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This talk is an overview of work carried out in our research group over the past few
years. For more details, see:

@ Tits, Absil, Bill Woessner, “Constraint Reduction for Linear Programs with Many
Inequality Constraints”, SIOPT 2006.

@ Jung, O’Leary, Tits, “Adaptive Constraint Reduction for Training Support Vector
Machines”, ETNA 2008.

@ Jung, O'Leary, Tits, “Adaptive Constraint Reduction for Convex Quadratic
Programming”, COAP 2012.

@ Winternitz, Stacey Nicholls, Tits, O’Leary, “A Constraint-Reduced Variant of
Mehrotra’s Predictor-Corrector Algorithm”, COAP 2012.

@ He, Tits, “Infeasible Constraint-Reduced Interior-Point Methods for Linear
Optimization”, GOMS 2012.

@ Winternitz, Tits, Absil, “Addressing rank degeneracy in constraint-reduced
interior-point methods for linear optimization”, JOTA, 2014.

@ Park, O’Leary “A Polynomial Time Constraint Reduced Algorithm for Semidefinite
Optimization Problems”, submitted for publication, 2013.
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Background: Primal-Dual Interior Point (PDIP) Methods

@ Consider the standard-form primal and dual linear program (LP)

minc'x maxbTy
(P) stAx=b (D) st ATy <c
x>0 (orst. Aly +s=c, s >0)

where A ¢ R™*",

@ PDIP search direction: Newton direction for perturbed version of the equalities in
the Karush-Kuhn-Tucker (KKT) conditions.

U _
Ay t\; _ g’ Newton 0 AT 17 [Ax c—Aly —s
o o } A 0o oflay|l=] b-—nax |,
(x,s) > 0. S 0 X]| |As ope — Xs

where X := diag(x) > 0, S :=diag(s) > 0,7 = o, u =Xx's/n >0, ¢ € [0,1].
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Background: Cost of PDIP iteration

@ Commonly, the Newton-KKT system is reduced (by block gaussian elimination) to
the symmetric indefinite “augmented” system

o =L

an (n 4+ m) x (n+ m) linear system; or, further reduced to the positive definite

“normal equations”

MAy = [], where M := AS™'XAT.

@ The dominant cost is that of forming the “normal matrix”
n X
M =AS'XAT =Y Zaa/.

When A is dense, the work per iteration is approximately

oo o]
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Constraint Reduction for LP: Basic Intuition

We expect many constraints are redundant or somehow not very relevant. We could try
to guess, at each iteration, a good set Q to “pay attention to” and ignore the rest.

irrelevant?

active =

N~ __—7

Ignore many constraints

QI =6

max b"
maxb'y y

st.Aly <c¢
st.Aly <c oY = Ce

(AQ:: [ai17 ai27 T ]7 IJ € Q)
@ Some prior work in 1990’s, Dantzig and Ye [1991], Tone [1993], Den Hertog et

al. [1994], for basic classes of dual interior-point algorithms.
@ Our work focuses on primal-dual interior-point methods (PDIP).
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Constraint Reduction: Basic Scheme

@ Given a small set Q of constraints deemed critical at the current iteration, compute
a PDIP search direction for

min c3Xq T
Xg >0 LAY = Co
i.e., solve
0 Ay | AXq *
SQ O XQ ASQ *

This system can be reduced (by block Gaussian elimination) to the “normal
equations”

M@ Ay = [+], where M@ := AqS5 XAS.

The dominant cost is that of forming the reduced “normal matrix”

M@ = ASo™XAG =Y Zaa.
ieQ

When A is dense, the cost is reduced from nm? to flops.
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Aggressive Approach: Selection of Working (Q) Set

[Given a dual-feasible initial point, a dual-feasible sequence is generated.]

@ Key requirements for working set Qi at iteration k:
@ Ag must have full row rank, in order for Ay to be well defined.
@ |F the sequence {yk} converges to some limit y’, THEN, for k large enough, all
constraints that are active at y’ must be contained in Q.
@ Sufficient rule to satisfy these requirements:
Let M be an upper bound to the number of active constraints at any feasible y,
and let e > 0. Among the M smallest slacks sk, include all those with s < e,
subject to Aq full row rank.

@ Possibly augment Q with heuristics addressing the class of problems or
application under consideration.

@ Reduced “normal” matrix M(®) need not be close to unreduced matrix M.
@ (Ongoing investigation: sort the constraints by sf/sf~* instead of s.)
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Aggressive Approach: Convergence Properties

If
@ Problem is primal-dual strictly feasible
@ A has full row rank

Then y¥ converges to y*, a stationary point.

If, in addition,
@ A linear-independence condition holds [Conjecture: This condition is not needed]
Then y* converges to y*, a dual solution.

If further
@ The dual solution set is a singleton
Then (x*,y*) converges g-quadratically to the unique PD solution.
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Aggressive Approach: Addressing “Rank Degeneracy”
If Aq is rank deficient, it means the reduced
primal-dual problem

H T
min CgXq maxby
S.t. AQXQ == b st AT <c
Xq >0 Y S G

/ﬂ /
is degenerate, and the reduced PDIP search /
a1

direction is not well-defined.

Enforcing rank(Aq) = m may require significant

effort or make |Q| larger than desired: i
@ Add constraints until the condition holds. e
OR AQ = [al, az]

@ More systematic linear-algebra methods to
ensure a good basis is obtained.

Instead we propose dealing with the degeneracy by the regularization
d
max b'y — = [ly — yll?

s.t. Ady < cq
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Aggressive Approach: Regularized reduced PDIP

At kth iteration, choose Q and &, and compute PDIP step for the regularized dual (and
associated primal)

min coxq + g5 Ir1|* + r Ty«
maxb’y — 2% |ly — yi|]? St.Aoxg +r =h
2 <L MQAQ
st.Ajy <c Xq >0
with vars X, r.

The regularized “augmented” system is

—X3'Sq  Af Axe _ s
Aq Skl Ay b—AgXq)’
and the regularized “normal-equations” are
(AgSo ™ XoAS + dcl)Ay = b,
Theorem: Without need for rank(Aq) = m at each iteration, a variant of the regularized

reduced PDIP method with special choice of Jx (that has dx — 0 appropriately fast as
the solution is approached) converges globally with local quadratic rate.
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Aggressive Approach: Regularization in the limit of small §

Regularized Ay(4) satisfies
(AgSo ™ XoAb + 81)Ay(8) = b

What happens as § — 0?
Using a spectral decomposition of the normal matrix

:
AgSq XA, =VEVT = (V1 Va) (Zol 8) Qi) :

with R(V1) = R(Aq) and R(V2) = N(A}), we get

Ay (8) = Vi(Z1 +61) 'Vib 45 VaVib.

@ If Vb =0,i.e, b€ R(Aq), then Ay(5) — V1X; Vb, the least norm solution to
the normal equations. (E.g., this is so in the non-degenerate case: rank(Ag) = m.)

@ While, if VJb # 0, then the second term dominates and §Ay(8) — V2V, b, the
projection of b onto A/ (A) (= R(Aq)™).
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Aggressive Approach: Kernel-step constraint-reduced PDIP

@ Regular step: If b € R(Ao) then use least norm solution to AQSgleA(T)Ay =b,
@ Kernel step: Otherwise take a long step along the projection of b onto J\/’(A(T)).

@ We proposed and analyzed an
algorithm based on this step within our
general constraint-reduced PDIP
framework.

@ Theorem: Without need for
rank(Aq) = m at each iteration, a
variant of the kernel-step reduced
PDIP method converges globally with
local quadratic rate. Furthermore, only
finitely many kernel-steps are taken.

It turns out that the total number of kernel steps can be related to a suitably defined
“degree of degeneracy”.

He, Jung, Laiu, Park, Winternitz, Absil, O'Leary, Tits () Constraint Reduction in Interior-Point Methods 11 Mar 2014, NIST

15/38



Aggressive Approach: Infeasible Starting Point

@ A significant disadvantage: the need for a strictly dual-feasible initial point.
@ Analysis relies crucially on the property bT Ay > 0.

@ A remedy: introduce an ¢; penalty function:

min —b'y +p) 7z st. Aly<c+z, z>0
: :

where p > 0 is the penalty parameter.
@ Alternatively, an ¢, penalty function can be used:

min —b'y +pz st. Aly<c+4+ze, z>0
v,z
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Aggressive Approach: Exactness of Penalty Function

Letx™ and y* be the solution of the original primal and dual problems respectively.
Lety, and z; denote the solution of the penalized problem. If
P> (X" loo,

then

@ /1 penalty fcn is exact, i.e., p need not go to co.
@ But x* is not known a priori.

Choice of p is challenging:
@ If pis too large, the cost function by is too strongly deemphasized, resulting in
slower convergence to the solution.
@ If p is too small,

9 the penalized problem is unbounded
or

9 the solution of the penalized problem is infeasible for the original problem.
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Aggressive Approach: Adaptive Adjustment of Penalty Parameter

Begin with p relatively small. Leto > 1, + > 0, i = 1,2, 3,4 be given.
Update: At every iteration of the optimization process, set p™ = op when
EITHER ({z«} seems to be unbounded)

[z]lec > 720
OR (sequence seems to converge to an infeasible KKT point)

I[Ay; Az]|| < ”—pz AND Xq > —vse AND g % 1€

where X = x + Ax, i = u + Au and where u is the primal variables (i.e., KKT
multiplier) associated to “z > 0”.

Theorem: Under mild assumptions it is guaranteed that p is increased at most finitely
many times, and that the iterates converge quadratically to the solution.
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Aggressive Approach: Extension to Convex Quadratic Programming

(CQP)

@ Problem: 1
max b'y — EyTHy st. Aly <c.

where H € R™™ HT = H > 0, with [H, A] full row rank.
@ PDIP iteration extends readily.

@ Q-selection rule also extends. However, the number of constraints active at the
solution may be significantly smaller than the number m of variables.

@ The /¢; (or £) penalization scheme readily extends.
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Aggressive Approach: Numerical Results: Randomly Generated
Problems

Parameters and initial conditions

@ Parameters in the penalty adjustment scheme: o = 10, v = 10, 7, = 1,
Y3 = Y4 = 100.

@ Typical infeasible initial points Xo, Yo, So generated as in MPC algorithm [Mehrotra,
1992];

@ Other initial values: zo = ATyp — ¢ + So, Uy = (Xg So)/z, fori =1,---,n, and
po = %o + Uol|co-
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Aggressive Approach: Numerical Results: Randomly Generated
Problems
@ A~ N(0,1);b ~ N (0,1); c := ATy + 5§, withy ~ A/(0,1) and § ~ 1(0, 1).
@ m = 100 and n = 20000.

norm-1 exact penalty function
T

total time (sec)

iterations

0 . .
N 107 10
fraction of constraints kept

Figure: CPU time and iterations with the ¢; exact penalty function
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Aggressive Approach: Some Successful Applications

@ LP: Digital Filter Design for GPS Application (NASA)
@ CQP: L, Entropy-Based Moment Closure

@ CQP: Support-Vector Machine

@ CQP: Model-Predictive Control
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Aggressive Approach: Digital Filter Design (NASA)

N-“tap” FIR filter frequency response
_ N-1 _ This is not an LP (since H(e!*) is
HE) =Y he ™ we[-mn]. complex), but it can be rewritten
k=0 as one:
@ Impose linear phase

Chebyshev approximation with side constraints :
symmetry constraints

gives optimality criterion that matches a natural

approach to filter specification. @ Design the filter
) “power-spectrum”, then
min t ot
perform spectral factorization
s.t. W (w) ‘H(ej“) — Ha(e™)| < t,V w € Qapprox @ Introduce auxiliary

) semi-infinite variable
a(w) < [H(E)| < B), Y w € e

We proposed an effective constraint selection rule for this problem class:

@ M > m most active, plus
@ All grid points on a coarse O(m) discretization grid, plus
@ All local minimizers of “slack function” (local maximizers of error).
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Aggressive Approach: Linear Phase FIR Filter Design
Under (Type Il) linear phase symmetry

10 constraints _ o
H(e'*) = A(e!*)e™"
o |
N
—10} B . 771
_ Ae') = E ax2cosw(k — 1)
o -20r
k= k=0
[0
é-so + Bk2sinw(k — 1),
(=] . .
g 4ol . with hy = ax +jBk;
-501 .
min t
-60} _
. IR st ’A(e“) - o] <t, Vw € Qsop
- 02 o4 0 o1 02 03
searmtzed requency o' [A(e")| < ~600B, ¥ w € Qunage,
Aracpre —0.5dB < A(€'¥) < 0.5dB, ¥ w € Qpass,
at 1575.42MHz (GPSL1)
2.046MHz bandwidth
RF front end Ao Desimton e Eatn
Converter Real ilter [ Complex Complex 9
Analog IF Samples Samples Samples
;@:4;%“}1“ at 32.768MHz a 32.768MHz 1 2.048MHz
N tered at centered at
2.046MHz bandwidth S 55aMHz IF 2 55oMHz IF 23';‘&?.?
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Aggressive Approach: Numerical Results on Filter Design
rps-pp=revised primal simplex with partial pricing.

(3m random columns priced, avoids O(mn) work)
mpc=unreduced unregularized Mehrotra predictor-corrector
rmpc=reduced regularized Mehrotra predictor-corrector using special

constraint-selection rule

| prob | alg | status | time [ iter | max|Q«] [ mean|Qy] ]
rps-pp | succ 2.61 629 65 65.0
Linear phase FIR mpc succ 19.91 25 39372 39372.0
rmpc succ 5.48 40 1985 1947.3
rps-pp fail Inf Inf 252 252.0
Phase Noise Filter mpc succ | 696.47 33 163840 | 163840.0
rmpc succ 112.57 63 7907 7772.4
rps-pp | succ 10.14 | 2672 26 26.0
Linear Predictor mpc succ 35.72 31 105050 | 105050.0
rmpc succ 12.50 49 1963 1704.5
rps-pp | succ 130.93 | 8042 99 99.0
Antenna Array mpc succ 299.61 32 272250 | 272250.0
rmpc succ 42.68 35 9769 8598.3

Additional tests showed that our methods typically outperform prior constraint-reduced
interior-point algorithms.
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Aggressive Approach: CQP: Application to L, Entropy-Based Moment
Closure

Nonnegative-L,-entropy-based moment closure constructs an “ansatz” of the
underlying distribution given a finite set of moments, by solving

mmlmlze/f(p )°dup st f>0and/ wf(pu)du = u,

where f is a trial distribution, u is a vector of known moments, and m is a vector of
polynomials that define the moments.

The dual problem can be expressed as
minimize 2/ Ydu—u'a st a'm(u) < o(u) foral u,

where minimization is with respect to vector « and scalar function ¢.

After fine discretization this yields a CQP with many inequality constraints, for which,
on “hard” problems, only a small percentage of the constraints are active at the
solution: a clear candidate for constraint reduction.
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Aggressive Approach for CQP: L, Entropy-Based Moment Closure:
Preliminary Results (Total Time)

M, model with moments u=[1 ul]T

—6—w/o CR
—%—CR

total time (sec)

11 Mar 2014, NIST 27138
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L, Entropy-Based Moment Closure: Preliminary Results (Iteration
Count)

M, model with moments u=[1 ul]T

60 T
—o—w/o CR

iterations
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Aggressive Approach for CQP: Support-Vector Machine

Problems from [Gertz-Griffin, 2006]:
@ “Mushroom”: space dimension = 276, # of patterns = 8124

@ “Isolet”: space dimension = 617, # of patterns = 7797
@ “Waveform”: space dimension = 861, # of patterns = 5000
@ “Letter”: space dimension = 153, # of patterns = 20,000
Time Iterations
40 . ! : : 45 : : . :
Il Standard MPC (No reduction) Il Standard MPC (No reduction)
35t [ 1One-sided distance ' 4o0l{[CJOne-sided distance
Hl Qe Bl Qe —
35p
o 301
o S
& = 250
o 9]
£ = 20¢
[ S
#* 15|
10f
sk
n 0 | L
mushroom isolet waveform letter mushroom isolet waveform letter
Problem Problem
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SDP in Standard Form

Primal SDP: mxinCoX st. AieX=bjfori=1,... m, X>0,

m
Dual SDP: n;’aslbey st. > yiAi+S=C, S =0,

i=1

whereCc S",A; € S",Xec S",andS € S".

Conditions of Optimality:
AieX=Db fori=1,...,m,
m
S VA +S =C,
i=1
XS =0, X=0, S*0.

[Note: whenever X = 0and S > 0, XS =0 iff XeS =0]
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Normal System for PDIP (Newton) Direction

MAy =g,
As =rg — A" Ay,
Ax=(X®S HATAY —1g)+ (1©S H)re

where

A=[vec(A),..., vec(Am)]",

M= AX®S 1A',

g=rp+AX®S Hrg —A(I®S Hre.
with

Ipi =b; — A eX fori ::I.,...,I’T'l7

vec (C -S — ZyiAi) s

i=1

g

fc

vec (ul — XS),
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Block-Structured SDP

In many applications, A; and C are block-diagonal,

Aix 0 C
AiZ N C=

yielding

M=AXeS HAT = A aS; A,

where A = [vec (Ay), ..., vec (Am)]".
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More Robust Approach: Constraint-Reduction Scheme

Replace M with
M(Q) =D A(X ®S[ A,
jeQ
where Q is a “small” subset of {1, ..., p} such that, for prescribed q € (0, 1),

Xqe <Z AyiAi,Qc> <q H { XQ (Zi:bAylA"Q) 8 ] + XRg + Rc
i—1

F F

where

m
Ry =C—-S — ZyiAi (= mat(rc))
i=1
Rec =il = XS (= mat(rq))
Important: The chosen value of q is linked to the step size rule. The price to be paid for
more aggressive constraint reduction (q closer to 1) is a shorter step.
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More Robust Approach: Special Case: LP

When the Aj’s and C are scalar-diagonal, the SDP becomes our LP in standard form,
with the following constraint reduction rule:

M@ = AqS5 XAL,

where Q € {1,...,n} must satisfy

[XqeAQeAY ||z < q

.
o — Xrg + { XQAgAy ]

)
2

where Ay solves
M@QAy = r, — AS~*(re — Xrq),
with
fhr=b—AX, ra:=c—s—Aly, r; :=je—Xs.
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More Robust Approach: Polynomial Convergence

After adding an appropriate “corrector” direction to the “predictor” (affine-scaling)
direction just discussed, and incorporating an appropriate steplength rule (along the
resulting direction), an overall algorithm is obtained that was proved to be polynomially
convergent. Specifically, let

co = max{X’ e S, |Irg, [Ird}.

Then
max{X* e S*, [[r5|l, [Irs||} < e

after a number k of iterations no larger than
O(nIn(eo/€)).

This algorithm is an adaptation of an (“unreduced”) scheme due to Potra and Sheng
(1998).
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Discussion

@ Two approaches to constraint reduction were presented:

@ A rather aggressive approach, w/ the following properties:
@ dual feasible; infeasible initial points are handled by incorporating an exact penalty function
scheme;
@ no guarantee of polynomial time;
@ constraint-reduced search direction potentially remote from (at times better than) the
“unreduced” direction;
@ extends to QP, and even to NLP.
@ A more robust approach, w/ the following properties:
@ targets SDP (which includes CQP, LP....);
@ no requirement of initial feasibility;
@ polynomial complexity;
@ constraint-reduced search direction close to the “unreduced” direction.

@ Promising numerical results were reported with the former. (Numerical
implementation of the latter is underway.)
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