Problems of Enumeration and Realizability on Matroids, Simplicial Complexes, and Graphs

Yvonne Kemper
August 6, 2014
In Honor of a Diagram
Wait, what were those things again?

Definition
A graph \(G = (V, E) \) is a set of vertices \(V = \{v_1, \ldots, v_n\} \) and a set of edges \(E = \{v_iv_j : v_i, v_j \in V\} \).

Example
Here is a graph!

\[G = (V, E) = (\{1, 2, 3, 4\}, \{12, 13, 14, 23, 24\}) \]
In Honor of a Diagram

graphs
Wait, what were those things again?

Definition

A matroid $M = (E(M), \mathcal{I}(M))$ consists of a ground set $E(M)$ and a family of subsets $\mathcal{I}(M) \subseteq 2^{E(M)}$ called independent sets such that

1. $\emptyset \in \mathcal{I}$;

2. if $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$; and

3. if $I, J \in \mathcal{I}$, and $|J| < |I|$, then there exists some $e \in I \setminus J$ such that $J \cup \{e\} \in \mathcal{I}$.
Example

Here is a graph matroid!

\[M = (E(M), I(M)) = (\{1, 2, 3, 4, 5\}, \{\emptyset, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 124, 125, 134, 135, 145, 234, 235, 245\}) \]
Wait, what were those things again?

Example
Here is a graph matroid!

\[M = (E(M), \mathcal{I}(M)) \]
\[= (\{1, 2, 3, 4, 5\}, \{\emptyset, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 124, 125, 134, 135, 145, 234, 235, 245\}) \]
In Honor of a Diagram

graphs
matroids
In Honor of a Diagram

graphs
matroids
simplicial complexes
Definition
An *(abstract) simplicial complex* Δ on a *vertex set* V is a set of subsets of V. These subsets are called the *faces* of Δ, and we require that

(1) for all $v \in V$, $\{v\} \in \Delta$, and

(2) for all $F \in \Delta$, if $G \subseteq F$, then $G \in \Delta$.
Example

Here is a graph matroid simplicial complex!

\[\Delta = (V, F) = (\{1, 2, 3, 4\}, \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24\}) \]
Example

Here is a graph matroid simplicial complex!

\[\Delta = (V, F) = (\{1, 2, 3, 4\}, \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24\}) \]
In Honor of a Diagram

graphs

matroids

simplicial complexes

problems on matroids, simplicial complexes, and graphs

Lookin' good!

Yvonne Kemper

PoEaRoMSCaG
In Honor of a Diagram
In Honor of a Diagram

Lookin’ good!

Yvonne Kemper
PoEaRoMSCaG
The Problems Three

- \textit{h}-Vectors of Small Matroids
- Flows on Simplicial Complexes
- Polytopal Embeddings of Cayley Graphs
h-Vectors of Small Matroids
Definition
The **dimension** of a face F is $|F| - 1$, and the **dimension** of Δ is $d = \max\{|F| : F \in \Delta\} - 1$.

Definition
A simplicial complex is **pure** if all maximal elements of Δ have the same cardinality.
In this case, a **facet** is a maximal face, a **ridge** is a face of one dimension lower.
The \textbf{f-vector} of a simplicial complex Δ, $\dim \Delta = d - 1$, is \[
f(\Delta) := (f_{-1}(\Delta), f_0(\Delta), \ldots, f_{d-1}(\Delta)),\]
where $f_i(\Delta) := |\{F \in \Delta : \dim F = i\}|$.
The \textit{f-vector} of a simplicial complex Δ, $\dim \Delta = d - 1$, is

$$f(\Delta) := (f_{-1}(\Delta), f_0(\Delta), \ldots, f_{d-1}(\Delta)),$$

where $f_i(\Delta) := |\{ F \in \Delta : \dim F = i \}|$.

The \textit{h-vector}, $h(\Delta) := (h_0(\Delta), \ldots, h_d(\Delta))$, is given by:

$$\sum_{j=0}^{d} h_j(\Delta) \lambda^j = \sum_{i=0}^{d} f_{i-1}(\Delta) \lambda^i (1 - \lambda)^{d-i}.$$
Characterizations of f- and h-Vectors

Definition
Given two integers $k, i > 0$, write

$$k = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \cdots + \binom{n_j}{j},$$

where $n_i > n_{i-1} > \cdots > n_j \geq j \geq 1$. Define

$$k^{(i)} = \binom{n_i}{i+1} + \binom{n_{i-1}}{i} + \cdots + \binom{n_j}{j+1}.$$

Theorem (Schützenberger, Kruskal, Katona)
A vector $(1, f_0, f_1, \ldots, f_{d-1}) \in \mathbb{Z}^{d+1}$ is the f-vector of some $(d-1)$-dimensional simplicial complex Δ if and only if

$$0 < f_{i+1} \leq f^{(i+1)}_i, \quad 0 \leq i \leq d - 2.$$
Question

Can we characterize subclasses of simplicial complexes?

Example

- Cohen-Macaulay complexes
- Flag complexes
- Shifted complexes
- Independence complexes of matroids
Let M be given by:

$$I(M) = \{\emptyset,\ 1, 2, 3, 4, 5,\ 12, 13, 14, 15, 23,\ 24, 25, 34, 35, 45,\ 124, 125, 134, 135,\ 145, 234, 235, 245\}$$

Then: $f(M) = (1, 5, 10, 8)$ and $h(M) = (1, 2, 3, 2)$.
O-Sequences

- A non-empty set of monomials \mathcal{M} is a **multicomplex** if

 \[m \in \mathcal{M} \text{ and } n|m \Rightarrow n \in \mathcal{M}. \]

- A sequence $h = (h_0, h_1, \ldots, h_d)$ of integers is an **O-sequence** if there exists a multicomplex with precisely h_i monomials of degree i.

- An O-sequence is **pure** if all maximal elements have the same degree.

Example: Let $\mathcal{M} = \{1, x_1, x_2, x_1x_2, x_2^2, x_2^1x_2, x_2^2x_1, x_2^1x_2^2, x_2^2x_1x_2 \}$. Then, the corresponding (pure) O-sequence is: $O(\mathcal{M}) = (1, 2, 3, 2)$.

Yvonne Kemper PoEaRoMSCaG
A non-empty set of monomials \mathcal{M} is a **multicomplex** if

$$m \in \mathcal{M} \text{ and } n|m \Rightarrow n \in \mathcal{M}.$$

A sequence $h = (h_0, h_1, \ldots, h_d)$ of integers is an **O-sequence** if there exists a multicomplex with precisely h_i monomials of degree i.

An O-sequence is **pure** if all maximal elements have the same degree.

Example

Let $M = \{1, x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1x_2^2, x_1^2x_2\}$. Then, the corresponding (pure) O-sequence is:

$$O(M) = (1, 2, 3, 2).$$
Stanley’s Conjecture

Conjecture (Stanley, 1977)

The h-vector of a matroid complex is a pure O-sequence.

Little progress was made for twenty years, but since 1997, the conjecture has been proved for matroids which are:

- of rank 4 (Klee, Samper),
- of rank less than or equal to 3 (Stokes, Há et al.),
- cographic (Biggs, Merino),
- lattice-path (Schweig),
- cotransversal (Oh),
- paving (Merino, et al.).
Theorem (De Loera, K., Klee)

- Let M be a matroid of rank 2. Then $h(M)$ is a pure O-sequence.

- Let M be a matroid of corank 2. Then $h(M)$ is a pure O-sequence.

- Let M be a matroid of rank $d \geq 4$. Then, the subsequence $(1, h_1(M), h_2(M), h_3(M))$ of $h(M)$ is a pure O-sequence.
 - Let M be a matroid of rank 3. Then $h(M)$ is a pure O-sequence.

- Let M be a matroid on at most 9 elements. Then $h(M)$ is a pure O-sequence.
An Experimental Result: Matroids on at Most Nine Elements

- Royle and Mayhew generated list of all matroids on at most nine elements - why not check them all?
- Used database to generate all h-vectors for these matroids.
- Generated list of all possible O-sequences of multicomplexes (up to maximal degree 9 on at most 9 variables), then checked that every h-vector appeared on this list.
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.

Let’s say \(r = 3\).
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.

\((a, b)\) corresponds to the monomial \(x^a y^b\)
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.

2. Add all points in the shadow of \((a, b)\) to the multicomplex.

\[
M = \{1, x, y, xy, y^2, xy^2\}
\]
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.

2. Add all points in the shadow of \((a, b)\) to the multicomplex.

3. Repeat as desired to generate all possible \(O\)-sequences (of rank 3 and corank 2).

\[M = \{1, x, y, xy, y^2, xy^2\} \]
Example: A Multicomplex in Two Variables

Let's say \(r = 3 \).

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r \), where \(r \) is the rank of the matroid.
2. Add all points in the shadow of \((a, b)\) to the multicomplex.
3. Repeat as desired to generate all possible \(O\)-sequences (of rank 3 and corank 2).

The corresponding \(O\)-sequence is: \((1, 2, 3, 2)\).
Example: A Multicomplex in Two Variables

\[M = \{1, x, y, xy, y^2, x^2, x^2y, y^2\} \]

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.

2. Add all points in the shadow of \((a, b)\) to the multicomplex.

3. Repeat as desired to generate all possible \(O\)-sequences (of rank 3 and corank 2).

The corresponding \(O\)-sequence is: \((1, 2, 3, 2)\).
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.
2. Add all points in the shadow of \((a, b)\) to the multicomplex.
3. Repeat as desired to generate all possible \(O\)-sequences (of rank 3 and corank 2).

\[\mathcal{M} = \{1, x, y, xy, y^2, x^2, x^2y, y^2\} \]

The corresponding \(O\)-sequence is: \((1, 2, 3, 2)\).
Example: A Multicomplex in Two Variables

1. Pick a point \((a, b) \in \mathbb{Z}^2\) on the hyperplane \(x + y = r\), where \(r\) is the rank of the matroid.

2. Add all points in the shadow of \((a, b)\) to the multicomplex.

3. Repeat as desired to generate all possible \(O\)-sequences (of rank 3 and corank 2).

\[M = \{1, x, y, xy, y^2, x^2, x^2y, y^2\} \]

The corresponding \(O\)-sequence is: \((1, 2, 3, 2)\).
Future Questions and Directions

- Cannot extend results directly, but can we use the geometric viewpoint to verify the conjecture for further classes of matroid complexes?

- Use PS-ear decomposability of matroid complexes?

- Characterize f- and h-vectors for further classes of simplicial complexes, such as matroid polytopes?

- There is a list of all matroids on at most 10 elements – can we find a counterexample here?
Flows on Simplicial Complexes
Definition
A \mathbb{Z}_q-flow on an oriented graph G is a vector $x \in \mathbb{Z}_q^E$ such that

$$\sum_{h(e)=v} x_e \equiv \sum_{t(e)=v} x_e \mod q,$$

for all $v \in V$. A \mathbb{Z}_q-flow is nowhere-zero if it is fully supported.
Definition

A \mathbb{Z}_q-flow on an oriented graph G is a vector $x \in \mathbb{Z}_q^E$ such that

$$\sum_{h(e)=\nu} x_e \equiv \sum_{t(e)=\nu} x_e \mod q,$$

for all $\nu \in V$. A \mathbb{Z}_q-flow is nowhere-zero if it is fully supported.

Equivalently, a nowhere-zero \mathbb{Z}_q-flow is a fully-supported element of the kernel mod q of the signed incidence matrix of the graph.
(1, 2, 2, 3, 3) is a nowhere-zero \(\mathbb{Z}_5 \)-flow and an element of the kernel (mod 5) of the incidence matrix.
Flows originally defined in the context of electric circuits and networks

Some Previous Work:
- The number of nowhere-zero \mathbb{Z}_q-flows on a graph is a polynomial in q.
- For a planar graph G, $\chi_G(k) = k^{c(G)}(G^*)_*(k)$.
- The Max-Flow/Min-Cut problem of optimization.

Open Questions:
- 5-flow conjecture
- Volumes of flow polytopes
Definition
Let ∂ be a boundary map on a $(d - 1)$-dimensional complex Δ given by:

$$\partial [v_{i_0} \cdots v_{i_r}] = \sum_{j=0}^{r} (-1)^j [v_{i_0} \cdots \hat{v}_{i_j} \cdots v_{i_r}],$$

where $0 \leq r \leq d$. The boundary matrix of Δ is given by the signs of the ridges in the boundary maps of the facets. We denote this matrix $\partial \Delta$.
Definition

Let ∂ be a boundary map on a $(d-1)$-dimensional complex Δ given by:

$$\partial[v_{i_0} \cdots v_{i_r}] = \sum_{j=0}^{r} (-1)^j [v_{i_0} \cdots \hat{v}_{i_j} \cdots v_{i_r}],$$

where $0 \leq r \leq d$. The **boundary matrix** of Δ is given by the signs of the ridges in the boundary maps of the facets. We denote this matrix $\partial \Delta$.

The boundary matrix of an oriented graph is equal to its signed incidence matrix.
Definition
Let ∂ be a boundary map on a $(d - 1)$-dimensional complex Δ given by:

$$
\partial [v_{i_0} \cdots v_{i_r}] = \sum_{j=0}^{r} (-1)^j [v_{i_0} \cdots \hat{v}_{i_j} \cdots v_{i_r}],
$$

where $0 \leq r \leq d$. The boundary matrix of Δ is given by the signs of the ridges in the boundary maps of the facets. We denote this matrix $\partial \Delta$.

The boundary matrix of an oriented graph is equal to its signed incidence matrix.

Definition
A \mathbb{Z}_q-flow on a pure simplicial complex Δ is an element of the kernel mod q of the boundary matrix of Δ.
Flows on Simplicial Complexes

Example
The surface of a tetrahedron.

An example of a \mathbb{Z}_4-flow is: $(1, 3, 1, 3)$.
Proposition (Beck, K.)

Let Δ be a triangulation of a manifold, and let $\phi_\Delta(q)$ be the number of nowhere-zero \mathbb{Z}_q-flows on Δ. Then,

$$\phi_\Delta(q) = \begin{cases}
0 & \text{if } \Delta \text{ has boundary;} \\
q - 1 & \text{if } \Delta \text{ is without boundary, } \mathbb{Z}\text{-orientable;} \\
0 & \text{if } \Delta \text{ is without boundary, non-}\mathbb{Z}\text{-orientable, } q \text{ odd;} \\
1 & \text{if } \Delta \text{ is without boundary, non-}\mathbb{Z}\text{-orientable, } q \text{ even.}
\end{cases}$$
Definition
A function ϕ in an integer variable t is a **quasipolynomial** if there exists an integer $k > 0$ and polynomials $p_0(t), \ldots, p_{k-1}(t)$ such that

$$\phi(t) = p_j(t) \quad \text{if} \quad t \equiv j \mod k.$$

The minimal such k is the **period** of ϕ.

Example
Let $\phi(t)$ be defined for $t \in \mathbb{Z}$ as follows:

$$\begin{align*}
\phi(t) &= \begin{cases}
t^2 + 1 & \text{if } t \equiv 0 \mod 5 \\
t - 4 & \text{if } t \equiv 1, 3 \mod 5 \\
3t^3 + 1 & \text{if } t \equiv 2 \mod 5 \\
0 & \text{if } t \equiv 4 \mod 5
\end{cases}.
\end{align*}$$

Then $\phi(t)$ is a quasipolynomial with period 5.
Definition

A function ϕ in an integer variable t is a **quasipolynomial** if there exists an integer $k > 0$ and polynomials $p_0(t), \ldots, p_{k-1}(t)$ such that

$$
\phi(t) = p_j(t) \quad \text{if} \quad t \equiv j \mod k.
$$

The minimal such k is the **period** of ϕ.

Example

Let $\phi(t)$ be defined for $t \in \mathbb{Z}$ as follows:

$$
\phi(t) = \begin{cases}
 t^2 + 1 & \text{if } t \equiv 0 \mod 5 \\
 t - 4 & \text{if } t \equiv 1, 3 \mod 5 \\
 3t^3 + \frac{1}{2}t & \text{if } t \equiv 2 \mod 5 \\
 0 & \text{if } t \equiv 4 \mod 5.
\end{cases}
$$

Then $\phi(t)$ is a quasipolynomial with period 5.
Results

Theorem (Beck, K.)

The number $\phi_\Delta(q)$ of nowhere-zero \mathbb{Z}_q-flows on Δ is a quasipolynomial in q. Furthermore, there exists a polynomial $p(x)$ such that $\phi_\Delta(k) = p(k)$ for all integers k that are relatively prime to the period of $\phi_\Delta(q)$.

Theorem (Beck, K.)

- Let q be a sufficiently large prime number, and let Δ be a simplicial complex of dimension d. Then the number $\phi_\Delta(q)$ of nowhere-zero \mathbb{Z}_q-flows on Δ is a polynomial in q of degree $\dim_{\mathbb{Q}}(\tilde{H}_d(\Delta; \mathbb{Q}))$.
- In particular, $\phi_\Delta(q) = (-1)^{|E(M)|-rk(M)} \text{Tr}_M(0, 1 - q)$, where M is the matroid given by the columns of $\partial \Delta$.
Example

Let K be the Klein bottle. Then:

$$H_2(K; \mathbb{Z}_q) = \begin{cases} \mathbb{Z}_2 & \text{q even} \\ 0 & \text{q odd.} \end{cases}$$

Therefore:

$$\phi_K(q) = \begin{cases} 1 & \text{q even} \\ 0 & \text{q odd;} \end{cases}$$

$\phi_K(q)$ is a quasipolynomial with period 2.
Definition
A matrix is *totally unimodular* (TU) iff every subdeterminant is 0, 1, or −1.

Fact
If the boundary matrix of a simplicial complex Δ is TU, then $\phi_\Delta(q)$ has period 1.
The Period of the Flow Quasipolynomial

Definition
A matrix is **totally unimodular** (TU) iff every subdeterminant is 0, 1, or −1.

Fact
If the boundary matrix of a simplicial complex Δ is TU, then $\phi_\Delta(q)$ has period 1.

Theorem (Dey, Hirani, Krishnamoorthy)
*For a finite simplicial complex Δ of dimension greater than $d - 1$, the boundary matrix $[\partial_d]$ is totally unimodular if and only if $H_{d-1}(L, L_0)$ is torsion-free for all pure subcomplexes L_0, L in Δ of dimensions $d - 1$ and d respectively, where $L_0 \subset L$.***
Definition

A **convex ear decomposition** of a pure rank-\(d\) simplicial complex \(\Delta\) is an ordered sequence \(\Sigma_1, \Sigma_2, \ldots, \Sigma_n\) (the **ears**) of pure rank-\(d\) subcomplexes of \(\Delta\) such that

1. \(\Sigma_1\) is the boundary complex of a simplicial \(d\)-polytope, while for each \(i = 2, \ldots, n\), \(\Sigma_i\) is a \((d-1)\)-ball which is a (proper) sub-complex of the boundary complex of a simplicial \(d\)-polytope, and

2. For \(i \geq 2\), \(\Sigma_i \cap \left(\bigcup_{j=1}^{i-1} \Sigma_j \right) = \partial \Sigma_i\).
CED But Not TU

$\phi(q) = (q - 1)(q - 2)$

BUT the period is still equal to 1 – perhaps there is hope...?
CED But Not TU

$\phi_\Delta(q) = (q - 1)(q - 2)$

BUT the period is still equal to 1 – perhaps there is hope...?
CED, Not TU, and $p > 1$

$$\phi_{\Delta}(q) = q^3 - 7q^2 + 15q - 8 - \gcd(2, q)$$
Open Questions and Future Directions

- **Topological Conditions**
 - Necessary and/or sufficient topological conditions for period equal to 1?
 - Necessary and/or sufficient topological conditions for period greater than 1?

- **The Period of the Flow Quasipolynomial**
 - Is there a bound for quasipolynomials from modular flows?
 - Can we find a subcomplex that guarantees a period greater than 1 – or is there always the possibility of period collapse?

- **Constructions preserving/leading to polynomiality**
 - Families of simplicial complexes with $p = 1$?
 - Relationship between $\phi_G(q)$ of a graph G and $\phi_{\Delta(G)}(q)$?
Polytopal Embeddings of Cayley Graphs
Cayley Graphs

Definition
Let Γ be a group, and Δ a set of generators of Γ. The **Cayley color graph**, $C(\Gamma, \Delta)$, of (Γ, Δ) is a directed, edge-colored graph such that:

- its vertices are the elements of Γ, and
- there is directed edge colored h from g_1 to g_2 if there exists a generator $h \in \Delta$ such that $g_1 h = g_2$.

If we forget the colors and directions of the edges of $C(\Gamma, \Delta)$, we have the **Cayley graph**, $G(\Gamma, \Delta)$.

Remark
A group will have many Cayley graphs, which depend on the representation that is used.
An Example

Say we have a representation of a group
\[\Gamma = \langle x, y \mid xy = yx, \ x^3 = y^2 = 1 \rangle. \] The Cayley color graph is:

![Cayley color graph](image-url)
An Example

Say we have a representation of a graph $\Gamma = \langle x, y \mid xy = yx, x^3 = y^2 = 1 \rangle$. The Cayley color graph is:

![Cayley color graph]

where x and y are the generators of the group, and $x^3 = y^2 = 1$ are the relations.
An Example

Say we have a representation of a graph
\[\Gamma = \langle x, y \mid xy = yx, x^3 = y^2 = 1 \rangle. \] The Cayley graph is:

![Cayley graph diagram]

\[y \quad \quad x \quad \quad yx \quad \quad yx^2 \]

\[1 \quad \quad x \quad \quad x^2 \]
Definition
The **genus** of a graph is the minimal genus of all orientable surfaces in which G can be embedded.

Definition
The **genus** of a group Γ, $\gamma(\Gamma)$, is the minimal genus among the genera of all possible Cayley graphs of Γ.
Definition
The *genus* of a graph is the minimal genus of all orientable surfaces in which G can be embedded.

Definition
The *genus* of a group Γ, $\gamma(\Gamma)$, is the minimal genus among the genera of all possible Cayley graphs of Γ.

Open Problem!
Classify all finite groups of a particular genus γ, for all $\gamma > 2$./
Finite Groups of Genus 0, 1, and 2

- **Genus 0**: Classified by Maschke (1896)

- **Genus 1**: Classified by Proulx in her thesis (1978)

- **Genus 2**: Just one of them, found by Tucker (1984)

\[\langle x, y, z \mid x^2 = y^2 = z^2 = 1, \]
\[(xy)^2 = (yz)^3 = (xz)^8 = 1, \]
\[y(xz)^4 y(xz)^4 = 1 \rangle \]
Finite Groups of Genus 0, 1, and 2

- **Genus 0:** Classified by Maschke (1896)

- **Genus 1:** Classified by Proulx in her thesis (1978)

- **Genus 2:** Just one of them, found by Tucker (1984)

\[\langle x, y, z \mid x^2 = y^2 = z^2 = 1, \]
\[(xy)^2 = (yz)^3 = (xz)^8 = 1, \]
\[y(xz)^4 y(xz)^4 = 1 \rangle \]
Question

When is there a polyhedral embedding of a planar group?
Definition

- A separator S of a graph G is a subset of the vertices V such that $V \setminus S$ has at least two components.

- A k-separator is a separator of cardinality k.

- A graph is k-connected if there exist no separators of cardinality $\leq k - 1$.
Question

When is there a polyhedral embedding of a planar group?
Question

When is there a polyhedral embedding of a planar group?

Fact 1: (Steinitz, 1922) A graph is the 1-skeleton of a polyhedron iff it is 3-connected and planar.
Question

When is there a **polyhedral** embedding of a planar group?

- **Fact 1**: (Steinitz, 1922) A graph is the 1-skeleton of a polyhedron iff it is 3-connected and planar.
- **Fact 1+**: (Mani, 1971) Every 3-connected, planar graph G is the 1-skeleton of a polyhedron P such that every automorphism of G is induced by a symmetry of P.
Question

When is there a polyhedral embedding of a planar group?

- **Fact 1**: (Steinitz, 1922) A graph is the 1-skeleton of a polyhedron iff it is 3-connected and planar.
- **Fact 1+**: (Mani, 1971) Every 3-connected, planar graph G is the 1-skeleton of a polyhedron P such that every automorphism of G is induced by a symmetry of P.

Proposition (De Loera)

Let $G(\Gamma, \Delta)$ be a planar Cayley graph for the group Γ. Then $G(\Gamma, \Delta)$ can be embedded as the 1-skeleton of a polytope.
An Example

Say we have a representation of a graph
\[\Gamma = \langle x, y \mid xy = yx, \ x^3 = y^2 = 1 \rangle. \] The polytonal embedding of the Cayley color graph is...?

It is 3-connected, and it is clearly planar...
An Example

Say we have a representation of a graph
\[\Gamma = \langle x, y \mid xy = yx, \ x^3 = y^2 = 1 \rangle. \] The polytonal embedding of the Cayley color graph is:

![Graph Diagram]

1

\[x \]

\[y \]

\[yx \]

\[yx^2 \]

\[x^2 \]
A Natural Question

Question

For any group Γ, and any representation Δ, can we always find a convex polytope such that $G(\Gamma, \Delta)$ is its 1-skeleton?
A Natural Question

Question

For any group Γ, and any representation Δ, can we always find a convex polytope such that $G(\Gamma, \Delta)$ is its 1-skeleton?

Let’s find out...
One presentation of Q_8 is:

$$\Delta = \langle i, j \mid i^4 = 1, i^2 = j^2, j^{-1}ij = i^{-1} \rangle.$$
The Quaternions: Q_8

One presentation of Q_8 is:

$$\Delta = \langle i, j \mid i^4 = 1, i^2 = j^2, j^{-1}ij = i^{-1} \rangle.$$

This has the corresponding Cayley color graph:
Q_8 has Genus 1

We can embed this Cayley color graph on a Torus:
Question

Can Q_8 be embedded as the 1-skeleton of some convex polytope?
A Natural Question: Let’s be specific, here.

Question

Can Q_8 be embedded as the 1-skeleton of some convex polytope?

Theorem

Nope!
A Natural Question: Let’s be specific, here.

Question

Can Q_8 be embedded as the 1-skeleton of some convex polytope?

Theorem

Nope!

A More Honest Theorem

There exists no convex polytope P with $G(P)$ equal to the Cayley graph of a minimal presentation of the quaternion group.
What’s next?

- Are there (infinite) families of groups the minimal presentations of which cannot be embedded as the graphs of convex \(d \)-polytopes?
- Can we use group theory to characterize the embeddability of Cayley graphs?
 - Characterize subgroups that “block” the embedding of the Cayley graphs
 - Show that there exist no such subgroups
- Are there forbidden minor characterizations for the embeddability of Cayley graphs?
- Can we develop constructions that give \(d \)-polytopes with graphs equal to Cayley graphs?
Thank you!