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Big Data Challenges for ML

We face an explosion in data!

Internet transactions
DNA sequencing
Satellite imagery
Environmental sensors

Real-world data can be:

Vast

High-dimensional

Noisy, raw

Sparse

Streaming, time-varying
Sensitive/private




Machine Learning

Given labeled data points, find a good classification rule.

Describes the data
Generalizes well

E.g. linear classifiers:




Machine Learning algorithms
for real data sources

Goal: design algorithms to detect patterns in real data sources.
Want efficient algorithms, with performance guarantees.

Data streams

 Raw (unlabeled or partially-labeled) data
— Active learning
— Clustering

Sensitive/private data
— Privacy-preserving machine learning

* New applications of Machine Learning
— Climate Informatics



Machine Learning algorithms
for real data sources

Goal: design algorithms to detect patterns in real data sources.
Want efficient algorithms, with performance guarantees.

e Data streams

 Raw (unlabeled or partially-labeled) data
— Active learning

— Clustering




Data stream motivations

Data velocity: data arrives in a stream over time.

DELL COMPUTER WORLDCOM GRF ~ PALM INC

14,18 +0.05 12,03 +0.3¢2

e.g. forecasting, real-time decision making, streaming data applications.

Data volume: data is large compared to memory or
computation resources.

e.g. resource-constrained learning.



Learning from data streams

Data arrives in a stream over time.

E.g. linear classifiers:
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— Aggregating and detecting topics in streaming media
* e.g. clustering video, music, news stories

* Climate / weather:

— Grouping / detecting spatiotemporal patterns
e e.g. droughts, storms

* Exploratory data analysis:
— e.g. Neuroscience:
* online spike classification
e pattern detection in networks of neurons
* network monitoring

— Astronomy



Clustering

What can be done without any labels?
Unsupervised learning, Clustering.

How to evaluate a clustering algorithm?



k-means clustering objective

Clustering algorithms can be hard to evaluate without prior
information or assumptions on the data.

With no assumptions on the data, one evaluation technique is w.r.t.
some objective function.

A widely-cited and studied objective is the k-means clustering
objective: Given set, X c RY, choose C c RY, |C| =k, to minimize:

_ : 2
bc =) minfz—c]
reX



k-means approximation

Optimizing k-means is NP-hard, even for k=2.
[Dasgupta ‘08; Deshpande & Popat ‘08].

Very few algorithms approximate the k-means objective.
Definition: b-approximation: ¢ < b- dopr
Definition: Bi-criteria (a,b)-approximation guarantee: a-k centers,
b-approximation.

Even “the k-means algorithm” [Lloyd 1957] does not have an
approximation guarantee. Can suffer from bad initialization.

Goal: approximate the k-means clustering objective with
streaming or online clustering algorithms [Open problems,
Dasgupta ‘08]



Learning from data streams

I N A
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“Streaming” model:

e  Stream of of known length n.

« Memory available is o(n)

e Tested only at the end

A (small) constant number of passes allowed

“Online” model:

 Endless stream of data

 Fixed amount of memory

 Tested at every time step

e Each point in stream is seen only once



Outline

Streaming clustering
[Ailon, Jaiswal & M, NIPS 2009]

Online clustering
[Choromanska & M, AISTATS 2012]



Streaming k-means approximation

[Ailon, Jaiswal & M, NIPS 2009]:

Goal: approximate the k-means objective with a one-pass streaming
clustering algorithm

Related work:

[Arthur & Vassilvitskii, SODA ‘07]: k-means++, a batch clustering
algorithm with O(log k)-approx. of k-means.

[Guha, Meyerson, Mishra, Motwani, & O’ Callaghan, TKDE " 03]:
Divide and conquer streaming (a,b)-approximate k-medoid
clustering.



Contributions to streaming clustering

Extend k-means++ to k-means#, an (O(log k), O(1))-approximation to k-
means, in batch setting.

Analyze Guha et al. divide and conquer algorithm, using (a,b)-
approximate k-means clustering.

Use Guha et al. with k-means# and then k-means++ to yield a one-pass
O(log k)-approximation algorithm to k-means objective.

Analyze multi-level hierarchy version for improved memory vs.
approximation tradeoff.

Experiments on real and simulated data.



k-means++

Algorithm:

Choose first center c: uniformly at random from X,
and let C = {ci}.

Repeat (k-1) times: D(&,C)?

Choose next center ci = x €X with prob. Y ., D(z,C)?
C < C U {ci} where D(z,C) = m1n||a:—c||

Theorem (Arthur & Vassilvitskii * 07): Returns an O(log k)-
approximation, in expectation.



k-means

Idea: k-means++ returns k centers, with O(log k)-approximation. Can we
design a variant that returns O(k log k) centers, but constant approximation?

Algorithm:
Initialize C={}.

Choose 3-log(k) centers independently and uniformly
at random from X, and add them to C.

Repeat (k-1) times: D(«,C)?

Choose 3-log(k) centers indep. with prob. S+ D(z,C)2
and add them to C.



k-means# proof idea
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The clustering (partition) induced by OPT.

—> We cover the k clusters in OPT, after choosing O(k log k) centers.



k-means

Theorem: With probability at least 1/4, k-means# yields an O(1)-
approximation, on O(k log k) centers.

Proof outline: Definition “covered”: cluster A € OPT is covered if:
bc(A) < 32- popr(4) » Where ¢o(4) = " D(z,C)? .

T€EA

Define {Xc, Xu}: the partition of X into covered, uncovered.
* In first round we cover one cluster in OPT.
* Inany later round, either:
Case 1: ¢c(X:) > ¢c(Xu) : We are done. (Reached 64-approx.)

Case 2 : ¢o(Xe) < dc(Xy) : We are likely to hit and cover
another uncovered cluster in OPT.

We show k-means# is a (3 - log(k), 64)-approximation to k-means.



k-means# proof: First round

Fix any point x chosen in the first step. Define A as the unique cluster in OPT,
s.t.x € A.

Lemma (AV ‘07): Fix A € OPT, and let C be the 1-clustering with the center
chosen uniformly at random from A. Then E[¢c(A)] = 2 - popr(A) .

Corollary: Pr(¢c(A) < 8- popr(A)] > 3/4 . Pf. Apply Markov's inequality.

After 3 -log(k) random points, probability of hitting a cluster A with a point
that is good for Ais at least 1 — (1/4)310gk >1—1/k

So after first step, w.p. at least (1-1/k), at least 1 cluster is covered.



k-means# proof: Case 1
Case 1: ¢c(Xec) > dc(Xu) -

Since X=X U Xu and by definition of ¢,

dc(X) = pc(Xe) + ¢c(Xu) <2-9c(Xc) £64- popr(Xc) <64 - dpopr(X)

by definition of Case 1, and definition of covered.

Last inequality is by Xc &X, and definition of ¢ (each term in
sum is nonnegative).



k-means# proof: Case 2

Case 2: %c(Xc) < dc(Xu) :

The probability of picking a point in Xy at the next round is:
Zmexu D(:B,C)z _ (bC’(Xu) > 1
>zex D@, C)?  ¢c(Xu) + dc(Xe) — 2

Lemma (AV ‘07): Fix A € OPT, and let C be any clustering. If we add

a center to C, sampled randomly from the D? weighting over A,
yielding C' then: El¢c/(A)] <8-dopr(A) .

Corollary: Pr[¢c/(A) < 32- popr(A)] > 3/4 . By Markov’s inequality.

1 3 3 : L :
So, w.p. >3- 7 =2 we pick a point in Xu that covers a new cluster in
OPT.

After 3 -log(k) picks, prob. of covering a new cluster is at least (1-1/k).



k-means#t proof summary

For the first round, prob. of covering a cluster in OPT is at least (1-1/k).

For the k-1 remaining rounds, either Case 1 holds, and we have achieved
a 64-approximation, or Case 2 holds, and the probability of covering a

new cluster in OPT, in the next round, is at least (1-1/k).

So the probability that after k rounds there exists an uncovered cluster
inOPTis <1-(1-1/k)*<3/4

Thus the algorithm achieves a 64-approximation on 3k - log(k) centers,
with probability at least 1/4.



k-means

Theorem: with probability at least 1/4, k-means# yields an O(1)-

approximation, on O(k log k) centers.

Corol Iary: With probability at least 1-1/n, running k-means# for

3-log n independent runs yields an O(1)-approximation (on O(k log k)
centers).

Proof: Call it repeatedly, 3:log n times, independently, and choose the

clustering that yields the minimum cost. Corollary follows, since

(- @) > (1-1)

n



Divide and conquer clustering

S - stream

{Si} — partition
(a,b)-clustering -
{Ti} - sets of ‘centers’

Sw- UiTiwith weights w(tij) = |Sij|
(@’ b’)-clustering i .

T —final “centers”

[Guha et al. ‘03] analyzed this template for k-medoid clustering:
(a’, O(bb’))-approximation.



One-pass k-means approximation

We analyze the Guha et al. scheme for (a,b)-approximation algorithms w.r.t.
k-means: yields a one-pass (a’, O(bb’))-approximation algorithm.

Our algorithm:
For the (a,b) algorithm, use (repeated) k-means#: a = O(log k), b = O(1).

For the (a’,b’) algorithm, use k-means++: a’' =1, b’ = O(log k)

So the combined algorithm is a (1, O(log k))-approximation to k-means.



Memory vs. Approximation

Theorem: Given memory

M = n* for a fixed a > 0, letting
r =1/a yields an r-level one-
pass algorithm with

O(c™' log k)-approximation.



Experiments

k BL OL DC-1 DC-2 BL OL [ DC-1 | DC-=2
5 | 4.7254-107 | 6.5967 - 10" | 7.9336-109 | 7.8752-109 | 5.80 | 1.44 | 16.95 | 12.22
10 | 2.8738-10% | 6.0146 - 107 | 4.5968 - 10" | 4.7288-10% | 7.33 | 2.76 | 53.10 | 24.74
15 | 1.6753-10% | 4.3743.10° | 2.4338-10% | 2.6280-10" | 885 | 4.00 | 112.68 | 36.86
20 | 7.0016-10° | 3.7794-10" | 1.0661-10" | 1.1017-10" | 11.75 | 6.04 | 250.21 | 48.57
25 | 6.0011-10° | 2.8859 10" | 2.7493-10° | 2.7906 - 10° | 13.83 | 7.00 | 403.81 | 60.96

Table 1: norm25 dataset. (columns 2-5 has the clustering cost and columns 6-9 has time in sec.)

Mixture of 25 Gaussians:

10K points sampled from a mixture of

25 Gaussians chosen at random from

15 dimensional hypercube (side 500).

(o))

cost in units of 10

~=#== Online Lloyds
=—©— Divide and Conquer with km# and km++

= = = Divide and Conquer with km++ I
=—©— Batch Lloyds

1
10

Il 1
15 20 25



Experiments

k BL OL DC-1 DC-2 BL | OL | DC-1 | DC-2 50 ' ‘
5 | 1.7713- 107 | 1.2401- 108 | 2.2582 - 107 | 2.1683- 107 | 1.78 | 0.15 | 2.30 | 1.10 © gfv‘l‘;‘j“eggzdgon vor with kit and Kines
10 | 6.5871-10° | 8.5684 - 107 | 8.3452- 10° | 8.2037-10° | 2.27 | 0.31 | 7.45 | 2.40 457 _ea ~ Divide and Gonduer with ki I

15 | 4.9851-10° | 8.4633-107 | 4.9935-10° | 5.1391-10° | 3.42 | 0.45 | 13.34 | 3.32

20 | 3.7836- 10° | 6.5110- 107 | 3.9289- 10" | 3.7279-10° | 3.38 | 0.59 | 32.42 | 5.00

25 | 2.6363 - 10° | 6.3758 - 107 | 2.8899- 10° | 2.9470- 105 | 4.54 | 0.62 | 46.45 | 5.89

Table 2: Cloud dataset. (columns 2-5 has the clustering cost and columns 6-9 has time in sec.)
25

=—6— Batch Lloyds
=6 Divide and Conquer with km# and km++
= ® = Divide and Conquer with km++

cost in units of 107

—
(6]
T

-
o
T

cost in units of 10°

k BL OL DC-1 DC-2 BL OL | DC-1 | DC-2

5 |4.8769-10° [ 1.7001-10 | 3.1770-10° | 3.3191-10° | 3.74 | 0.87 | 14.60 | 6.53

10 | 1.8169 - 10° | 1.6930- 107 | 1.0104 - 10% | 1.0271-10° | 5.59 | 1.66 | 47.92 | 12.17

15 | 1.6227- 10 [ 1.4762- 10" | 5.3517 - 107 | 5.7865-10" | 7.04 | 2.19 | 86.54 | 17.53

20 | 1.5580 - 107 | 1.4766 - 10" | 3.2577 - 107 | 3.4155-10" | 9.87 | 2.83 | 218.95 | 25.70

25 | 1.4704-10% | 1.4754-10% | 2.3981 - 10° | 2.2735-10° | 13.26 | 4.41 | 331.77 | 40.64

k Table 3: Spambase dataset. (columns 2-5 has the clustering cost and columns 6-9 has time in sec.)

UCI data: Clouds and Spambase.



Outline

Streaming clustering
[Ailon, Jaiswal & M, NIPS 2009]

Online clustering
[Choromanska & M, AISTATS 2012]



Open problems posed by Dasgupta

Provide an online algorithm for k-means clustering endless
streams in either framework [Dasgupta, Spring 08, Lecture 6]:

1. Attimet, algorithm sees data point x,, and outputs the set of k
centers C,. For some constant a > 1 and for all t:

cost(Cy) < a-OPT;.
where OPT; = cost(best k centers for xi,...,T:).

2. Attimet, algorithm announces set of k centers C,, then sees x, and
incurs loss equal to cost of x, under C,: the squared distance from x,
to closest center in C,. Goal: bound the regret G, between
cumulative loss at time T, and OPT for the stream seen so far:

Lr(alg) = E mgl |z, — c||* < OPTr + G
cCy
t<T



Online clustering with experts

[Choromanska & M, AISTATS 2012]

Goal: approximate the k-means clustering objective with an online
clustering algorithm

A new evaluation framework, extending Dasgupta’s

— Bound variant of 2 w.r.t. performance of a set of experts: clustering
algorithms

* A new family of online clustering algorithms

— Extend algorithms for online learning with experts

* Performance guarantees with no data assumptions
— Regret bounds
— Novel form of online clustering approximation guarantees, w.r.t. OPT!

* Encouraging experimental performance



Contributions to online clustering

* Extend online learning algorithms from [Herbster &
Warmuth ‘98] and [M & Jaakkola ‘03] to clustering setting.

— Instead of using prediction errors to update weights over experts,
use a proxy for k-means cost obtained so far.

* Prove (c,n)-realizability of our clustering and loss function.
— Allows us to extend regret bounds from [HW98] and [MJO03].

 Add assumptions that experts are b-approximation
algorithms w.r.t. k-means objective, to extend regret bounds

— Novel online approximation bounds w.r.t. OPT for the entire
stream!



Online learning (supervised setting)

e Learning proceeds in stages.
— Algorithm first predicts a label for the current data point.
— Loss is then computed: function of predicted and observed label.
— Learner can update its hypothesis (usually taking into account loss).

* Framework models regression, or classification

— By varying choice of loss function:
* Many hypothesis classes
* Problem need not be separable

* Non-stochastic setting: no statistical assumptions.
— No assumptions on observation sequence.

— Observations can even be generated online by an adaptive adversary.

* Analyze regret: difference in cumulative loss from that of the
optimal comparator algorithm for the observed sequence
(computed in hindsight) .



Online learning with experts

Learner maintains distribution over n “experts.”

Algorithm .

pt(i) |
_» L - .
Eoorts 1 A @ \I |>’ 2N
xpe . n: | \ e e ‘l
P < < <O

Experts are black boxes: need not be good algorithms, can vary with time, and depend
on one another.

Learner informs prediction using a probability distribution p,(i) over experts, i,
depending on L(i,t), loss of expert i’s output w.r.t. observation — defined per
problem.

Different algorithms to update p, (i) - based on the model of time-varying data.



Shifting algorithms

To handle changing observations, maintain p,(i) via an HMM.
Hidden state: identity of the current best expert.

~ Pligslig)
| i ) " i, P,,(1) =Plly ., ...,y )

' '
- \ - \ ( i )‘i"fe—x.(x t+1)
Yy Y PW ,IMY e

[M&Jaakkola‘03]: Performing Bayesian updates on this HMM yields existing online learning algorithms.

Pr+1(2) o Zpt ~HIDp (i 5)

Static update, P(i | j) = 0(i,j) gives [Littlestone&Warmuth‘89] algorithm: The Weighted Majority
Algorithm, a.k.a. Static-Expert. —L(i,t)
Pr+1(1) o py(i)e



Shifting algorithms

To handle changing observations, maintain p,(i) via an HMM.
Hidden state: identity of the current best expert.

. Pligsalie) —
i) T dpg) Pepd) = PAElY --0y)
1 1
f N\ 4 ' ( ) ‘f’fe—z.(i,tu)
11 Yt ) "» y p yt+1 'Yl g oo ’yt =

Performing Bayesian updates on this HMM yields existing OL algorithms.

Pra (i <><Zpt ~LGDp(i]5)

[Herbster&Warmuth’ 98] ]_ — 2 — 9
Model shifting concepts via: P(zl‘]\ Cl") — ( N ) . ]
n—1 L # .7




Learn-a algorithm

[M, 2003] [M & Jaakkola, NIPS 2003]

Learn-o algorithm: Learn the o parameter using a—experts,
each updating with different value of a.. Use Bayesian updates to
track the best o

Algorithm Learn-a . pt+1(&) X pt(a)e—L(a,t)

a—experts 1...m [ L 5] [ 54  eee [ 54
i
Py, o)

a
ol /“‘& s
/ L I I

Experts i=1.



Online clustering with experts

Algorithm produces clustering informed by experts’ clusterings:

Clustering “experts” output centers at each time t.

Approximation assumptions on the batch clustering algorithms used as experts
yields novel online approximation guarantees.

At time t, algorithm receives experts’ clusterings and outputs a clustering
informed by experts.

Xt

© © 6066 6 06 ¢ ¢ ®© 06 @

R

expert 1
Pl

o) expert 2

" expert 3
p(3)

expertn

'

outputted clustering




Analysis ideas

* Prove clustering analogs of regret bounds.
— Define clustering and loss functions. L(x;,c;) =

clust(t) = 1, pi(i)c.
— Prove (c,n)-realizability to relate our loss to log-loss.

2
Lt — Ct

2R

e Instantiate experts as (batch) clustering algorithms with b-
approximation assumptions, run on sliding window

— Starting from regret bounds, extend with approximation
assumptions to yield novel online approximation guarantees.



Performance Guarantees

* Staticexpert: Lr(alg) < Lr(ai*x)+2logn

bW
Lrt(alg) < -;L)?OPTT + 2logn

* Fixed-share: L!%(a) < L'%%(a*) + (T — 1)D(a*||)

Lr(a) < ﬂOPTT +2(T —1)D(a||c)
* Learn-a: 4R*

L28(alg) < L8(a*) + (T — 1) min D(a*||a;) + logm

{a;}
bW : X
Lr(alg) < @OPTT-FQ(T—I) {IIII;D(Q |aj)+1logm



Results: final k-means cost

x10" Mixture of 25 Gaussians x10' Cioud data x 10" data
9 45- 5 Expert 1
w— Expent 2
s 4 455 —— Expert 3
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a Fixed-Share 4
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4t 2
- - x 2
L 1
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n T —
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Figure 1: k-means cost on the entire sequence, versus k, per experiment. Legend in upper right.



Results: mean cost over segquence

| | 25 Gaussians ] Cloud x10" | Spam x10° | Intrus. x10"° | For. fire x10° | Robot x10* |
e1 0.619340.3195x 108 1.3180+1.9395 0.2706+0.2793 0.1988+0.2104 0.7766+0.6413 1.8362+1.2172
ex | 0.0036+40.0290x107 | 0.8837+1.3834 | 0.1042+0.1463 | 0.0743+0.1041 | 0.6616+0.4832 | 1.8199+1.2102
es 2.0859+40.9204x 108 4.6601+7.8013 1.6291+1.3292 0.7145+0.5376 7.1172+7.6576 2.3590+1.4070
da | 0.0179+40.0723x10% | 0.5285+40.2959 | 0.1971+0.0826 | 0.0050+0.0529 1.4496+0.6484 2.5514+41.4239
ol 1.771440.6888x10° 4.2322+2.4965 0.8222+0.7619 1.3518+0.3827 2.9617+1.3006 1.9806+1.0160
se | 0.0014+0.0143x10% | 0.8855+1.3824 | 0.1059+0.1469 | 0.0778+0.1094 0.6620+40.4831 1.8139+1.2032
f1 0.0014+0.0143x10® | 0.8855+1.3823 | 0.1059+0.1469 | 0.0779+0.1100 0.6614+0.4819 1.8137+1.2032
) 0.0014+0.0143x10% | 0.9114+1.4381 | 0.1059+0.1470 | 0.0778+0.1099 0.7008+0.5382 1.8134+1.2031
f3 0.0014+0.0143x10% | 1.0715+1.6511 | 0.1059+0.1470 | 0.0779+0.1099 0.6996+0.5361 1.8145+41.2031
f4 0.012440.0193x 108 1.48064-2.6257 0.3723+0.7351 0.1803+0.2358 1.0489+1.4817 1.8334+1.2212
f5 1.3811+1.0881x 108 3.0837+6.3553 0.8212+1.1583 0.4126+0.5040 4.4481+6.2816 2.2576+1.3849
la | 0.0012+0.0136x10°% | 0.8862+1.3920 | 0.1076+0.1483 | 0.0785+0.1108 0.6616+0.4805 | 1.8130+1.2026
es | 7.3703+4.2635x10° | 0.6742+1.2301 | 0.0687+0.1355 | 0.0704+0.1042 | 0.2316+0.2573 | 1.3667+1.0176
es 8.2289+44.4386x10° 0.6833+1.2278 0.0692+0.1356 | 0.0704+0.1042 0.2625+0.2685 1.4385+1.0495
€ 9.8080+4.7863x10° 0.7079+1.2364 0.0710+0.1360 0.0705+0.1042 0.3256+0.2889 1.5713+1.1011
se | 0.1360+1.4323x10° | 0.6743+1.2300 | 0.0687+0.1355 | 0.0705+0.1045 0.2322+0.2571 1.3642+1.0138
f1 0.1360+1.4323x10° | 0.6743+1.2300 | 0.0687+0.1355 | 0.0705+0.1045 0.232240.2571 1.3640+1.0135
D) 0.1361+1.4322x10° 0.6746+1.2208 | 0.0687+0.1355 | 0.0705+0.1045 0.232240.2572 1.3636+1.0130
f3 0.1364+1.4322x10° 0.6743+1.2300 | 0.0687+0.1355 | 0.0711+0.1055 | 0.2321 +0.2570 | 1.3634+1.0127
fa 0.002740.0144x 108 0.7207+1.3025 | 0.0707+0.1357 | 0.0773+0.1203 0.2776+0.4917 1.3963+1.0339
f5 1.4039+1.0790x 108 3.0786+6.4109 0.71554+1.0650 0.422740.5179 4.6103+6.3019 2.3142+1.4127
la | 0.0012+0.0134x10% | 0.6742+1.2300 | 0.0687+0.1355 | 0.0708+0.1046 | 0.2318+0.2573 | 1.3632+1.0128

Table 1: Mean and standard deviation, over the sequence, of k-means cost on points seen so far. k = 25 for
Gaussians, k = 15 otherwise. The best expert and the best 2 scores of the algorithms, per experiment, are bold.
Below the triple lines, 3 more experts are added to the ensemble.



k-maans

Clustering analogs to learning curves

x10° Clowud data




Clustering analogs to learning curves




Future work on clustering data streams

* Online clustering with experts, where experts need
not be clustering algorithms

* A negative result for Dasgupta’s conjecture
(framework 1).

* Other open problems in online clustering
— Online spectral clustering

— Hierarchical clustering with k-means approximation
guarantees for all k simultaneously

— How to allow k to vary with time-varying data
— Your suggestions?



Thank you!

And many thanks to my coauthors:

“Streaming k-means approximation”
Nir Ailon, Technion
Ragesh Jaiswal, IIT Delhi

“Online Clustering with Experts”
Anna Choromanska, Columbia



