bound applies to particular zero-dimensional ideals)

Question: What about lower bounds? How do we find them?
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NulLA running on a particular instance:

INPUT: A system of polynomial equations

x2
1 − 1 = 0, x1 + x3 = 0, x1 + x2 = 0, x2 + x3 = 0

1 Construct a hypothetical Nullstellensatz certificate of degree 1

1 = (c0x1 + c1x2 + c2x3 + c3)︸ ︷︷ ︸
β1

(x2
1 − 1) + (c4x1 + c5x2 + c6x3 + c7)︸ ︷︷ ︸

β2

(x1 + x2)

+ (c8x1 + c9x2 + c10x3 + c11)︸ ︷︷ ︸
β3

(x1 + x3) + (c12x1 + c13x2 + c14x3 + c15)︸ ︷︷ ︸
β4

(x2 + x3)

2 Expand the hypothetical Nullstellensatz certificate

c0x
3
1 + c1x

2
1 x2 + c2x

2
1 x3 + (c3 + c4 + c8)x2

1 + (c5 + c13)x2
2 + (c10 + c14)x2

3 +

(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3+

(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3

3 Extract a linear system of equations from expanded certificate

c0 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1
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NulLA running on a particular instance:
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3
1 + c1x

2
1 x2 + c2x
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1 + (c5 + c13)x2
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3 +
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NulLA running on a particular instance:

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

x3
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

x2
2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x2
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

x1x2 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0
x1x3 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
x2x3 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
x1 −1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
x2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
x3 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



NulLA running on a particular instance:

4 Solve the linear system, and assemble the certificate

1 = −(x2
1 − 1) +

1

2
x1(x1 + x2)− 1

2
x1(x2 + x3) +

1

2
x1(x1 + x3)

5 Otherwise, increment the degree and repeat.
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NulLA Summary

INPUT: A system of polynomial equations
1 Construct a hypothetical Nullstellensatz certificate of degree d
2 Expand the hypothetical Nullstellensatz certificate
3 Extract a linear system of equations from expanded certificate
4 Solve the linear system.

1 If there is a solution, assemble the certificate.
2 Otherwise, loop and repeat with a larger degree d until known

upper bounds are exceeded.

OUTPUT:
1 yes, there is a solution.
2 no, there is no solution, along with a certificate of infeasibility.
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Partition Problem: Definition and Example

Partition: Given set of integers W = {w1, . . . ,wn}, can W
be partitioned into two sets, S and W \ S such that∑

w∈S
w =

∑
w∈W \S

w .

Example: Let W = { 1, 3, 5, 7,︸ ︷︷ ︸
S

7, 9︸︷︷︸
W \S

}. Then

16 = 1 + 3 + 5 + 7︸ ︷︷ ︸
S

= 7 + 9︸ ︷︷ ︸
W \S

= 16

.
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Partition as a System of Polynomial Equations

Given a set of integers W = {w1, . . . ,wn}:
one variable per integer: x1, . . . , xn

For i = 1, . . . , n, let x2
i − 1 = 0 .

and finally,
n∑

i=1

wixi = 0 .

Proposition: Given a set of integers W = {w1, . . . ,wn}, the
above system of n + 1 polynomial equations has a solution if
and only if there exists a partition of W into two sets, S ⊆W
and W \ S , such that

∑
w∈S w =

∑
w∈W \S w .

Question: Let W = {1, 3, 5, 2}. Is W partitionable?

x2
1 − 1 = 0 , x2

2 − 1 = 0 , x3
3 − 1 = 0 , x2

4 − 1 = 0 ,

x1 + 3x2 + 5x3 + 2x4 = 0 .
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NP, coNP and the Nullstellensatz

Observation

The Partition problem is NP-complete.

Definition

NP is the class of
problems whose solutions
can be verified in
polynomial-time.

(hard to find)

Definition

coNP is the class of
problems whose
complements are in NP.

(hard to verify)

It is widely believed that
coNP 6= NP.
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1, 3, 5, 2}. Is W partitionable?

Answer: No!

x2
1 − 1 = 0 , x2

2 − 1 = 0 , x3
3 − 1 = 0 , x2

4 − 1 = 0 ,

x1 + 3x2 + 5x3 + 2x4 = 0 .

1 =

(
− 155

693
+

842

3465
x2x3 −

188

693
x2x4 +

908

3465
x3x4

)
(x2

1 − 1)

+

(
− 1

231
+

842

1155
x1x3 −

188

231
x1x4 +

292

1155
x3x4

)
(x2

2 − 1)

+

(
− 467

693
+

842

693
x1x2 +

908

693
x1x4 +

292

693
x2x4

)
(x2

3 − 1)

+

(
− 68

693
− 376

693
x1x2 +

1816

3465
x1x3 +

584

3465
x2x3

)
(x2

4 − 1)

+

(
155

693
x1 +

1

693
x2 +

467

3465
x3 +

34

693
x4 −

842

3465
x1x2x3

+
188

693
x1x2x4 −

908

3465
x1x3x4 −

292

3465
x2x3x4

)
(x1 + 3x2 + 5x3 + 2x4) .
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Minimum-degree Nullstellensatz Certificates Example
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+
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x1 +
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693
x2 +

467
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x3 +
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693
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3465
x2x3x4

)
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Minimum-degree Partition Nullstellensatz Certificates

Let Sn
k denote the set of k-subsets of {1, . . . , n}

(
i.e., |Sn

k | =
(n
k

))
Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers W = {w1, . . . ,wn}
encoded as a system of polynomial equations as above, there exists
a minimum-degree Nullstellensatz certificate for the non-existence
of a partition of W as follows:

1 =
n∑

i=1

( ∑
k even

k≤n−1

∑
s∈Sn\i

k

ci ,sx s
)

(x2
i − 1) +

(∑
k odd
k≤n

∑
s∈Sn

k

bsx s
)( n∑

i=1

wixi

)
.

Moreover, every Nullstellensatz certificate associated with the
above system of polynomial equations contains exactly one

monomial for each of the even parity subsets of S
n\i
k , and exactly

one monomial for each of the odd parity subsets of Sn
k .

Note: degree is n for n odd and n − 1 for n even.
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1, 3, 5, 2}. Is W partitionable?

Answer: No!

x2
1 − 1 = 0 , x2

2 − 1 = 0 , x3
3 − 1 = 0 , x2

4 − 1 = 0 ,

x1 + 3x2 + 5x3 + 2x4 = 0 .

1 =

(
− 155

693
+

842

3465
x2x3 −

188

693
x2x4 +

908

3465
x3x4

)
(x2

1 − 1)

+

(
− 1

231
+

842

1155
x1x3 −

188

231
x1x4 +

292

1155
x3x4

)
(x2

2 − 1)

+

(
− 467

693
+

842

693
x1x2 +

908

693
x1x4 +

292

693
x2x4

)
(x2

3 − 1)

+

(
− 68

693
− 376

693
x1x2 +

1816

3465
x1x3 +

584

3465
x2x3

)
(x2

4 − 1)

+

(
155

693
x1 +

1

693
x2 +

467

3465
x3 +

34

693
x4 −

842

3465
x1x2x3

+
188

693
x1x2x4 −

908

3465
x1x3x4 −

292

3465
x2x3x4

)
(x1 + 3x2 + 5x3 + 2x4) .
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The Partition Matrix: Extract a Square Linear System

Let W = {w1,w2,w3}.


w3 w2 w1 0
w2 w3 0 w1

w1 0 w3 w2

0 w1 w2 w3



− +

w1

+

w2

+

w3

−

w1

+

w2 + w3

−

w2

+

w1

+

w3

−

w1

−

w2 + w3

The determinant of the above partition matrix is the

(w1 + w2 + w3)(−w1 + w2 + w3)(w1 − w2 + w3)(−w1 − w2 + w3)︸ ︷︷ ︸
partition polynomial
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Another Example of the Partition Matrix

Let W = {w1, . . . ,w4}. The partition matrix P is

P =



w4 w3 w2 w1 0 0 0 0
w3 w4 0 0 w2 w1 0 0
w2 0 w4 0 w3 0 w1 0
w1 0 0 w4 0 w3 w2 0
0 w2 w3 0 w4 0 0 w1

0 w1 0 w3 0 w4 0 w2

0 0 w1 w2 0 0 w4 w3

0 0 0 0 w1 w2 w3 w4


,

det(P) = (w1 + w2 + w3 + w4)(−w1 + w2 + w3 + w4)(w1 − w2 + w3 + w4)

(w1 + w2 − w3 + w4)(−w1 + w2 − w3 + w4)(−w1 − w2 + w3 + w4)

(w1 − w2 − w3 + w4)(−w1 − w2 − w3 + w4) .

“partition polynomial”
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Determinant and Partition Polynomial

Theorem (S.M., S. Onn, 2012)

The determinant of the partition matrix is the partition polynomial.
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Hilbert’s Nullstellensatz Numeric Coefficients and the
Partition Polynomial

Given a square non-singular matrix A, Cramer’s rule states that
Ax = b can be solved according to the formula

xi =
det(A|ib)

det(A)
,

where A|ib is the matrix A with the i-th column replaced with the
right-hand side vector b.
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Recall the non-partitionable W = {1, 3, 5, 2}:
1 =

(
− 155

693
+

842

3465
x2x3 −

188

693
x2x4 +

908

3465
x3x4

)
(x2

1 − 1)

+

(
− 1

231
+

842

1155
x1x3 −

188

231
x1x4 +

292

1155
x3x4

)
(x2

2 − 1)

+

(
− 467

693
+

842

693
x1x2 +

908

693
x1x4 +

292

693
x2x4

)
(x2

3 − 1)

+

(
− 68

693
− 376

693
x1x2 +

1816

3465
x1x3 +

584

3465
x2x3

)
(x2

4 − 1)

+

(
155

693
x1 +

1

693
x2 +

467

3465
x3 +

34

693
x4 −

842

3465
x1x2x3

+
188

693
x1x2x4 −

908
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Definition of Graph Coloring

Graph coloring: Given a graph G , and an integer k, can the
vertices be colored with k colors in such a way that no two
adjacent vertices are the same color?

Petersen Graph: 3-colorable
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Graph 3-Coloring as a System of Polynomial Equations
over C (D. Bayer)

one variable per vertex: x1, . . . , xn

vertex polynomials: For every vertex i = 1, . . . , n,

x3
i − 1 = 0

edge polynomials: For every edge (i , j) ∈ E (G ),

x3
i − x3

j

xi − xj
=

x2
i + xixj + x2

j = 0

Theorem: Let G be a graph encoded as the above (n + m)
system of equations. Then this system has a solution if and
only if G is 3-colorable.
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Petersen Graph =⇒ System of Polynomial Equations

Figure: Is the Petersen graph 3-colorable?

x3
0 − 1 = 0, x3

1 − 1 = 0, x2
0 + x0x1 + x2

1 = 0, x2
0 + x0x4 + x2

4 = 0

x3
2 − 1 = 0, x3

3 − 1 = 0, x2
0 + x0x5 + x2

5 = 0, x2
1 + x1x2 + x2

2 = 0

x3
4 − 1 = 0, x3

5 − 1 = 0, x2
1 + x1x6 + x2

6 = 0, x2
2 + x2x3 + x2

3 = 0

x3
6 − 1 = 0, x3

7 − 1 = 0, · · · · · · · · · · · ·
x3

8 − 1 = 0, x3
9 − 1 = 0, x2

6 + x6x8 + x2
8 = 0, x2

7 + x7x9 + x2
9 = 0
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Where is the Infinite Family of Graphs that Grow over C?

4

Flower, Kneser, Grötzsch, Jin, Mycielski graphs have degree 4.

Theorem: Every Nullstellensatz certificate of a
non-3-colorable graph has degree at least four.

Theorem: For n ≥ 4, a minimum-degree Nullstellensatz
certificate of non-3-colorability for cliques and odd wheels has
degree exactly four.
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Graph 3-Coloring as a System of Polynomial Equations
over F2 (inspired by Bayer)

one variable per vertex: x1, . . . , xn

vertex polynomials: For every vertex i = 1, . . . , n,

x3
i + 1 = 0

edge polynomials: For every edge (i , j) ∈ E (G ),

x2
i + xixj + x2

j = 0

Theorem: Let G be a graph encoded as the above (n + m)
system of equations. Then this system has a solution if and
only if G is 3-colorable.
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Where is the Infinite Family of Graphs that Grow over F2?

1

Theorem: Every Nullstellensatz certificate of a
non-3-colorable graph has degree at least one.

Theorem: For n ≥ 4, a minimum-degree Nullstellensatz
certificate of non-3-colorability for cliques and odd wheels has
degree exactly one.
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Where is the Infinite Family of Graphs that Grow over F2?

1
Theorem: Every Nullstellensatz certificate of a
non-3-colorable graph has degree at least one.

Theorem: For n ≥ 4, a minimum-degree Nullstellensatz
certificate of non-3-colorability for cliques and odd wheels has
degree exactly one.

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



Where is the Infinite Family of Graphs that Grow over F2?

1
Theorem: Every Nullstellensatz certificate of a
non-3-colorable graph has degree at least one.

Theorem: For n ≥ 4, a minimum-degree Nullstellensatz
certificate of non-3-colorability for cliques and odd wheels has
degree exactly one.
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Experimental results for NulLA 3-colorability

Graph vertices edges rows cols deg sec
Mycielski 7 95 755 64,281 71,726

1 .46

Mycielski 9 383 7,271 2,477,931 2,784,794

1 268.78

Mycielski 10 767 22,196 15,270,943 17,024,333

1 14835

(8, 3)-Kneser 56 280 15,737 15,681

1 .07

(10, 4)-Kneser 210 1,575 349,651 330,751

1 3.92

(12, 5)-Kneser 792 8,316 7,030,585 6,586,273

1 466.47

(13, 5)-Kneser 1,287 36,036 45,980,650 46,378,333

1 216105

1-Insertions 5 202 1,227 268,049 247,855

1 1.69

2-Insertions 5 597 3,936 2,628,805 2,349,793

1 18.23

3-Insertions 5 1,406 9,695 15,392,209 13,631,171

1 83.45

ash331GPIA 662 4,185 3,147,007 2,770,471

1 13.71

ash608GPIA 1,216 7,844 10,904,642 9,538,305

1 34.65

ash958GPIA 1,916 12,506 27,450,965 23,961,497

1 90.41

Table: Graphs without 4-cliques.
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What if the Nullstellensatz certificate is not degree 1?

degree 4 certificate
7, 585, 826× 9, 887, 481

over 4 hours

⇓
degree 1 certificate

4, 626× 4, 3464
.2 seconds

=⇒ 25 triangles

“Triangle” equation:

0 = x + y + z

Degree two triangle equation:

0 = x2 + y 2 + z2

Appending equations to the system can reduce the degree!
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What if the Nullstellensatz certificate is still not degree 1?

Alternative Nullstellensätze

xα1
1 · · · x

αn
n =

s∑
i=1

βi fi

non-zero 6= 0

x1x8x9 = (x1 + x2)(x2
1 + x1x2 + x2

2 ) + (x4 + x9 + x12)(x2
1 + x1x4 + x2

4 ) + · · ·+

+ (x1 + x4 + x8)(x2
1 + x1x12 + x2

12) + (x2 + x7 + x8)(x2
2 + x2x3 + x2

3 )

+ (x8 + x9) (x2
1 + x2

2 + x2
6 )︸ ︷︷ ︸

triangle equation

+(x9) (x2
2 + x2

5 + x2
6 )︸ ︷︷ ︸

triangle equation

+(x8) (x2
2 + x2

6 + x2
7 )︸ ︷︷ ︸

triangle equation

.
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Using Symmetry to Reduce the Size of the Linear System

Consider the complete graph K4.

A degree-one Hilbert
Nullstellensatz certificate for non-3-colorability, over F2 is

1 = c0(x3
1 + 1)

+ (c1
12x1 + c2

12x2 + c3
12x3 + c4

12x4)(x2
1 + x1x2 + x2

2 )

+ (c1
13x1 + c2

13x2 + c3
13x3 + c4

13x4)(x2
1 + x1x3 + x2

3 )

+ (c1
14x1 + c2

14x2 + c3
14x3 + c4

14x4)(x2
1 + x1x4 + x2

4 )

+ (c1
23x1 + c2

23x2 + c3
23x3 + c4

23x4)(x2
2 + x2x3 + x2

3 )

+ (c1
24x1 + c2

24x2 + c3
24x3 + c4

24x4)(x2
2 + x2x4 + x2

4 )

+ (c1
34x1 + c2

34x2 + c3
34x3 + c4

34x4)(x2
3 + x3x4 + x2

4 )
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Matrix associated with K4 Nullstellensatz Certificate: MF ,1

c0 c1
12 c2

12 c3
12 c4

12 c1
13 c2

13 c3
13 c4

13 c1
14 c2

14 c3
14 c4

14 c1
23 c2

23 c3
23 c4

23 c1
24 c2

24 c3
24 c4

24 c1
34 c2

34 c3
34 c4

34

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3
1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x4 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x1x
2
2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

x1x2x3 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x1x
2
3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x1x3x4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

x1x
2
4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

x3
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

x2
2 x3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

x2
2 x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

x2x
2
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

x2x
2
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

x3
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

x3x
2
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

x3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
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Using Symmetry to Reduce the Size of the Linear System

Suppose a finite permutation group G acts on the variables
x1, . . . , xn.

Assume that the set F of polynomials is invariant under
the action of G , i.e., g(fi ) ∈ F for each fi ∈ F .

We will use this group to reduce the size of the matrix.

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



Using Symmetry to Reduce the Size of the Linear System

Suppose a finite permutation group G acts on the variables
x1, . . . , xn. Assume that the set F of polynomials is invariant under
the action of G , i.e., g(fi ) ∈ F for each fi ∈ F .

We will use this group to reduce the size of the matrix.

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



Using Symmetry to Reduce the Size of the Linear System

Suppose a finite permutation group G acts on the variables
x1, . . . , xn. Assume that the set F of polynomials is invariant under
the action of G , i.e., g(fi ) ∈ F for each fi ∈ F .

We will use this group to reduce the size of the matrix.

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



Matrix associated with K4 Nullstellensatz Certificate: MF ,1

c0 c1
12 c1

13 c1
14 c2

12 c3
13 c4

14 c3
12 c4

13 c2
14 c4

12 c2
13 c3

14 c1
23 c1

34 c1
24 c2

23 c3
34 c4

24 c2
24 c3

23 c4
34 c2

34 c3
24 c4

23

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x2 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x3 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x2
1 x4 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x
2
2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x1x
2
3 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

x1x
2
4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

x1x2x3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x1x3x4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

x3
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

x3
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

x3
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

x2
2 x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

x2x
2
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

x2
2 x4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

x2x
2
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

x3x
2
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Action of Z3 by (2, 3, 4): each row block represents an orbit.
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Matrix associated with K4 Nullstellensatz Certificate:
MF ,1,G

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 3 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x
2
2 ) 0 1 1 0 0 2 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2x3x4) 0 0 0 0 0 0 0 0 3

(mod 2)
≡

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 1 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x
2
2 ) 0 1 1 0 0 0 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2x3x4) 0 0 0 0 0 0 0 0 1
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Matrix associated with K4 Nullstellensatz Certificate:
MF ,1,G

c̄0 c̄1
12 c̄2
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12 c̄1
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34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 3 0 0 0 0 0 0 0
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23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0

Orb(x3
1 ) 1 1 0 0 0 0 0 0 0

Orb(x2
1 x2) 0 1 1 1 1 0 0 0 0

Orb(x1x
2
2 ) 0 1 1 0 0 0 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2 ) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1
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Solution to Orbit Matrix Proves Certificate Existence

Theorem: Let K be an algebraically-closed field. Let
F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] and suppose F is closed
under the action of the group G on the variables. Suppose
that the order of the group |G | and the characteristic of the
field K are relatively prime. Then, the degree d Nullstellensatz
linear system of equations MF ,d y = bF ,d has a solution over
K if and only if the system of linear equations
MF ,d ,Gy = bF ,d ,G has a solution over K.

In other words, if the orbit matrix has a solution,
so does the original matrix.
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Nullstellensatz Certificates for Problems in P

Question

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

Petersen Graph: 3-colorable

, not-2-colorable
0

1

23

4

5

6
78

9
Fact

A graph G is not-2-colorable
⇐⇒ G contains an odd cycle.

(x2
i − 1) = 0 ,∀i ∈ V (G ) and (xi + xj) = 0 ,∀(i , j) ∈ E (G ) (C)

1 = − (x2
0 − 1) +

1

2
x0(x0 + x1)− 1

2
x0(x1 + x2) +

1

2
x0(x2 + x3)

− 1

2
x0(x3 + x4) +

1

2
x0(x4 + x0)
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0

1

23

4

5

6
78

9
Fact

A graph G is not-2-colorable
⇐⇒ G contains an odd cycle.

(x2
i − 1) = 0 ,∀i ∈ V (G ) and (xi + xj) = 0 ,∀(i , j) ∈ E (G ) (C)

1 =

− (x2
0 − 1) +

1

2
x0(x0 + x1)− 1

2
x0(x1 + x2)

+
1

2
x0(x2 + x3)

− 1

2
x0(x3 + x4) +

1

2
x0(x4 + x0)
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Perfect Matching: Definition and Example

Perfect Matching: A graph G has a perfect matching if
there exists a set of matched edges such that every vertex is
incident on a matched edge.

Example: Does this graph have a perfect matching?

Yes!
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Perfect Matching: Definition and Example

Perfect Matching: A graph G has a perfect matching if
there exists a set of matched edges such that every vertex is
incident on a matched edge.

Example: Does this graph have a perfect matching? Yes!

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



Perfect Matching as a System of Polynomial Equations

Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over C has a solution.∑

j∈N(i)

xij + 1 = 0

, xijxik = 0

∀i ∈ V (G )

,∀j , k ∈ N(i)

0

1

2

3

4

1 = (−2

5
x12 −

2

5
x13 −

2

5
x14 −

2

5
x23 −

2

5
x24 −

2

5
x34 −

1

5
)(−1 + x01 + x02 + x03)

+ (−4

5
x02 −

4

5
x03 + 2x23 −

1

5
)(−1 + x01 + x12 + x13 + x14)

+ (−4

5
x01 −

4

5
x03 + 2x13 −

1

5
)(−1 + x02 + x12 + x23 + x24)

+ (−4

5
x01 −

4

5
x02 + 2x12 −

1

5
)(−1 + x03 + x13 + x23 + x34)

+ (
6

5
x01 +

6

5
x02 +

6

5
x03 − 2x12 − 2x13 − 2x23 −

1

5
)(−1 + x14 + x24 + x34)

+
8

5
x01x02 +

8

5
x01x03 +

6

5
x01x12 +

6

5
x01x13 −

4

5
x01x14 +

8

5
x02x03 +

6

5
x02x12 +

6

5
x02x23 −

4

5
x02x24

+
6

5
x03x13 +

6

5
x03x23 −

4

5
x03x34 − 4x12x13 + 2x12x14 − 4x12x23 + 2x13x14 − 4x13x23 + 2x13x34

+ 2x23x24 + 2x23x34 + 2x12x24;
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Perfect Matching as a System of Polynomial Equations

Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over F2 has a solution.∑
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Perfect Matching as a System of Polynomial Equations

Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over F2 has a solution.∑

j∈N(i)

xij + 1 = 0 , xijxik = 0 ∀i ∈ V (G ) , ∀j , k ∈ N(i)

0

1

2

3

4

1 = (x01 + x02 + x03 + 1) + (x01 + x12 + x13 + 1)

+ (x02 + x12 + x23 + x24 + 1)

+ (x03 + x13 + x23 + x34 + 1)

+ (x24 + x34 + 1) mod 2

Theorem: If a graph G has an odd number of vertices, there exists a
degree zero Nullstellensatz certificate.
Question: What about graphs with an even number of vertices?
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j∈N(i)

xij + 1 = 0 , xijxik = 0 ∀i ∈ V (G ) , ∀j , k ∈ N(i)

0

1
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4
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+ (x24 + x34 + 1) mod 2

Theorem: If a graph G has an odd number of vertices, there exists a
degree zero Nullstellensatz certificate.
Question: What about graphs with an even number of vertices?

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility



Winner of the INFORMS Computing Society Prize 2010

1 J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing
Combinatorial Optimization Problems by Systems of Polynomial
Equations and Hilbert’s Nullstellensatz, Combinatorics, Probability
and Computing, 18(4), pp. 551-582, 2009.

2 J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Hilbert’s
Nullstellensatz and an Algorithm for Proving Combinatorial
Infeasibility, ISSAC 2008, Hagenberg, Austria, ACM, 197-206, 2008.

3 J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Computing
Infeasibility Certificates for Combinatorial Problems through
Hilbert’s Nullstellensatz, JSC 46(11), pg. 1260-1283, 2011.

4 S. M., S. Onn, On the Complexity of Hilbert Refutations for
Partition, accepted to Journal of Symbolic Computation July 2013.

http://www.usna.edu/Users/math/marguile

Thank you for your attention!
Questions and comments are most welcome!

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility

http://www.usna.edu/Users/math/marguile


Winner of the INFORMS Computing Society Prize 2010

1 J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing
Combinatorial Optimization Problems by Systems of Polynomial
Equations and Hilbert’s Nullstellensatz, Combinatorics, Probability
and Computing, 18(4), pp. 551-582, 2009.

2 J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Hilbert’s
Nullstellensatz and an Algorithm for Proving Combinatorial
Infeasibility, ISSAC 2008, Hagenberg, Austria, ACM, 197-206, 2008.

3 J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Computing
Infeasibility Certificates for Combinatorial Problems through
Hilbert’s Nullstellensatz, JSC 46(11), pg. 1260-1283, 2011.

4 S. M., S. Onn, On the Complexity of Hilbert Refutations for
Partition, accepted to Journal of Symbolic Computation July 2013.

http://www.usna.edu/Users/math/marguile

Thank you for your attention!
Questions and comments are most welcome!

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility

http://www.usna.edu/Users/math/marguile


Winner of the INFORMS Computing Society Prize 2010

1 J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing
Combinatorial Optimization Problems by Systems of Polynomial
Equations and Hilbert’s Nullstellensatz, Combinatorics, Probability
and Computing, 18(4), pp. 551-582, 2009.

2 J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Hilbert’s
Nullstellensatz and an Algorithm for Proving Combinatorial
Infeasibility, ISSAC 2008, Hagenberg, Austria, ACM, 197-206, 2008.

3 J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Computing
Infeasibility Certificates for Combinatorial Problems through
Hilbert’s Nullstellensatz, JSC 46(11), pg. 1260-1283, 2011.

4 S. M., S. Onn, On the Complexity of Hilbert Refutations for
Partition, accepted to Journal of Symbolic Computation July 2013.

http://www.usna.edu/Users/math/marguile

Thank you for your attention!
Questions and comments are most welcome!

Susan Margulies, US Naval Academy NulLA and Combinatorial Infeasibility

http://www.usna.edu/Users/math/marguile

