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This talk is an overview of work carried out in our research group over the past few
years. For more details, see:

Tits, Absil, Bill Woessner, “Constraint Reduction for Linear Programs with Many
Inequality Constraints”, SIOPT 2006.

Jung, O’Leary, Tits, “Adaptive Constraint Reduction for Training Support Vector
Machines”, ETNA 2008.

Jung, O’Leary, Tits, “Adaptive Constraint Reduction for Convex Quadratic
Programming”, COAP 2012.

Winternitz, Stacey Nicholls, Tits, O’Leary, “A Constraint-Reduced Variant of
Mehrotra’s Predictor-Corrector Algorithm”, COAP 2012.

He, Tits, “Infeasible Constraint-Reduced Interior-Point Methods for Linear
Optimization”, GOMS 2012.

Winternitz, Tits, Absil, “Addressing rank degeneracy in constraint-reduced
interior-point methods for linear optimization”, JOTA, 2014.

Park, O’Leary “A Polynomial Time Constraint Reduced Algorithm for Semidefinite
Optimization Problems”, submitted for publication, 2013.
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Background: Primal-Dual Interior Point (PDIP) Methods

Consider the standard-form primal and dual linear program (LP)

(P)
min cTx

s.t. Ax = b
x ≥ 0

(D)
max bTy

s.t. ATy ≤ c
(or s.t. ATy + s = c, s ≥ 0)

where A ∈ R
m×n.

PDIP search direction: Newton direction for perturbed version of the equalities in
the Karush-Kuhn-Tucker (KKT) conditions.

ATy + s = c,
Ax = b,

Xs = τe,





Newton
−−−−−−→

(x , s) ≥ 0.




0 AT I
A 0 0
S 0 X








∆x
∆y
∆s



 =




c − ATy − s

b − Ax
σµe − Xs



 ,

where X := diag(x) > 0, S := diag(s) > 0, τ = σµ, µ = xTs/n > 0, σ ∈ [0, 1].
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Background: Cost of PDIP iteration

Commonly, the Newton-KKT system is reduced (by block gaussian elimination) to
the symmetric indefinite “augmented” system

[
−X−1S AT

A 0

] [
∆x
∆y

]
=

[
⋆
⋆

]
,

an (n + m)× (n + m) linear system; or, further reduced to the positive definite

“normal equations”

M∆y = [⋆], where M := AS−1XAT.

The dominant cost is that of forming the “normal matrix”

M = AS−1XAT =

n∑

i=1

xi

si
aia

T
i .

When A is dense, the work per iteration is approximately

nm2 flops .
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Constraint Reduction for LP: Basic Intuition
We expect many constraints are redundant or somehow not very relevant. We could try
to guess, at each iteration, a good set Q to “pay attention to” and ignore the rest.

Ignore many constraints

m = 2

|Q| = 6

n = 13

redundant

irrelevant?

active

∆y
∆y

b
b

max bTy

s.t. ATy ≤ c

max bTy

s.t. AT
Qy ≤ cQ

(AQ:= [ai1 , ai2 , · · · ], ij ∈ Q)

Some prior work in 1990’s, Dantzig and Ye [1991], Tone [1993], Den Hertog et
al. [1994], for basic classes of dual interior-point algorithms.

Our work focuses on primal-dual interior-point methods (PDIP).
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Constraint Reduction: Basic Scheme
Given a small set Q of constraints deemed critical at the current iteration, compute
a PDIP search direction for

min cT
QxQ

s.t . AQxQ = b
xQ ≥ 0

max bTy
s.t . AT

Qy ≤ cQ

i.e., solve



0 AT

Q I
AQ 0 0
SQ 0 XQ








∆xQ

∆y
∆sQ



 =




∗
∗
∗



 .

This system can be reduced (by block Gaussian elimination) to the “normal
equations”

M(Q)∆y = [∗], where M(Q) := AQS−1
Q XQAT

Q.

The dominant cost is that of forming the reduced “normal matrix”

M(Q) = AQS−1
Q XQAT

Q :=
∑

i∈Q

xi

si
aia

T
i .

When A is dense, the cost is reduced from nm2 to |Q|m2 flops.
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Aggressive Approach: Selection of Working (Q) Set

[Given a dual-feasible initial point, a dual-feasible sequence is generated.]

Key requirements for working set Qk at iteration k :
AQ must have full row rank, in order for ∆y to be well defined.
IF the sequence {yk} converges to some limit y ′, THEN, for k large enough, all
constraints that are active at y ′ must be contained in Q.

Sufficient rule to satisfy these requirements:
Let M be an upper bound to the number of active constraints at any feasible y ,
and let ǫ > 0. Among the M smallest slacks sk

i , include all those with sk
i < ǫ,

subject to AQ full row rank.

Possibly augment Q with heuristics addressing the class of problems or
application under consideration.

Reduced “normal” matrix M(Q) need not be close to unreduced matrix M.

(Ongoing investigation: sort the constraints by sk
i /sk−1

i instead of sk
i .)
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Aggressive Approach: Convergence Properties

If

Problem is primal-dual strictly feasible

A has full row rank

Then yk converges to y∗, a stationary point.

If, in addition,

A linear-independence condition holds [Conjecture: This condition is not needed]

Then yk converges to y∗, a dual solution.

If further

The dual solution set is a singleton

Then (xk , yk ) converges q-quadratically to the unique PD solution.
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Aggressive Approach: Addressing “Rank Degeneracy”
If AQ is rank deficient, it means the reduced
primal-dual problem

min cT
QxQ

s.t . AQxQ = b
xQ ≥ 0

max bTy
s.t . AT

Qy ≤ cQ

is degenerate, and the reduced PDIP search
direction is not well-defined.

Enforcing rank(AQ) = m may require significant
effort or make |Q| larger than desired:

Add constraints until the condition holds.

OR

More systematic linear-algebra methods to
ensure a good basis is obtained.

b

AQ = [a1, a2 ]

a2

a1

Instead we propose dealing with the degeneracy by the regularization

max bTy −
δk

2
‖y − yk‖

2
2

s.t . AT
Qy ≤ cQ
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Aggressive Approach: Regularized reduced PDIP

At k th iteration, choose Q and δk , and compute PDIP step for the regularized dual (and
associated primal)

max bTy − δk
2 ‖y − yk‖

2

s.t. AT
Qy ≤ c

min cT
QxQ + 1

2δk
‖r‖2 + rTyk

s.t. AQxQ + r = b
xQ ≥ 0

with vars xQ, r .

The regularized “augmented” system is
(
−X−1

Q SQ AT
Q

AQ δk I

)(
∆xQ

∆y

)
=

(
s

b − AQxQ

)
,

and the regularized “normal-equations” are

(AQS−1
Q XQAT

Q + δk I)∆y = b,

Theorem: Without need for rank(AQ) = m at each iteration, a variant of the regularized
reduced PDIP method with special choice of δk (that has δk → 0 appropriately fast as
the solution is approached) converges globally with local quadratic rate.
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Aggressive Approach: Regularization in the limit of small δ

Regularized ∆y(δ) satisfies

(AQS−1
Q XQAT

Q + δI)∆y(δ) = b

What happens as δ → 0?

Using a spectral decomposition of the normal matrix

AQS−1
Q XQAT

Q = VΣV T =
(
V1 V2

)(Σ1 0
0 0

)(
V T

1

V T
2

)
,

with R(V1) = R(AQ) and R(V2) = N (AT
Q), we get

∆y(δ) = V1(Σ1 + δI)−1V T
1 b + δ−1V2V T

2 b.

a2

a1

If V T
2 b = 0, i.e., b ∈ R(AQ), then ∆y(δ) → V1Σ

−1
1 V T

1 b, the least norm solution to
the normal equations. (E.g., this is so in the non-degenerate case: rank(AQ) = m.)

While, if V T
2 b 6= 0, then the second term dominates and δ∆y(δ) → V2V T

2 b, the
projection of b onto N (AT

Q) (= R(AQ)
⊥).
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Aggressive Approach: Kernel-step constraint-reduced PDIP

Regular step: If b ∈ R(AQ) then use least norm solution to AQS−1
Q XQAT

Q∆y = b,

Kernel step: Otherwise take a long step along the projection of b onto N (AT
Q).

We proposed and analyzed an
algorithm based on this step within our
general constraint-reduced PDIP
framework.

Theorem: Without need for
rank(AQ) = m at each iteration, a
variant of the kernel-step reduced
PDIP method converges globally with
local quadratic rate. Furthermore, only
finitely many kernel-steps are taken.

Kernel S
tep

b

a2

a1

It turns out that the total number of kernel steps can be related to a suitably defined
“degree of degeneracy”.
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Aggressive Approach: Infeasible Starting Point

A significant disadvantage: the need for a strictly dual-feasible initial point.

Analysis relies crucially on the property bT∆y > 0.

A remedy: introduce an ℓ1 penalty function:

min
y,z

−bT y + ρ
∑

i

zi s.t. AT y ≤ c + z, z ≥ 0

where ρ > 0 is the penalty parameter.

Alternatively, an ℓ∞ penalty function can be used:

min
y,z

−bT y + ρz s.t. AT y ≤ c + ze, z ≥ 0
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Aggressive Approach: Exactness of Penalty Function

Let x∗ and y∗ be the solution of the original primal and dual problems respectively.
Let y∗

ρ and z∗
ρ denote the solution of the penalized problem. If

ρ > ‖x∗‖∞,

then
y∗
ρ = y∗, z∗

ρ = 0.

ℓ1 penalty fcn is exact, i.e., ρ need not go to ∞.

But x∗ is not known a priori.

Choice of ρ is challenging:

If ρ is too large, the cost function bTy is too strongly deemphasized, resulting in
slower convergence to the solution.

If ρ is too small,

the penalized problem is unbounded
or

the solution of the penalized problem is infeasible for the original problem.
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Aggressive Approach: Adaptive Adjustment of Penalty Parameter

Begin with ρ relatively small. Let σ > 1, γi > 0, i = 1,2, 3, 4 be given.

Update: At every iteration of the optimization process, set ρ+ = σρ when

EITHER ({zk} seems to be unbounded)

‖z‖∞ ≥ γ1ρ

OR (sequence seems to converge to an infeasible KKT point)

‖[∆y ; ∆z]‖ ≤ γ2
ρ

AND x̃Q ≥ −γ3e AND ũQ 6≥ γ4e

where x̃ = x +∆x , ũ = u +∆u and where u is the primal variables (i.e., KKT
multiplier) associated to “z ≥ 0”.

Theorem: Under mild assumptions it is guaranteed that ρ is increased at most finitely
many times, and that the iterates converge quadratically to the solution.
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Aggressive Approach: Extension to Convex Quadratic Programming
(CQP)

Problem:

max bTy −
1
2

yTHy s.t. ATy ≤ c.

where H ∈ R
m×m, HT = H � 0, with [H,A] full row rank.

PDIP iteration extends readily.

Q-selection rule also extends. However, the number of constraints active at the
solution may be significantly smaller than the number m of variables.

The ℓ1 (or ℓ∞) penalization scheme readily extends.
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Aggressive Approach: Numerical Results: Randomly Generated
Problems

Parameters and initial conditions

Parameters in the penalty adjustment scheme: σ = 10, γ1 = 10, γ2 = 1,
γ3 = γ4 = 100.

Typical infeasible initial points x0, y0, s0 generated as in MPC algorithm [Mehrotra,
1992];

Other initial values: z0 = AT y0 − c + s0, u i
0 = (xT

0 s0)/z i
0, for i = 1, · · · , n, and

ρ0 = ‖x0 + u0‖∞.
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Aggressive Approach: Numerical Results: Randomly Generated
Problems

A ∼ N (0,1); b ∼ N (0, 1); c := AT ȳ + s̄, with ȳ ∼ N (0,1) and s̄ ∼ U(0, 1).

m = 100 and n = 20000.
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Figure: CPU time and iterations with the ℓ1 exact penalty function
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Aggressive Approach: Some Successful Applications

LP: Digital Filter Design for GPS Application (NASA)

CQP: L2 Entropy-Based Moment Closure

CQP: Support-Vector Machine

CQP: Model-Predictive Control
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Aggressive Approach: Digital Filter Design (NASA)

N-“tap” FIR filter frequency response

H(ejω) =

N−1∑

k=0

hke−jωk , ω ∈ [−π, π].

Chebyshev approximation with side constraints
gives optimality criterion that matches a natural
approach to filter specification.

min t

s.t. W (ω)
∣∣∣H(ejω)− Hd(e

jω)
∣∣∣ ≤ t ,∀ ω ∈ Ωapprox

α(ω) ≤
∣∣∣H(ejω)

∣∣∣ ≤ β(ω),∀ ω ∈ Ωside

This is not an LP (since H(ejω) is
complex), but it can be rewritten
as one:

Impose linear phase
symmetry constraints

Design the filter
“power-spectrum”, then
perform spectral factorization

Introduce auxiliary
semi-infinite variable

We proposed an effective constraint selection rule for this problem class:

M ≥ m most active, plus

All grid points on a coarse O(m) discretization grid, plus

All local minimizers of “slack function” (local maximizers of error).
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Aggressive Approach: Linear Phase FIR Filter Design
Under (Type II) linear phase symmetry
constraints

H(ejω) = A(ejω)ejωη

A(ejω) =

N
2 −1∑

k=0

αk 2 cosω(k − τ )

+ βk 2 sinω(k − τ ),

with hk = αk + jβk ;

min t

s.t.
∣∣∣A(ejω)− 0

∣∣∣ ≤ t , ∀ ω ∈ Ωstop

∣∣∣A(ejω)
∣∣∣ ≤ −60dB, ∀ ω ∈ Ωimage,

−0.5dB ≤ A(ejω) ≤ 0.5dB, ∀ ω ∈ Ωpass,

Converter
Digital

Analog to

Processing

GPS Baseband

Complex
Samples
at 2.048MHz
centered at 
508kHz IF

Complex
Samples
at 32.768MHz
centered at 
2.556MHz IF

Real
Samples
at 32.768MHz
centered at 
2.556MHz IF

Analog IF
signal centered
at 35.42MHz
2.046MHz bandwidth

RF front end

Analog RF
signal centered
at 1575.42MHz (GPS L1)
2.046MHz bandwidth

Antenna

16
Filter

Decimation
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Aggressive Approach: Numerical Results on Filter Design
rps-pp=revised primal simplex with partial pricing.

(3m random columns priced, avoids O(mn) work)
mpc=unreduced unregularized Mehrotra predictor-corrector
rmpc=reduced regularized Mehrotra predictor-corrector using special

constraint-selection rule

prob alg status time iter max |Qk | mean |Qk |

Linear phase FIR
rps-pp succ 2.61 629 65 65.0
mpc succ 19.91 25 39372 39372.0
rmpc succ 5.48 40 1985 1947.3

Phase Noise Filter
rps-pp fail Inf Inf 252 252.0
mpc succ 696.47 33 163840 163840.0
rmpc succ 112.57 63 7907 7772.4

Linear Predictor
rps-pp succ 10.14 2672 26 26.0
mpc succ 35.72 31 105050 105050.0
rmpc succ 12.50 49 1963 1704.5

Antenna Array
rps-pp succ 130.93 8042 99 99.0
mpc succ 299.61 32 272250 272250.0
rmpc succ 42.68 35 9769 8598.3

Additional tests showed that our methods typically outperform prior constraint-reduced
interior-point algorithms.
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Aggressive Approach: CQP: Application to L2 Entropy-Based Moment
Closure

Nonnegative-L2-entropy-based moment closure constructs an “ansatz” of the
underlying distribution given a finite set of moments, by solving

minimize
∫

f (µ)2dµ s.t. f ≥ 0 and
∫

m(µ)f (µ)dµ = u,

where f is a trial distribution, u is a vector of known moments, and m is a vector of
polynomials that define the moments.

The dual problem can be expressed as

minimize
1
2

∫
ϕ(µ)2dµ− uTα s.t. αT m(µ) ≤ ϕ(µ) for all µ,

where minimization is with respect to vector α and scalar function ϕ.

After fine discretization this yields a CQP with many inequality constraints, for which,
on “hard” problems, only a small percentage of the constraints are active at the
solution: a clear candidate for constraint reduction.
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Aggressive Approach for CQP: L2 Entropy-Based Moment Closure:
Preliminary Results (Total Time)
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L2 Entropy-Based Moment Closure: Preliminary Results (Iteration
Count)
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Aggressive Approach for CQP: Support-Vector Machine

Problems from [Gertz-Griffin, 2006]:

“Mushroom”: space dimension = 276, # of patterns = 8124

“Isolet”: space dimension = 617, # of patterns = 7797

“Waveform”: space dimension = 861, # of patterns = 5000

“Letter”: space dimension = 153, # of patterns = 20,000

mushroom isolet waveform letter
0

5

10

15

20

25

30

35

40
Time

T
im

e 
(s

ec
)

Problem

 

 

Standard MPC (No reduction)
One−sided distance
 Ωe

mushroom isolet waveform letter
0

5

10

15

20

25

30

35

40

45
Iterations

# 
of

 it
er

at
io

ns

Problem

 

Standard MPC (No reduction)
One−sided distance
 Ωe

He, Jung, Laiu, Park, Winternitz, Absil, O’Leary, Tits () Constraint Reduction in Interior-Point Methods 11 Mar 2014, NIST 29 / 38



Outline

1 Constraint Reduction for LP: Basic Ideas

2 Constraint Reduction for LP: An Aggressive Approach
Selection of Working (Q) Set, and Convergence Properties
Addressing “Rank Degeneracy”
Allowing Infeasible Starting Points
Extension to Convex Quadratic Optimization (CQP)
Numerical Results and Applications

3 Constraint Reduction for SDP: A More Robust, Polynomial-Time Approach
Block-Structured SDP
Constraint-Reduction Scheme
Special Case: LP
Polynomial Convergence

4 Discussion

He, Jung, Laiu, Park, Winternitz, Absil, O’Leary, Tits () Constraint Reduction in Interior-Point Methods 11 Mar 2014, NIST 30 / 38



SDP in Standard Form

Primal SDP: min
X

C • X s.t. Ai • X = bi for i = 1, . . . ,m, X � 0,

Dual SDP: max
y,S

bT y s.t.
m∑

i=1

yi Ai + S = C, S � 0,

where C ∈ Sn, Ai ∈ Sn, X ∈ Sn, and S ∈ Sn.

Conditions of Optimality:

Ai • X = b for i = 1, . . . ,m,
m∑

i=1

yi Ai + S = C,

XS = 0, X � 0, S � 0.

[Note: whenever X � 0 and S � 0, XS = 0 iff X • S = 0.]
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Normal System for PDIP (Newton) Direction

M∆y = g,

∆s = rd −AT∆y,

∆x = (X ⊗ S −1)(AT∆y − rd ) + (I ⊗ S −1)rc

where

A= [ vec (Ai) , . . . , vec (Am)]
T ,

M= A(X ⊗ S −1)AT ,

g = rp +A(X ⊗ S −1)rd −A(I ⊗ S −1)rc.

with

rpi = bi − Ai • X for i = 1, . . . ,m,

rd = vec

(
C − S −

m∑

i=1

yi Ai

)
,

rc = vec (µI − XS ) ,
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Block-Structured SDP

In many applications, Ai and C are block-diagonal,

Ai =





Ai1 0
. . .

0 Aip



 , C =





C1 0
. . .

0 Cp



 ,

yielding

M = A(X ⊗ S −1)AT =

p∑

j=1

Aj(Xj ⊗ S −1
j )AT

j ,

where Aj = [ vec (A1j) , . . . , vec (Amj)]
T .
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More Robust Approach: Constraint-Reduction Scheme

Replace M with
M̂(Q) =

∑

j∈Q

Aj(Xj ⊗ S −1
j )AT

j ,

where Q is a “small” subset of {1, . . . , p} such that, for prescribed q ∈ (0, 1),
∥∥∥∥∥XQc

(
m∑

i=1

∆yi Ai,Qc

)∥∥∥∥∥
F

≤ q

∥∥∥∥

[
XQ

(∑m
i=1 ∆yi Ai,Q

)
0

0 0

]
+ XRd + Rc

∥∥∥∥
F

where

Rd =C − S −
m∑

i=1

yi Ai (= mat(rc))

Rc =µ̄I − XS (= mat(rd))

Important: The chosen value of q is linked to the step size rule. The price to be paid for
more aggressive constraint reduction (q closer to 1) is a shorter step.
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More Robust Approach: Special Case: LP

When the Ai ’s and C are scalar-diagonal, the SDP becomes our LP in standard form,
with the following constraint reduction rule:

M(Q) = AQS−1
Q XQAT

Q,

where Q ∈ {1, . . . , n} must satisfy

‖XQc AT
Qc∆y‖2 ≤ q

∥∥∥∥rc − Xrd +

[
XQAT

Q∆y
0

]∥∥∥∥
2

,

where ∆y solves
M(Q)∆y = rp − AS−1(rc − Xrd),

with
rp := b − Ax , rd := c − s − AT y , rc := µ̄e − Xs.
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More Robust Approach: Polynomial Convergence

After adding an appropriate “corrector” direction to the “predictor” (affine-scaling)
direction just discussed, and incorporating an appropriate steplength rule (along the
resulting direction), an overall algorithm is obtained that was proved to be polynomially
convergent. Specifically, let

ǫ0 = max{X0 • S 0, ‖r0
p‖, ‖r0

d‖}.

Then
max{Xk • S k , ‖rk

p‖, ‖rk
d‖} < ǫ

after a number k of iterations no larger than

O(n ln(ǫ0/ǫ)).

This algorithm is an adaptation of an (“unreduced”) scheme due to Potra and Sheng
(1998).
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Discussion

Two approaches to constraint reduction were presented:
1 A rather aggressive approach, w/ the following properties:

dual feasible; infeasible initial points are handled by incorporating an exact penalty function
scheme;
no guarantee of polynomial time;
constraint-reduced search direction potentially remote from (at times better than) the
“unreduced” direction;
extends to QP, and even to NLP.

2 A more robust approach, w/ the following properties:
targets SDP (which includes CQP, LP,...);
no requirement of initial feasibility;
polynomial complexity;
constraint-reduced search direction close to the “unreduced” direction.

Promising numerical results were reported with the former. (Numerical
implementation of the latter is underway.)
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