Hilbert's Nullstellensatz, Linear Algebra and Combinatorial Problems

Susan Margulies

Mathematics Department,
US Naval Academy, Annapolis, Maryland

Visiting National Institute of Standards and Technology!

April 7, 2015

Let
$$x=\{x_1,...,x_n\}$$
 and $f_i\in\mathbb{K}[x_1,\ldots,x_n]$ (\mathbb{K} ususally \mathbb{C} or $\overline{\mathbb{F}_2}$)

INPUT:

OUTPUT:

Let
$$x = \{x_1, ..., x_n\}$$
 and $f_i \in \mathbb{K}[x_1, ..., x_n]$ (\mathbb{K} ususally \mathbb{C} or $\overline{\mathbb{F}_2}$)

• INPUT: A system of polynomial equations

$$f_1(x) = 0, \quad f_2(x) = 0, \quad \dots \quad f_s(x) = 0$$

OUTPUT:

Let
$$x=\{x_1,...,x_n\}$$
 and $f_i\in\mathbb{K}[x_1,\ldots,x_n]$ (\mathbb{K} ususally \mathbb{C} or $\overline{\mathbb{F}_2}$)

• INPUT: A system of polynomial equations

$$f_1(x) = 0, \quad f_2(x) = 0, \quad \dots \quad f_s(x) = 0$$

- OUTPUT:
 - 1 yes, there is a solution.
 - 2 no, there is no solution

Let
$$x=\{x_1,...,x_n\}$$
 and $f_i\in\mathbb{K}[x_1,\ldots,x_n]$ (\mathbb{K} ususally \mathbb{C} or $\overline{\mathbb{F}_2}$)

• INPUT: A system of polynomial equations

$$f_1(x) = 0, \quad f_2(x) = 0, \quad \dots \quad f_s(x) = 0$$

- OUTPUT:
 - 1 yes, there is a solution.
 - 2 no, there is no solution, along with a Nullstellensatz certificate of infeasibility.

$$1 = \sum_{i=1}^s eta_{\mathbf{i}} \mathbf{f_i}$$
 .

$$\mathbf{1} = \sum_{i=1}^s eta_i \mathbf{f_i}$$
 .

$$\mathbf{1} = \sum_{i=1}^s eta_i \mathbf{f_i}$$
 .

$$\mathbf{1} = \sum_{i=1}^s eta_i^{} \mathbf{f}_i^{}$$
 .

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i}$$
. $1 \neq 0$

$$\mathbf{1} = \sum_{i=1}^{s} eta_{i} \mathbf{f_{i}}$$
 . $1
eq 0$

$$x_1^2 - 1 = 0$$
, $x_1 + x_2 = 0$, $x_2 + x_3 = 0$, $x_1 + x_3 = 0$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i} .$$

$$1 \neq 0$$

$$x_1^2 - 1 = 0 , \quad x_1 + x_2 = 0 , \quad x_2 + x_3 = 0 , \quad x_1 + x_3 = 0$$

$$\underbrace{(-1)}_{\beta_1} \underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_2} \underbrace{(x_1 + x_2)}_{f_2} + \underbrace{\left(-\frac{1}{2}x_1\right)}_{\beta_3} \underbrace{(x_2 + x_3)}_{f_3} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_4} \underbrace{(x_1 + x_3)}_{f_4}$$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i}$$
 . $1 \neq 0$

$$\begin{split} x_1^2 - 1 &= 0 \ , \quad x_1 + x_2 = 0 \ , \quad x_2 + x_3 = 0 \ , \quad x_1 + x_3 = 0 \\ \underbrace{(-1)}_{\beta_1} \underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_2} \underbrace{(x_1 + x_2)}_{f_2} + \underbrace{\left(-\frac{1}{2}x_1\right)}_{\beta_3} \underbrace{(x_2 + x_3)}_{f_3} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_4} \underbrace{(x_1 + x_3)}_{f_4} \\ \underbrace{\left(\frac{1}{2} + \frac{1}{2} - 1\right)}_{\beta_1} x_1^2 + 1 + \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)}_{\beta_2} x_1 x_2 + \underbrace{\left(-\frac{1}{2} + \frac{1}{2}\right)}_{\beta_2} x_1 x_3 \end{split}$$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i} .$$

$$1 \neq 0$$

$$\begin{split} x_1^2 - 1 &= 0 \ , \quad x_1 + x_2 = 0 \ , \quad x_2 + x_3 = 0 \ , \quad x_1 + x_3 = 0 \\ \underbrace{(-1)}_{\beta_1} \underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_2} \underbrace{(x_1 + x_2)}_{f_2} + \underbrace{\left(-\frac{1}{2}x_1\right)}_{\beta_3} \underbrace{(x_2 + x_3)}_{f_3} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_4} \underbrace{(x_1 + x_3)}_{f_4} \\ \underbrace{\left(\frac{1}{2} + \frac{1}{2} - 1\right)}_{\beta_1} x_1^2 + 1 + \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)}_{\beta_2} x_1 x_2 + \underbrace{\left(-\frac{1}{2} + \frac{1}{2}\right)}_{\beta_2} x_1 x_3 = 1 \end{split}$$

• Theorem (1893): Let \mathbb{K} be an algebraically closed field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. Given a system of equations such that $\mathbf{f_1} = \mathbf{f_2} = \cdots = \mathbf{f_s} = \mathbf{0}$, then this system has **no** solution if and only if there exist polynomials $\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1 = \sum_{i=1}^{s} \beta_{i} f_{i} .$$

This polynomial identity is a *Nullstellensatz certificate*.

• Theorem (1893): Let \mathbb{K} be an algebraically closed field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. Given a system of equations such that $\mathbf{f_1} = \mathbf{f_2} = \cdots = \mathbf{f_s} = \mathbf{0}$, then this system has **no** solution if and only if there exist polynomials $\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1 = \sum_{i=1}^{s} \beta_{i} f_{i} .$$

This polynomial identity is a *Nullstellensatz certificate*.

• **Definition:** Let $d = \max \big\{ \deg(\beta_1), \deg(\beta_2), \ldots, \deg(\beta_s) \big\}$. Then d is the degree of the Nullstellensatz certificate.

Nullstellensatz Degree Upper Bounds

Recall n is the number of variables, and the number of monomials of degree d in n variables is $\binom{n+d-1}{n-1}$.

• **Theorem:** (Kollár, 1988) The $deg(\beta_i)$ is bounded by

$$\deg(\beta_i) \leq \Big(\max\big\{3,\max\{\deg(f_i)\}\big\}\Big)^n \;.$$

(bound is tight for certain pathologically bad examples)

• **Theorem:** (Lazard 1977, Brownawell 1987) The $deg(\beta_i)$ is bounded by

$$\deg(\beta_i) \le n\big(\max\{\deg(f_i)\} - 1\big) \ .$$

(bound applies to particular zero-dimensional ideals)

Nullstellensatz Degree Upper Bounds

Recall n is the number of variables, and the number of monomials of degree d in n variables is $\binom{n+d-1}{n-1}$.

• **Theorem:** (Kollár, 1988) The $deg(\beta_i)$ is bounded by

$$\deg(\beta_i) \leq \Big(\max\big\{3,\max\{\deg(f_i)\}\big\}\Big)^n \ .$$

(bound is tight for certain pathologically bad examples)

• **Theorem:** (Lazard 1977, Brownawell 1987) The $deg(\beta_i)$ is bounded by

$$\deg(\beta_i) \le n\big(\max\{\deg(f_i)\} - 1\big) .$$

(bound applies to particular zero-dimensional ideals)

Question: What about lower bounds? How do we find them?

• INPUT: A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

• **INPUT:** A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

Construct a hypothetical Nullstellensatz certificate of degree 1

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\beta_{1}} (x_{1}^{2} - 1) + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\beta_{2}} (x_{1} + x_{2}) + \underbrace{\left(c_{8}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\beta_{3}} (x_{1} + x_{3}) + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\beta_{4}} (x_{2} + x_{3})$$

• **INPUT**: A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

Construct a hypothetical Nullstellensatz certificate of degree 1

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\beta_{1}}(x_{1}^{2} - 1) + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\beta_{2}}(x_{1} + x_{2}) + \underbrace{\left(c_{8}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\beta_{3}}(x_{1} + x_{3}) + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\beta_{4}}(x_{2} + x_{3})$$

Expand the hypothetical Nullstellensatz certificate

$$c_0x_1^3 + c_1x_1^2x_2 + c_2x_1^2x_3 + (c_3 + c_4 + c_8)x_1^2 + (c_5 + c_{13})x_2^2 + (c_{10} + c_{14})x_3^2 + (c_4 + c_5 + c_9 + c_{12})x_1x_2 + (c_6 + c_8 + c_{10} + c_{12})x_1x_3 + (c_6 + c_9 + c_{13} + c_{14})x_2x_3 + (c_7 + c_{11} - c_0)x_1 + (c_7 + c_{15} - c_1)x_2 + (c_{11} + c_{15} - c_2)x_3 - c_3$$

• **INPUT:** A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

Construct a hypothetical Nullstellensatz certificate of degree 1

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\beta_{1}}(x_{1}^{2} - 1) + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\beta_{2}}(x_{1} + x_{2}) + \underbrace{\left(c_{8}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\beta_{3}}(x_{1} + x_{3}) + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\beta_{4}}(x_{2} + x_{3})$$

Expand the hypothetical Nullstellensatz certificate

$$c_0x_1^3 + c_1x_1^2x_2 + c_2x_1^2x_3 + (c_3 + c_4 + c_8)x_1^2 + (c_5 + c_{13})x_2^2 + (c_{10} + c_{14})x_3^2 + (c_4 + c_5 + c_9 + c_{12})x_1x_2 + (c_6 + c_8 + c_{10} + c_{12})x_1x_3 + (c_6 + c_9 + c_{13} + c_{14})x_2x_3 + (c_7 + c_{11} - c_0)x_1 + (c_7 + c_{15} - c_1)x_2 + (c_{11} + c_{15} - c_2)x_3 - c_3$$

Extract a linear system of equations from expanded certificate

$$c_0 = 0, \ldots, c_3 + c_4 + c_8 = 0, c_{11} + c_{15} - c_2 = 0, -c_3 = 1$$

	c ₀	c_1	c_2	<i>c</i> ₃	C4	c ₅	c ₆	c7	c ₈	<i>c</i> ₉	c ₁₀	c ₁₁	c ₁₂	c ₁₃	c ₁₄	c ₁₅	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_2$	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_3$	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x_1^2	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
$x_2^{\frac{5}{2}}$	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
x ₂ x ₃	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
x ₁ x ₂	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0
x ₁ x ₃	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0
x2 x3	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0
x_1	-1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0
<i>x</i> ₂	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
<i>x</i> ₃	0	0	-1	0	0	0	0	0	0	0	0	1	0	0	0	1	0
1	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	1

Solve the linear system, and assemble the certificate

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

Solve the linear system, and assemble the certificate

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

Otherwise, increment the degree and repeat.

Nul**LA** Summary

- INPUT: A system of polynomial equations
 - Construct a hypothetical Nullstellensatz certificate of degree d
 - Expand the hypothetical Nullstellensatz certificate
 - Extract a linear system of equations from expanded certificate
 - Solve the linear system.
 - 1 If there is a solution, assemble the certificate.
 - Otherwise, loop and repeat with a larger degree d until known upper bounds are exceeded.

OUTPUT:

- 1 yes, there is a solution.
- One no, there is no solution, along with a certificate of infeasibility.

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w.$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w.$$

• **Example:** Let $W = \{\underbrace{1,3,5,7,}_{S},\underbrace{7,9}_{W \setminus S}\}$. Then

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w.$$

• **Example:** Let $W = \{\underbrace{1,3,5,7}_{S}, \underbrace{7,9}_{W \setminus S}\}$. Then

$$\underbrace{1+3+5+7}_{S}$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w.$$

• Example: Let $W = \{\underbrace{1,3,5,7}_{S},\underbrace{7,9}_{W \setminus S}\}$. Then

$$\underbrace{1+3+5+7}_{S} \qquad \underbrace{7+9}_{W\backslash S}$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w.$$

• **Example:** Let $W = \{\underbrace{1, 3, 5, 7}_{S}, \underbrace{7, 9}_{W \setminus S}\}$. Then

$$16 = \underbrace{1+3+5+7}_{S} = \underbrace{7+9}_{W \setminus S} = 16 .$$

Partition as a System of Polynomial Equations

Given a set of integers $W = \{w_1, \dots, w_n\}$:

• one variable per integer: x_1, \ldots, x_n

Partition as a System of Polynomial Equations

Given a set of integers $W = \{w_1, \dots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$.

Partition as a System of Polynomial Equations

Given a set of integers $W = \{w_1, \dots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$.
- and finally,

$$\sum_{i=1}^n w_i x_i = 0 .$$

Partition as a System of Polynomial Equations

Given a set of integers $W = \{w_1, \ldots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$.
- and finally,

$$\sum_{i=1}^n w_i x_i = 0 .$$

• **Proposition:** Given a set of integers $W = \{w_1, \ldots, w_n\}$, the above system of n+1 polynomial equations has a solution if and only if there exists a partition of W into two sets, $S \subseteq W$ and $W \setminus S$, such that $\sum_{w \in S} w = \sum_{w \in W \setminus S} w$.

Partition as a System of Polynomial Equations

Given a set of integers $W = \{w_1, \dots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$.
- and finally,

$$\sum_{i=1}^n w_i x_i = 0.$$

• **Proposition:** Given a set of integers $W = \{w_1, \dots, w_n\}$, the above system of n+1 polynomial equations has a solution if and only if there exists a partition of W into two sets, $S \subseteq W$ and $W \setminus S$, such that $\sum_{w \in S} w = \sum_{w \in W \setminus S} w$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable?

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Definition

NP is the class of problems whose solutions can be verified in polynomial-time.

Definition

NP is the class of problems whose solutions can be verified in polynomial-time.

Definition

 ${\rm CONP}$ is the class of problems whose complements are in NP.

Definition

NP is the class of problems whose solutions can be verified in polynomial-time.

Definition

 ${
m coNP}$ is the class of problems whose complements are in ${
m NP}.$

Definition

NP is the class of problems whose solutions can be verified in polynomial-time.

(hard to find)

Definition

 ${
m coNP}$ is the class of problems whose complements are in ${
m NP}.$

Definition

NP is the class of problems whose solutions can be verified in polynomial-time.

(hard to find)

Definition

 $\begin{array}{c} {\rm CONP} \ {\rm is} \ {\rm the} \ {\rm class} \ {\rm of} \\ {\rm problems} \ {\rm whose} \\ {\rm complements} \ {\rm are} \ {\rm in} \ {\rm NP}. \\ {\rm \left(hard} \ {\rm to} \ {\rm verify}\right) \end{array}$

Observation

The **Partition** problem is NP-complete.

Definition

NP is the class of problems whose solutions can be verified in polynomial-time.

(hard to find)

Definition

CONP is the class of problems whose complements are in NP.

(hard to verify)

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable?

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) \big(\mathbf{x}_1^2 - \mathbf{1} \big) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) \big(\mathbf{x}_2^2 - \mathbf{1} \big) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) \big(\mathbf{x}_3^2 - \mathbf{1} \big) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) \big(\mathbf{x}_4^2 - \mathbf{1} \big) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) \big(\mathbf{x}_1 + \mathbf{3} \mathbf{x}_2 + \mathbf{5} \mathbf{x}_3 + \mathbf{2} \mathbf{x}_4 \big) \;. \end{split}$$

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|=\binom{n}{k}\Big)$

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd} \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big)$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd} \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big)$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n \setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \dots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \ldots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd } \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big).$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Note: certificate is both high degree and dense.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable?

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

$$\begin{split} 1 &= \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3 \right. \\ &+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3x}_2 + \mathbf{5x}_3 + \mathbf{2x}_4) \; . \end{split}$$

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) (\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) (\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) (\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) (\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) (\mathbf{x}_1 + \mathbf{3} \mathbf{x}_2 + \mathbf{5} \mathbf{x}_3 + \mathbf{2} \mathbf{x}_4) \ . \end{split}$$

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

Let
$$W = \{w_1, w_2, w_3\}.$$

	- W3	w_2	w_1	0
	W_2	W_3	0	w_1
	w_1	0	<i>W</i> 3	W_2
ı	0	w_1	W_2	W ₃

	W3
	W3
	<i>W</i> ₃
	<i>W</i> ₃

Let
$$W = \{w_1, w_2, w_3\}.$$

Γ	w ₃	W_2	w_1	0
	W_2	W_3	0	w_1
	w_1	0	W ₃	W_2
	0	w_1	W_2	W3

w_1	W_2	W3
		W3
		W ₃
		W_3

Let
$$W = \{w_1, w_2, w_3\}.$$

w_3	W_2	w_1	0
w_2	W_3	0	w_1
w_1	0	W3	W_2
0	w_1	W_2	W3

	<i>w</i> ₁	W_2	W3
w_1		W_2	<i>W</i> 3
			W_3
			W_3

Let
$$W = \{w_1, w_2, w_3\}.$$

Γ	w ₃	w_2	w_1	0
	w_2	W_3	0	w_1
	w_1	0	<i>W</i> 3	W_2
L	0	w_1	W_2	<i>W</i> 3

		w_1	W ₂	W3
w_1			W_2	W3
	W_2	w_1		W_3
				W ₃

Let
$$W = \{w_1, w_2, w_3\}$$
.

[w ₃	w_2	w_1	0
W_2	W_3	0	w_1
w_1	0	W3	w_2
0	w_1	W_2	W3

		w_1	<i>W</i> 2	W3
w_1			W_2	<i>W</i> 3
	W_2	w_1		W_3
w_1	W_2			W_3

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} - \begin{bmatrix} - & + \\ w_1 + w_2 + w_3 \\ -w_1 & + w_2 + w_3 \\ -w_1 - w_2 & + w_1 & + w_3 \\ -w_1 - w_2 & + w_3 \end{bmatrix}$$

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} - \begin{bmatrix} - & + \\ w_1 + w_2 + w_3 \\ - w_1 & + w_2 + w_3 \\ - w_1 - w_2 & + w_1 & + w_3 \\ - w_1 - w_2 & + w_3 \end{bmatrix}$$

$$(w_1 + w_2 + w_3)(-w_1 + w_2 + w_3)(w_1 - w_2 + w_3)(-w_1 - w_2 + w_3)$$

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} - \begin{bmatrix} - & + \\ w_1 + w_2 + w_3 \\ -w_1 & + w_2 + w_3 \\ -w_1 - w_2 & + w_1 & + w_3 \\ -w_1 - w_2 & + w_3 \end{bmatrix}$$

$$(w_1 + w_2 + w_3)(-w_1 + w_2 + w_3)(w_1 - w_2 + w_3)(-w_1 - w_2 + w_3)$$

The Partition Matrix: Extract a Square Linear System

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

The determinant of the above partition matrix is the

$$(w_1 + w_2 + w_3)(-w_1 + w_2 + w_3)(w_1 - w_2 + w_3)(-w_1 - w_2 + w_3)$$

partition polynomial

Another Example of the Partition Matrix

Let $W = \{w_1, \dots, w_4\}$. The partition matrix P is

$$P = \begin{bmatrix} w_4 & w_3 & w_2 & w_1 & 0 & 0 & 0 & 0 \\ w_3 & w_4 & 0 & 0 & w_2 & w_1 & 0 & 0 \\ w_2 & 0 & w_4 & 0 & w_3 & 0 & w_1 & 0 \\ w_1 & 0 & 0 & w_4 & 0 & w_3 & w_2 & 0 \\ 0 & w_2 & w_3 & 0 & w_4 & 0 & 0 & w_1 \\ 0 & w_1 & 0 & w_3 & 0 & w_4 & 0 & w_2 \\ 0 & 0 & w_1 & w_2 & 0 & 0 & w_4 & w_3 \\ 0 & 0 & 0 & 0 & w_1 & w_2 & w_3 & w_4 \end{bmatrix},$$

Another Example of the Partition Matrix

Let $W = \{w_1, \dots, w_4\}$. The partition matrix P is

$$\det(P) = (w_1 + w_2 + w_3 + w_4)(-w_1 + w_2 + w_3 + w_4)(w_1 - w_2 + w_3 + w_4)$$
$$(w_1 + w_2 - w_3 + w_4)(-w_1 + w_2 - w_3 + w_4)(-w_1 - w_2 + w_3 + w_4)$$
$$(w_1 - w_2 - w_3 + w_4)(-w_1 - w_2 - w_3 + w_4).$$

"partition polynomial"

Determinant and Partition Polynomial

Theorem (S.M., S. Onn, 2012)

The determinant of the partition matrix is the partition polynomial.

Hilbert's Nullstellensatz *Numeric* Coefficients and the Partition Polynomial

Given a square non-singular matrix A, Cramer's rule states that Ax = b can be solved according to the formula

$$x_i = \frac{\det(A|_b^i)}{\det(A)} ,$$

where $A|_b^i$ is the matrix A with the i-th column replaced with the right-hand side vector b.

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) (x_1^2 - 1) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) (x_2^2 - 1) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) (x_3^2 - 1) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) (x_4^2 - 1) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) (x_1 + 3x_2 + 5x_3 + 2x_4) \;. \end{split}$$

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) (x_1^2 - 1) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) (x_2^2 - 1) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) (x_3^2 - 1) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) (x_4^2 - 1) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) (x_1 + 3x_2 + 5x_3 + 2x_4) \;. \end{split}$$

$$\begin{split} 1 &= \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3 \right. \\ &+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) \ . \\ &- 51975 = (1 + 3 + 5 + 2)(-1 + 3 + 5 + 2)(1 - 3 + 5 + 2)(1 + 3 - 5 + 2) \\ &- (-1 - 3 + 5 + 2)(-1 + 3 - 5 + 2)(1 - 3 - 5 + 2)(-1 - 3 - 5 + 2) \ . \end{split}$$

$$1 = \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1})$$

$$+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1})$$

$$+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1})$$

$$+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1})$$

$$+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3\right)$$

$$+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) .$$

$$-51975 = (1 + 3 + 5 + 2)(-1 + 3 + 5 + 2)(1 - 3 + 5 + 2)(1 + 3 - 5 + 2)$$

$$(-1 - 3 + 5 + 2)(-1 + 3 - 5 + 2)(1 - 3 - 5 + 2)(-1 - 3 - 5 + 2).$$

Via Cramer's rule, we see that the unknown b_4 is equal to

$$b_4 = \frac{-2550}{-51975}$$

$$1 = \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1})$$

$$+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1})$$

$$+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1})$$

$$+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1})$$

$$+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3\right)$$

$$+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) .$$

$$-51975 = (1 + 3 + 5 + 2)(-1 + 3 + 5 + 2)(1 - 3 + 5 + 2)(1 + 3 - 5 + 2)$$

$$(-1 - 3 + 5 + 2)(-1 + 3 - 5 + 2)(1 - 3 - 5 + 2)(-1 - 3 - 5 + 2).$$

Via Cramer's rule, we see that the unknown b_4 is equal to

$$b_4 = \frac{-2550}{-51975} = \frac{34}{693} \ .$$

Definition of Graph Coloring

• **Graph coloring:** Given a graph *G*, and an integer *k*, can the vertices be colored with *k* colors in such a way that no two adjacent vertices are the same color?

Definition of Graph Coloring

- **Graph coloring:** Given a graph *G*, and an integer *k*, can the vertices be colored with *k* colors in such a way that no two adjacent vertices are the same color?
- Petersen Graph: 3-colorable

• one variable per vertex: x_1, \ldots, x_n

- one **variable** per **vertex**: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^3 - 1 = 0$$

- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^3 - 1 = 0$$

• edge polynomials: For every edge $(i,j) \in E(G)$,

$$x_i^2 + x_i x_j + x_j^2 = 0$$

- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^3 - 1 = 0$$

• edge polynomials: For every edge $(i,j) \in E(G)$,

$$\frac{x_i^3 - x_j^3}{x_i - x_i} = x_i^2 + x_i x_j + x_j^2 = 0$$

- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^3 - 1 = 0$$

• edge polynomials: For every edge $(i,j) \in E(G)$,

$$\frac{x_i^3 - x_j^3}{x_i - x_j} = x_i^2 + x_i x_j + x_j^2 = 0$$

• **Theorem:** Let G be a graph encoded as the above (n + m) system of equations. Then this system has a solution if and only if G is 3-colorable.

Petersen Graph ⇒ System of Polynomial Equations

Figure: Is the Petersen graph 3-colorable?

$$\begin{aligned} x_0^3 - 1 &= 0, x_1^3 - 1 &= 0, & x_0^2 + x_0 x_1 + x_1^2 &= 0, x_0^2 + x_0 x_4 + x_4^2 &= 0 \\ x_2^3 - 1 &= 0, x_3^3 - 1 &= 0, & x_0^2 + x_0 x_5 + x_5^2 &= 0, x_1^2 + x_1 x_2 + x_2^2 &= 0 \\ x_4^3 - 1 &= 0, x_5^3 - 1 &= 0, & x_1^2 + x_1 x_6 + x_6^2 &= 0, x_2^2 + x_2 x_3 + x_3^2 &= 0 \\ x_6^3 - 1 &= 0, x_7^3 - 1 &= 0, & & \cdots \\ x_8^3 - 1 &= 0, x_9^3 - 1 &= 0, & & x_6^2 + x_6 x_8 + x_8^2 &= 0, x_7^2 + x_7 x_9 + x_9^2 &= 0 \end{aligned}$$

4

4

• Flower, Kneser, Grötzsch, Jin, Mycielski graphs have degree 4.

4

- Flower, Kneser, Grötzsch, Jin, Mycielski graphs have degree 4.
- Theorem: Every Nullstellensatz certificate of a non-3-colorable graph has degree at least four.

- Flower, Kneser, Grötzsch, Jin, Mycielski graphs have degree 4.
- Theorem: Every Nullstellensatz certificate of a non-3-colorable graph has degree at least four.
- **Theorem:** For $n \ge 4$, a minimum-degree Nullstellensatz certificate of non-3-colorability for cliques and odd wheels has degree exactly four.

Graph 3-Coloring as a System of Polynomial Equations over $\overline{\mathbb{F}_2}$ (inspired by Bayer)

- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^3 + 1 = 0$$

• edge polynomials: For every edge $(i,j) \in E(G)$,

$$x_i^2 + x_i x_j + x_j^2 = 0$$

• **Theorem:** Let G be a graph encoded as the above (n + m) system of equations. Then this system has a solution if and only if G is 3-colorable.

Where is the Infinite Family of Graphs that Grow over $\overline{\mathbb{F}_2}$?

 Theorem: Every Nullstellensatz certificate of a non-3-colorable graph has degree at least one.

- **Theorem:** Every Nullstellensatz certificate of a non-3-colorable graph has degree at least one.
- **Theorem:** For $n \ge 4$, a minimum-degree Nullstellensatz certificate of non-3-colorability for cliques and odd wheels has degree exactly one.

Experimental results for NuILA 3-colorability

Graph	vertices	edges	rows	cols	deg	sec
Mycielski 7	95	755	64,281	71,726		
Mycielski 9	383	7,271	2,477,931	2,784,794		
Mycielski 10	767	22,196	15,270,943	17,024,333		
(8,3)-Kneser	56	280	15,737	15,681		
(10, 4)-Kneser	210	1,575	349,651	330,751		
(12, 5)-Kneser	792	8,316	7,030,585	6,586,273		
(13, 5)-Kneser	1,287	36,036	45,980,650	46,378,333		
1-Insertions_5	202	1,227	268,049	247,855		
2-Insertions_5	597	3,936	2,628,805	2,349,793		
3-Insertions_5	1,406	9,695	15,392,209	13,631,171		
ash331GPIA	662	4,185	3,147,007	2,770,471		
ash608GPIA	1,216	7,844	10,904,642	9,538,305		
ash958GPIA	1,916	12,506	27,450,965	23,961,497		

Table: Graphs without 4-cliques.

Experimental results for NuILA 3-colorability

Graph	vertices	edges	rows	cols	deg	sec
Mycielski 7	95	755	64,281	71,726	1	
Mycielski 9	383	7,271	2,477,931	2,784,794	1	
Mycielski 10	767	22,196	15,270,943	17,024,333	1	
(8,3)-Kneser	56	280	15,737	15,681	1	
(10, 4)-Kneser	210	1,575	349,651	330,751	1	
(12, 5)-Kneser	792	8,316	7,030,585	6,586,273	1	
(13, 5)-Kneser	1,287	36,036	45,980,650	46,378,333	1	
1-Insertions_5	202	1,227	268,049	247,855	1	
2-Insertions_5	597	3,936	2,628,805	2,349,793	1	
3-Insertions_5	1,406	9,695	15,392,209	13,631,171	1	
ash331GPIA	662	4,185	3,147,007	2,770,471	1	
ash608GPIA	1,216	7,844	10,904,642	9,538,305	1	
ash958GPIA	1,916	12,506	27,450,965	23,961,497	1	

Table: Graphs without 4-cliques.

Experimental results for NuILA 3-colorability

Graph	vertices	edges	rows	cols	deg	sec
Mycielski 7	95	755	64,281	71,726	1	.46
Mycielski 9	383	7,271	2,477,931	2,784,794	1	268.78
Mycielski 10	767	22,196	15,270,943	17,024,333	1	14835
(8,3)-Kneser	56	280	15,737	15,681	1	.07
(10, 4)-Kneser	210	1,575	349,651	330,751	1	3.92
(12, 5)-Kneser	792	8,316	7,030,585	6,586,273	1	466.47
(13,5)-Kneser	1,287	36,036	45,980,650	46,378,333	1	216105
1-Insertions_5	202	1,227	268,049	247,855	1	1.69
2-Insertions_5	597	3,936	2,628,805	2,349,793	1	18.23
3-Insertions_5	1,406	9,695	15,392,209	13,631,171	1	83.45
ash331GPIA	662	4,185	3,147,007	2,770,471	1	13.71
ash608GPIA	1,216	7,844	10,904,642	9,538,305	1	34.65
ash958GPIA	1,916	12,506	27,450,965	23,961,497	1	90.41

Table: Graphs without 4-cliques.

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

⇒ 25 triangles

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

⇒ 25 triangles

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

⇒ 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours

⇒ 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours ψ degree 1 certificate

⇒ 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours ψ degree 1 certificate $4,626 \times 4,3464$

⇒ 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours \downarrow degree 1 certificate $4,626 \times 4,3464$

.2 seconds

⇒ 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

degree 4 certificate $7,585,826 \times 9,887,481$ over 4 hours $\downarrow \downarrow$ degree 1 certificate $4,626 \times 4,3464$ 2 seconds ⇒ 25 triangles

"Triangle" equation:

$$0 = x + y + z$$

Degree two triangle equation:

$$0 = x^2 + y^2 + z^2$$

Appending equations to the system can reduce the degree!

Alternative Nullstellensätze

$$x_1^{\alpha_1}\cdots x_n^{\alpha_n}=\sum_{i=1}^s\beta_i f_i$$

Alternative Nullstellensätze

$$x_1^{\alpha_1}\cdots x_n^{\alpha_n}=\sum_{i=1}^s eta_i f_i$$
non-zero $eq 0$

Alternative Nullstellensätze

$$x_1^{\alpha_1}\cdots x_n^{\alpha_n}=\sum_{i=1}^s \beta_i f_i$$
non-zero $eq 0$

$$\begin{aligned} x_1x_8x_9 &= (x_1+x_2)(x_1^2+x_1x_2+x_2^2) + (x_4+x_9+x_{12})(x_1^2+x_1x_4+x_4^2) + \dots + \\ &+ (x_1+x_4+x_8)(x_1^2+x_1x_{12}+x_{12}^2) + (x_2+x_7+x_8)(x_2^2+x_2x_3+x_3^2) \\ &+ (x_8+x_9)\underbrace{(x_1^2+x_2^2+x_6^2)}_{\text{triangle equation}} + (x_9)\underbrace{(x_2^2+x_5^2+x_6^2)}_{\text{triangle equation}} + (x_8)\underbrace{(x_2^2+x_6^2+x_7^2)}_{\text{triangle equation}}. \end{aligned}$$

Consider the complete graph K_4 .

Consider the complete graph K_4 . A degree-one Hilbert Nullstellensatz certificate for non-3-colorability, over $\overline{\mathbb{F}_2}$ is

$$\begin{split} 1 &= c_0(x_1^3+1) \\ &+ (c_{12}^1x_1 + c_{12}^2x_2 + c_{12}^3x_3 + c_{12}^4x_4)(x_1^2 + x_1x_2 + x_2^2) \\ &+ (c_{13}^1x_1 + c_{13}^2x_2 + c_{13}^3x_3 + c_{13}^4x_4)(x_1^2 + x_1x_3 + x_3^2) \\ &+ (c_{14}^1x_1 + c_{14}^2x_2 + c_{14}^3x_3 + c_{14}^4x_4)(x_1^2 + x_1x_4 + x_4^2) \\ &+ (c_{23}^1x_1 + c_{23}^2x_2 + c_{23}^3x_3 + c_{23}^4x_4)(x_2^2 + x_2x_3 + x_3^2) \\ &+ (c_{24}^1x_1 + c_{24}^2x_2 + c_{24}^3x_3 + c_{24}^4x_4)(x_2^2 + x_2x_4 + x_4^2) \\ &+ (c_{34}^1x_1 + c_{34}^2x_2 + c_{34}^3x_3 + c_{34}^4x_4)(x_3^2 + x_3x_4 + x_4^2) \end{split}$$

Matrix associated with K_4 Nullstellensatz Certificate: $M_{F,1}$

	c ₀	c_{12}^{1}	c_{12}^{2}	c_{12}^{3}	c_{12}^{4}	c_{13}^{1}	c_{13}^{2}	c_{13}^{3}	c_{13}^{4}	c_{14}^{1}	c_{14}^{2}	c_{14}^{3}	c_{14}^{4}	c_{23}^{1}	c_{23}^2	c_{23}^{3}	c_{23}^{4}	c_{24}^{1}	c_{24}^{2}	c_{24}^{3}	c_{24}^{4}	c_{34}^{1}	c_{34}^{2}	c_{34}^{3}	c_{34}^{4}
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x ₁ ³	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_2$	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X1 X3	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_4$	0	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$x_1x_2^2$	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
$x_1 x_2 x_3$	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
x ₁ x ₂ x ₄	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
$x_1x_3^2$	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
$x_1 x_3 x_4$	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
$x_1 x_4^2$	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0
X3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
$x_2^2 x_3$ $x_2^2 x_4$	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
x ₂ x ₄	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0
$x_2x_3^2$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0
X2 X3 X4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0
x2x4	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0
2x3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
$x_3^2 x_4$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1
x3x4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	1
x_4^3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1

Suppose a finite permutation group G acts on the variables x_1, \ldots, x_n .

Suppose a finite permutation group G acts on the variables x_1, \ldots, x_n . Assume that the set F of polynomials is invariant under the action of G, i.e., $g(f_i) \in F$ for each $f_i \in F$.

Suppose a finite permutation group G acts on the variables x_1, \ldots, x_n . Assume that the set F of polynomials is invariant under the action of G, i.e., $g(f_i) \in F$ for each $f_i \in F$.

We will use this group to reduce the size of the matrix.

Matrix associated with K_4 Nullstellensatz Certificate: $M_{F,1}$

	c ₀	c_{12}^{1}	c_{13}^{1}	c_{14}^{1}	c_{12}^{2}	c_{13}^{3}	c_{14}^{4}	c_{12}^{3}	c_{13}^{4}	c_{14}^{2}	c_{12}^{4}	c_{13}^{2}	c_{14}^{3}	c_{23}^{1}	c_{34}^{1}	c_{24}^{1}	c_{23}^{2}	c_{34}^{3}	c_{24}^{4}	c_{24}^{2}	c_{23}^{3}	c_{34}^{4}	c_{34}^{2}	c_{24}^{3}	c_{23}^{4}
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x ₁ ³	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_2 \\ x_1^2 x_3$	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$ x_1^2x_3 $	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$x_1^2 x_4$	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$x_1x_2^2$	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
$x_1 x_3^2$	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
$x_1x_4^2$	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
x ₁ x ₂ x ₃	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
x ₁ x ₂ x ₄	0	0	0	0	0	0	0	0	0 1	1	1	0	0 1	0	0	1	0	0	0	0	0	0	0	0	0
x ₁ x ₃ x ₄	0	0	0	0	0	_		0		0	0			0	1	0	0		0	0	_		0	0	0
x ₂ x ₃ x ₃ x ₄	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
X3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
2 X4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
x ₂ x ₃	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0
$x_2^2 x_3$ $x_3^2 x_4$ $x_2 x_4^2$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1
x2x4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
$x_2^2 x_4$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1
X2X3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0
$x_3x_4^2$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0
x ₂ x ₃ x ₄	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Action of Z_3 by (2,3,4): each row block represents an orbit.

Matrix associated with K_4 Nullstellensatz Certificate: $M_{F,1,G}$

	\bar{c}_0	\bar{c}_{12}^{1}	\bar{c}_{12}^2	\bar{c}_{12}^{3}	\bar{c}_{12}^{4}	\bar{c}_{23}^{1}	\bar{c}_{23}^2	\bar{c}_{24}^2	\bar{c}_{34}^2
Orb(1)	1	0	0	0	0	0	0	0	0
$Orb(x_1^3)$	1	3	0	0	0	0	0	0	0
$Orb(x_1^2x_2)$	0	1	1	1	1	0	0	0	0
$Orb(x_1x_2^2)$	0	1	1	0	0	2	0	0	0
$Orb(x_1x_2x_3)$	0	0	0	1	1	1	0	0	0
$Orb(x_2^3)$	0	0	1	0	0	0	1	1	0
$Orb(x_2^2x_3)$	0	0	0	1	0	0	1	1	1
$Orb(x_2^2x_4)$	0	0	0	0	1	0	1	1	1
$Orb(x_2x_3x_4)$	0	0	0	0	0	0	0	0	3

Matrix associated with K_4 Nullstellensatz Certificate: $M_{F.1.G}$

	\bar{c}_0	\bar{c}_{12}^{1}	\bar{c}_{12}^2	\bar{c}_{12}^{3}	\bar{c}_{12}^{4}	\bar{c}_{23}^{1}	\bar{c}_{23}^2	\bar{c}_{24}^2	\bar{c}_{34}^2
Orb(1)	1	0	0	0	0	0	0	0	0
$Orb(x_1^3)$	1	3	0	0	0	0	0	0	0
$Orb(x_1^2x_2)$	0	1	1	1	1	0	0	0	0
$Orb(x_1x_2^2)$	0	1	1	0	0	2	0	0	0
$Orb(x_1x_2x_3)$	0	0	0	1	1	1	0	0	0
$Orb(x_2^3)$	0	0	1	0	0	0	1	1	0
$Orb(x_2^2x_3)$	0	0	0	1	0	0	1	1	1
$Orb(x_2^2x_4)$	0	0	0	0	1	0	1	1	1
$Orb(x_2x_3x_4)$	0	0	0	0	0	0	0	0	3

Solution to Orbit Matrix Proves Certificate Existence

• **Theorem:** Let \mathbb{K} be an algebraically-closed field. Let $F = \{f_1, \ldots, f_s\} \subseteq \mathbb{K}[x_1, \ldots, x_n]$ and suppose F is closed under the action of the group G on the variables. Suppose that the order of the group |G| and the characteristic of the field \mathbb{K} are relatively prime. Then, the degree d Nullstellensatz linear system of equations $M_{F,d} y = b_{F,d}$ has a solution over \mathbb{K} if and only if the system of linear equations $\overline{M}_{F,d}, G\overline{y} = \overline{b}_{F,d}, G$ has a solution over \mathbb{K} .

Solution to Orbit Matrix Proves Certificate Existence

• **Theorem:** Let \mathbb{K} be an algebraically-closed field. Let $F = \{f_1, \dots, f_s\} \subseteq \mathbb{K}[x_1, \dots, x_n]$ and suppose F is closed under the action of the group G on the variables. Suppose that the order of the group |G| and the characteristic of the field \mathbb{K} are relatively prime. Then, the degree d Nullstellensatz linear system of equations $M_{F,d} y = b_{F,d}$ has a solution over \mathbb{K} if and only if the system of linear equations $\overline{M}_{F,d}, G\overline{y} = \overline{b}_{F,d}, G$ has a solution over \mathbb{K} .

In other words, if the orbit matrix has a solution, so does the original matrix.

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2-1)=0$$
 , $\forall i\in V(G)$ and $(x_i+x_j)=0$, $\forall (i,j)\in E(G)$ ($\mathbb C$)

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

$$ullet$$
 $(x_i^2-1)=0$, $orall i\in V(G)$ and $(x_i+x_j)=0$, $orall (i,j)\in E(G)$ (\mathbb{C}) $-(x_0^2-1)$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
 $-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3)$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3)$$

$$-\frac{1}{2}x_0(x_3 + x_4)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})

$$- (x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3)$$

$$- \frac{1}{2}x_0(x_3 + x_4) + \frac{1}{2}x_0(x_4 + x_0)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})

$$1 = -(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3) - \frac{1}{2}x_0(x_3 + x_4) + \frac{1}{2}x_0(x_4 + x_0)$$

Perfect Matching: Definition and Example

• **Perfect Matching:** A graph *G* has a perfect matching if there **exists** a set of **matched** edges such that every vertex is incident on a **matched** edge.

Perfect Matching: Definition and Example

- Perfect Matching: A graph G has a perfect matching if there exists a set of matched edges such that every vertex is incident on a matched edge.
- **Example:** Does this graph have a perfect matching?

Perfect Matching: Definition and Example

- **Perfect Matching:** A graph *G* has a perfect matching if there **exists** a set of **matched** edges such that every vertex is incident on a **matched** edge.
- Example: Does this graph have a perfect matching? Yes!

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 \qquad \forall i \in V(G)$$

$$\sum_{j\in N(i)} x_{ij} + 1 = 0 , \quad x_{ij}x_{ik} = 0 \quad \forall i\in V(G), \forall j,k\in N(i)$$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 , \quad x_{ij}x_{ik} = 0 \quad \forall i \in V(G) , \forall j,k \in N(i)$$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 , \quad x_{ij}x_{ik} = 0 \quad \forall i \in V(G) , \forall j,k \in N(i)$$

• **Proposition:** A graph G has a perfect matching if and only if the following system of polynomial equations over $\mathbb C$ has a solution.

$$\begin{split} \sum_{j \in N(i)} x_{ij} + 1 &= 0 , \quad x_{ij} x_{ik} = 0 \quad \forall i \in V(G) , \forall j, k \in N(i) \\ 1 &= (-\frac{2}{5} x_{12} - \frac{2}{5} x_{13} - \frac{2}{5} x_{14} - \frac{2}{5} x_{23} - \frac{2}{5} x_{24} - \frac{2}{5} x_{34} - \frac{1}{5})(-1 + x_{01} + x_{02} + x_{03}) \\ &+ (-\frac{4}{5} x_{02} - \frac{4}{5} x_{03} + 2x_{23} - \frac{1}{5})(-1 + x_{01} + x_{12} + x_{13} + x_{14}) \\ &+ (-\frac{4}{5} x_{01} - \frac{4}{5} x_{03} + 2x_{13} - \frac{1}{5})(-1 + x_{02} + x_{12} + x_{23} + x_{24}) \end{split}$$

$$+\left(-\frac{4}{5}x_{01} - \frac{4}{5}x_{02} + 2x_{12} - \frac{1}{5}\right)\left(-1 + x_{03} + x_{13} + x_{23} + x_{34}\right)$$

$$+\left(\frac{6}{5}x_{01} + \frac{6}{5}x_{02} + \frac{6}{5}x_{03} - 2x_{12} - 2x_{13} - 2x_{23} - \frac{1}{5}\right)\left(-1 + x_{14} + x_{24} + x_{34}\right)$$

$$+\frac{8}{5}x_{01}x_{02} + \frac{8}{5}x_{01}x_{03} + \frac{6}{5}x_{01}x_{12} + \frac{6}{5}x_{01}x_{13} - \frac{4}{5}x_{01}x_{14} + \frac{8}{5}x_{02}x_{03} + \frac{6}{5}x_{02}x_{12}$$

$$+\frac{6}{5}x_{03}x_{13} + \frac{6}{5}x_{03}x_{23} - \frac{4}{5}x_{03}x_{34} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{14} - 4x_{12}x_{14$$

 $+2x_{23}x_{24}+2x_{23}x_{34}+2x_{12}x_{24}$;

• **Proposition:** A graph G has a perfect matching if and only if the following system of polynomial equations over $\overline{\mathbb{F}_2}$ has a solution.

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 , \quad x_{ij} x_{ik} = 0 \quad \forall i \in V(G) , \forall j, k \in N(i)$$

$$1 = \left(-\frac{2}{5}x_{12} - \frac{2}{5}x_{13} - \frac{2}{5}x_{14} - \frac{2}{5}x_{23} - \frac{2}{5}x_{24} - \frac{2}{5}x_{34} - \frac{1}{5}\right)\left(-1 + x_{01} + x_{02} + x_{03}\right)$$

$$+ \left(-\frac{4}{5}x_{02} - \frac{4}{5}x_{03} + 2x_{23} - \frac{1}{5}\right)\left(-1 + x_{01} + x_{12} + x_{13} + x_{14}\right)$$

$$+ \left(-\frac{4}{5}x_{01} - \frac{4}{5}x_{03} + 2x_{13} - \frac{1}{5}\right)\left(-1 + x_{02} + x_{12} + x_{23} + x_{24}\right)$$

$$+ \left(-\frac{4}{5}x_{01} - \frac{4}{5}x_{02} + 2x_{12} - \frac{1}{5}\right)\left(-1 + x_{03} + x_{13} + x_{23} + x_{34}\right)$$

$$+ \left(\frac{6}{5}x_{01} + \frac{6}{5}x_{02} + \frac{6}{5}x_{03} - 2x_{12} - 2x_{13} - 2x_{23} - \frac{1}{5}\right)\left(-1 + x_{14} + x_{24} + x_{34}\right)$$

$$+ \frac{8}{5}x_{01}x_{02} + \frac{8}{5}x_{01}x_{03} + \frac{6}{5}x_{01}x_{12} + \frac{6}{5}x_{01}x_{13} - \frac{4}{5}x_{01}x_{14} + \frac{8}{5}x_{02}x_{03} + \frac{6}{5}x_{02}x_{12}$$

$$+ \frac{6}{5}x_{03}x_{13} + \frac{6}{5}x_{03}x_{23} - \frac{4}{5}x_{03}x_{34} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - \frac{4}{5}x_{02}x_{13} + \frac{4}{5}x_{02}x_{13} + \frac{4}{5}x_{03}x_{13} + \frac{6}{5}x_{03}x_{23} - \frac{4}{5}x_{03}x_{24} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - \frac{4}{5}x_{03}x_{13} + \frac{4}{5}x_{03}x_{13} + \frac{4}{5}x_{03}x_{13} + \frac{4}{5}x_{03}x_{13} + \frac{4}{5}x_{03}x_{13} + \frac{4}{5}x_{03}x_{23} - \frac{4}{5}x_{03}x_{24} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - \frac{4}{5}x_{03}x_{13} + \frac{4}{5}$$

 $+2x_{23}x_{24}+2x_{23}x_{34}+2x_{12}x_{24}$;

$$\sum_{j \in N(i)} x_{ij} + 1 = 0$$
, $x_{ij}x_{ik} = 0$ $\forall i \in V(G), \forall j, k \in N(i)$

$$1 = (x_{01} + x_{02} + x_{03} + 1) + (x_{01} + x_{12} + x_{13} + 1)$$

$$+ (x_{02} + x_{12} + x_{23} + x_{24} + 1)$$

$$+ (x_{03} + x_{13} + x_{23} + x_{34} + 1)$$

$$+ (x_{24} + x_{34} + 1) \mod 2$$

• **Proposition:** A graph G has a perfect matching if and only if the following system of polynomial equations over $\overline{\mathbb{F}_2}$ has a solution.

$$\sum_{j \in \mathcal{N}(i)} x_{ij} + 1 = 0$$
 , $x_{ij}x_{ik} = 0$ $\forall i \in V(G)$, $\forall j, k \in \mathcal{N}(i)$

$$1 = (x_{01} + x_{02} + x_{03} + 1) + (x_{01} + x_{12} + x_{13} + 1) + (x_{02} + x_{12} + x_{23} + x_{24} + 1) + (x_{03} + x_{13} + x_{23} + x_{34} + 1) + (x_{24} + x_{34} + 1) \mod 2$$

• **Theorem:** If a graph *G* has an odd number of vertices, there exists a degree zero Nullstellensatz certificate.

$$\sum_{j \in \mathcal{N}(i)} x_{ij} + 1 = 0$$
 , $x_{ij}x_{ik} = 0$ $\forall i \in V(G)$, $\forall j, k \in \mathcal{N}(i)$

$$1 = (x_{01} + x_{02} + x_{03} + 1) + (x_{01} + x_{12} + x_{13} + 1) + (x_{02} + x_{12} + x_{23} + x_{24} + 1) + (x_{03} + x_{13} + x_{23} + x_{34} + 1) + (x_{24} + x_{34} + 1) \mod 2$$

- **Theorem:** If a graph *G* has an odd number of vertices, there exists a degree zero Nullstellensatz certificate.
- Question: What about graphs with an even number of vertices?

Winner of the INFORMS Computing Society Prize 2010

- J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz, Combinatorics, Probability and Computing, 18(4), pp. 551-582, 2009.
- J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Hilbert's Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility, ISSAC 2008, Hagenberg, Austria, ACM, 197-206, 2008.
- J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Computing Infeasibility Certificates for Combinatorial Problems through Hilbert's Nullstellensatz, JSC 46(11), pg. 1260-1283, 2011.
- S. M., S. Onn, On the Complexity of Hilbert Refutations for Partition, accepted to Journal of Symbolic Computation July 2013.

Winner of the INFORMS Computing Society Prize 2010

- J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz, Combinatorics, Probability and Computing, 18(4), pp. 551-582, 2009.
- J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Hilbert's Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility, ISSAC 2008, Hagenberg, Austria, ACM, 197-206, 2008.
- J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Computing Infeasibility Certificates for Combinatorial Problems through Hilbert's Nullstellensatz, JSC 46(11), pg. 1260-1283, 2011.
- S. M., S. Onn, On the Complexity of Hilbert Refutations for Partition, accepted to Journal of Symbolic Computation July 2013.

http://www.usna.edu/Users/math/marguile

Winner of the INFORMS Computing Society Prize 2010

- J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz, Combinatorics, Probability and Computing, 18(4), pp. 551-582, 2009.
- J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Hilbert's Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility, ISSAC 2008, Hagenberg, Austria, ACM, 197-206, 2008.
- J. A. De Loera, J. Lee, P.N. Malkin, S. Margulies. Computing Infeasibility Certificates for Combinatorial Problems through Hilbert's Nullstellensatz, JSC 46(11), pg. 1260-1283, 2011.
- S. M., S. Onn, On the Complexity of Hilbert Refutations for Partition, accepted to Journal of Symbolic Computation July 2013.

http://www.usna.edu/Users/math/marguile

Thank you for your attention!

Questions and **comments** are most welcome!