Constraint Reduction for Linear and Convex Optimization

Meiyun He, Jin Jung, Paul Laiu, Sungwoo Park, Luke Winternitz, P.-A. Absil, Dianne O'Leary, André Tits

Presenter: André Tits

University of Maryland, College Park

March 11, 2014

Outline

- Constraint Reduction for LP: Basic Ideas
- Constraint Reduction for LP: An Aggressive Approach
 - Selection of Working (Q) Set, and Convergence Properties
 - Addressing "Rank Degeneracy"
 - Allowing Infeasible Starting Points
 - Extension to Convex Quadratic Optimization (CQP)
 - Numerical Results and Applications
- 3 Constraint Reduction for SDP: A More Robust, Polynomial-Time Approach
 - Block-Structured SDP
 - Constraint-Reduction Scheme
 - Special Case: LP
 - Polynomial Convergence
- Discussion

This talk is an overview of work carried out in our research group over the past few years. For more details, see:

- Tits, Absil, Bill Woessner, "Constraint Reduction for Linear Programs with Many Inequality Constraints", SIOPT 2006.
- Jung, O'Leary, Tits, "Adaptive Constraint Reduction for Training Support Vector Machines", ETNA 2008.
- Jung, O'Leary, Tits, "Adaptive Constraint Reduction for Convex Quadratic Programming", COAP 2012.
- Winternitz, Stacey Nicholls, Tits, O'Leary, "A Constraint-Reduced Variant of Mehrotra's Predictor-Corrector Algorithm", COAP 2012.
- He, Tits, "Infeasible Constraint-Reduced Interior-Point Methods for Linear Optimization", GOMS 2012.
- Winternitz, Tits, Absil, "Addressing rank degeneracy in constraint-reduced interior-point methods for linear optimization", JOTA, 2014.
- Park, O'Leary "A Polynomial Time Constraint Reduced Algorithm for Semidefinite Optimization Problems", submitted for publication, 2013.

Outline

- Constraint Reduction for LP: Basic Ideas
- Constraint Reduction for LP: An Aggressive Approach
 - Selection of Working (Q) Set, and Convergence Properties
 - Addressing "Rank Degeneracy"
 - Allowing Infeasible Starting Points
 - Extension to Convex Quadratic Optimization (CQP)
 - Numerical Results and Applications
- 3 Constraint Reduction for SDP: A More Robust, Polynomial-Time Approach
 - Block-Structured SDP
 - Constraint-Reduction Scheme
 - Special Case: LP
 - Polynomial Convergence
- 4 Discussion

Background: Primal-Dual Interior Point (PDIP) Methods

Consider the standard-form primal and dual linear program (LP)

(P)
$$\begin{array}{c|c} \min c^T x & \max b^T y \\ \text{s.t. } Ax = b & \text{(D)} & \text{s.t. } A^T y \leq c \\ x \geq 0 & \text{(or s.t. } A^T y + s = c, \ s \geq 0) \\ \end{array}$$

where $A \in \mathbb{R}^{m \times n}$.

 PDIP search direction: Newton direction for perturbed version of the equalities in the Karush-Kuhn-Tucker (KKT) conditions.

where X := diag(x) > 0, S := diag(s) > 0, $\tau = \sigma \mu$, $\mu = x^{T} s/n > 0$, $\sigma \in [0, 1]$.

Background: Cost of PDIP iteration

 Commonly, the Newton-KKT system is reduced (by block gaussian elimination) to the symmetric indefinite "augmented" system

$$\begin{bmatrix} -X^{-1}S & A^{T} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta X \\ \Delta y \end{bmatrix} = \begin{bmatrix} \star \\ \star \end{bmatrix},$$

an $(n+m) \times (n+m)$ linear system; or, further reduced to the positive definite "normal equations"

$$M\Delta y = [\star]$$
, where $M := AS^{-1}XA^{T}$.

The dominant cost is that of forming the "normal matrix"

$$M = AS^{-1}XA^{\mathrm{T}} = \sum_{i=1}^{n} \frac{x_i}{s_i} a_i a_i^{\mathrm{T}}.$$

When A is dense, the work per iteration is approximately

Constraint Reduction for LP: Basic Intuition

We expect many constraints are redundant or somehow not very relevant. We could try to guess, at each iteration, a good set Q to "pay attention to" and ignore the rest.

- Some prior work in 1990's, Dantzig and Ye [1991], Tone [1993], Den Hertog et al. [1994], for basic classes of dual interior-point algorithms.
- Our work focuses on primal-dual interior-point methods (PDIP).

7/38

Constraint Reduction: Basic Scheme

 Given a small set Q of constraints deemed critical at the current iteration, compute a PDIP search direction for

$$\begin{aligned}
\min \mathbf{c}_{Q}^{\mathrm{T}} \mathbf{x}_{Q} \\
s.t. \ \mathbf{A}_{Q} \mathbf{x}_{Q} &= \mathbf{b} \\
\mathbf{x}_{Q} &\geq \mathbf{0}
\end{aligned}
\qquad \begin{aligned}
\max \mathbf{b}^{\mathrm{T}} \mathbf{y} \\
s.t. \ \mathbf{A}_{Q}^{\mathrm{T}} \mathbf{y} &\leq \mathbf{c}_{Q}
\end{aligned}$$

i.e., solve

$$\begin{bmatrix} 0 & A_{Q}^{T} & I \\ A_{Q} & 0 & 0 \\ S_{Q} & 0 & X_{Q} \end{bmatrix} \begin{bmatrix} \Delta x_{Q} \\ \Delta y \\ \Delta S_{Q} \end{bmatrix} = \begin{bmatrix} * \\ * \\ * \end{bmatrix}.$$

This system can be reduced (by block Gaussian elimination) to the "normal equations"

$$M^{(Q)}\Delta y = [*], \text{ where } M^{(Q)} := A_Q S_Q^{-1} X_Q A_Q^T.$$

The dominant cost is that of forming the reduced "normal matrix"

$$M^{(Q)} = A_{Q} S_{Q}^{-1} X_{Q} A_{Q}^{T} := \sum_{i \in Q} \frac{x_{i}}{s_{i}} a_{i} a_{i}^{T}.$$

When A is dense, the cost is reduced from nm^2 to $|Q|m^2$ flops.

Outline

- Constraint Reduction for LP: Basic Ideas
- Constraint Reduction for LP: An Aggressive Approach
 - Selection of Working (Q) Set, and Convergence Properties
 - Addressing "Rank Degeneracy"
 - Allowing Infeasible Starting Points
 - Extension to Convex Quadratic Optimization (CQP)
 - Numerical Results and Applications
- 3 Constraint Reduction for SDP: A More Robust, Polynomial-Time Approach
 - Block-Structured SDP
 - Constraint-Reduction Scheme
 - Special Case: LP
 - Polynomial Convergence
- Discussion

Aggressive Approach: Selection of Working (Q) Set

[Given a dual-feasible initial point, a dual-feasible sequence is generated.]

- Key requirements for working set Q_k at iteration k:
 - A_Q must have full row rank, in order for Δy to be well defined.
 - IF the sequence $\{y^k\}$ converges to some limit y', THEN, for k large enough, all constraints that are active at y' must be contained in Q.
- Sufficient rule to satisfy these requirements: Let M be an upper bound to the number of active constraints at any feasible y, and let $\epsilon > 0$. Among the M smallest slacks s_i^k , include all those with $s_i^k < \epsilon$, subject to A_Q full row rank.
- Possibly augment Q with heuristics addressing the class of problems or application under consideration.
- Reduced "normal" matrix $M^{(Q)}$ need not be close to unreduced matrix M.
- (Ongoing investigation: sort the constraints by s_i^k/s_i^{k-1} instead of s_i^k .)

Aggressive Approach: Convergence Properties

If

- Problem is primal-dual strictly feasible
- A has full row rank

Then y^k converges to y^* , a stationary point.

If, in addition,

A linear-independence condition holds [Conjecture: This condition is not needed]

Then y^k converges to y^* , a dual solution.

If further

The dual solution set is a singleton

Then (x^k, y^k) converges q-quadratically to the unique PD solution.

Aggressive Approach: Addressing "Rank Degeneracy"

If A_0 is rank deficient, it means the reduced primal-dual problem

is degenerate, and the reduced PDIP search direction is not well-defined.

Enforcing rank(A_{Q}) = m may require significant effort or make |Q| larger than desired:

Add constraints until the condition holds.

 More systematic linear-algebra methods to ensure a good basis is obtained.

$$\max b^{\mathrm{T}} y - \frac{\delta_k}{2} \|y - y_k\|_2^2$$
s.t. $A_0^{\mathrm{T}} y \leq c_0$

12 / 38

Aggressive Approach: Regularized reduced PDIP

At kth iteration, choose Q and δ_k , and compute PDIP step for the regularized dual (and associated primal)

$$\begin{aligned} \max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} - \frac{\delta_k}{2} \| \boldsymbol{y} - \boldsymbol{y}_k \|^2 & \min \boldsymbol{c}_{\scriptscriptstyle Q}^{\mathrm{T}} \boldsymbol{x}_{\scriptscriptstyle Q} + \frac{1}{2\delta_k} \| \boldsymbol{r} \|^2 + \boldsymbol{r}^{\mathrm{T}} \boldsymbol{y}_k \\ \text{s.t. } \boldsymbol{A}_{\scriptscriptstyle Q}^{\mathrm{T}} \boldsymbol{y} & \leq \boldsymbol{c} & \text{s.t. } \boldsymbol{A}_{\scriptscriptstyle Q} \boldsymbol{x}_{\scriptscriptstyle Q} + \boldsymbol{r} = \boldsymbol{b} \\ \boldsymbol{x}_{\scriptscriptstyle Q} & \geq 0 \\ & \text{with vars } \boldsymbol{x}_{\scriptscriptstyle Q}, \boldsymbol{r}. \end{aligned}$$

The regularized "augmented" system is

$$\begin{pmatrix} -X_{Q}^{-1}S_{Q} & A_{Q}^{T} \\ A_{Q} & \delta_{k}I \end{pmatrix} \begin{pmatrix} \Delta x_{Q} \\ \Delta y \end{pmatrix} = \begin{pmatrix} s \\ b - A_{Q}x_{Q} \end{pmatrix},$$

and the regularized "normal-equations" are

$$(A_{Q}S_{Q}^{-1}X_{Q}A_{Q}^{T}+\frac{\delta_{k}I}{\Delta}y=b,$$

Theorem: Without need for rank(A_0) = m at each iteration, a variant of the regularized reduced PDIP method with special choice of δ_k (that has $\delta_k \to 0$ appropriately fast as the solution is approached) converges globally with local quadratic rate.

Aggressive Approach: Regularization in the limit of small δ

Regularized $\Delta y(\delta)$ satisfies

$$(A_{Q}S_{Q}^{-1}X_{Q}A_{Q}^{T}+\delta I)\Delta y(\delta)=b$$

What happens as $\delta \to 0$?

Using a spectral decomposition of the normal matrix

$$A_{Q}S_{Q}^{-1}X_{Q}A_{Q}^{T} = V\Sigma V^{T} = \begin{pmatrix} V_{1} & V_{2} \end{pmatrix} \begin{pmatrix} \Sigma_{1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_{1}^{1} \\ V_{2}^{T} \end{pmatrix},$$

with $\mathcal{R}(V_1) = \mathcal{R}(A_Q)$ and $\mathcal{R}(V_2) = \mathcal{N}(A_Q^T)$, we get

$$\Delta y(\delta) = V_1(\Sigma_1 + \delta I)^{-1}V_1^{\mathrm{T}}b + \delta^{-1}V_2V_2^{\mathrm{T}}b.$$

- If $V_2^T b = 0$, i.e., $b \in \mathcal{R}(A_0)$, then $\Delta y(\delta) \to V_1 \Sigma_1^{-1} V_1^T b$, the least norm solution to the normal equations. (E.g., this is so in the non-degenerate case: rank(A_{\odot}) = m.)
- While, if $V_2^T b \neq 0$, then the second term dominates and $\delta \Delta y(\delta) \rightarrow V_2 V_2^T b$, the projection of b onto $\mathcal{N}(A_0^T)$ (= $\mathcal{R}(A_0)^{\perp}$).

Aggressive Approach: Kernel-step constraint-reduced PDIP

- Regular step: If $b \in \mathcal{R}(A_Q)$ then use least norm solution to $A_Q S_Q^{-1} X_Q A_Q^T \Delta y = b$,
- Kernel step: Otherwise take a long step along the projection of b onto $\mathcal{N}(A_0^T)$.
- We proposed and analyzed an algorithm based on this step within our general constraint-reduced PDIP framework.
- Theorem: Without need for rank(A_Q) = m at each iteration, a variant of the kernel-step reduced PDIP method converges globally with local quadratic rate. Furthermore, only finitely many kernel-steps are taken.

It turns out that the total number of kernel steps can be related to a suitably defined "degree of degeneracy".

Aggressive Approach: Infeasible Starting Point

- A significant disadvantage: the need for a strictly dual-feasible initial point.
 - Analysis relies crucially on the property $b^{T}\Delta y > 0$.
- A remedy: introduce an ℓ_1 penalty function:

$$\min_{y,z} -b^T y + \rho \sum_i z_i$$
 s.t. $A^T y \le c + z$, $z \ge 0$

where $\rho > 0$ is the penalty parameter.

• Alternatively, an ℓ_{∞} penalty function can be used:

$$\min_{y,z} -b^T y + \rho z$$
 s.t. $A^T y \le c + ze$, $z \ge 0$

Aggressive Approach: Exactness of Penalty Function

Let x^* and y^* be the solution of the original primal and dual problems respectively. Let y_ρ^* and z_ρ^* denote the solution of the penalized problem. If

$$\rho > \|\mathbf{x}^*\|_{\infty},$$

then

$$y_{\rho}^{*}=y^{*}, z_{\rho}^{*}=0.$$

- ℓ_1 penalty fcn is exact, i.e., ρ need not go to ∞ .
- But x^* is not known a priori.

Choice of ρ is challenging:

- If ρ is too large, the cost function $b^{T}y$ is too strongly deemphasized, resulting in slower convergence to the solution.
- If ρ is too small,
 - the penalized problem is unbounded or
 - the solution of the penalized problem is infeasible for the original problem.

Aggressive Approach: Adaptive Adjustment of Penalty Parameter

Begin with ρ relatively small. Let $\sigma > 1$, $\gamma_i > 0$, i = 1, 2, 3, 4 be given.

Update: At every iteration of the optimization process, set $\rho^+ = \sigma \rho$ when

EITHER ($\{z_k\}$ seems to be unbounded)

$$\|\mathbf{z}\|_{\infty} \geq \gamma_1 \rho$$

OR (sequence seems to converge to an infeasible KKT point)

$$\|[\Delta y; \Delta z]\| \leq rac{\gamma_2}{
ho}$$
 AND $\tilde{x}_Q \geq -\gamma_3 e$ AND $\tilde{u}_Q \not\geq \gamma_4 e$

where $\tilde{x} = x + \Delta x$, $\tilde{u} = u + \Delta u$ and where u is the primal variables (i.e., KKT multiplier) associated to " $z \ge 0$ ".

Theorem: Under mild assumptions it is guaranteed that ρ is increased at most finitely many times, and that the iterates converge quadratically to the solution.

Aggressive Approach: Extension to Convex Quadratic Programming (CQP)

Problem:

$$\max \ b^{\mathrm{T}}y - \frac{1}{2}y^{\mathrm{T}}Hy \quad \text{s.t.} \quad A^{\mathrm{T}}y \leq c.$$

where $H \in \mathbb{R}^{m \times m}$, $H^{T} = H \succeq 0$, with [H, A] full row rank.

- PDIP iteration extends readily.
- Q-selection rule also extends. However, the number of constraints active at the solution may be significantly smaller than the number m of variables.
- The ℓ_1 (or ℓ_∞) penalization scheme readily extends.

Aggressive Approach: Numerical Results: Randomly Generated Problems

Parameters and initial conditions

- Parameters in the penalty adjustment scheme: $\sigma=10, \, \gamma_1=10, \, \gamma_2=1, \, \gamma_3=\gamma_4=100.$
- Typical infeasible initial points x_0 , y_0 , s_0 generated as in MPC algorithm [Mehrotra, 1992];
- Other initial values: $z_0 = A^T y_0 c + s_0$, $u_0^i = (x_0^T s_0)/z_0^i$, for $i = 1, \dots, n$, and $\rho_0 = ||x_0 + u_0||_{\infty}$.

Aggressive Approach: Numerical Results: Randomly Generated Problems

- $A \sim \mathcal{N}(0,1)$; $b \sim \mathcal{N}(0,1)$; $c := A^T \bar{y} + \bar{s}$, with $\bar{y} \sim \mathcal{N}(0,1)$ and $\bar{s} \sim \mathcal{U}(0,1)$.
- m = 100 and n = 20000.

Figure: CPU time and iterations with the ℓ_1 exact penalty function

Aggressive Approach: Some Successful Applications

- LP: Digital Filter Design for GPS Application (NASA)
- CQP: L₂ Entropy-Based Moment Closure
- CQP: Support-Vector Machine
- CQP: Model-Predictive Control

Aggressive Approach: Digital Filter Design (NASA)

N-"tap" FIR filter frequency response

$$H(e^{j\omega}) = \sum_{k=0}^{N-1} h_k e^{-j\omega k}, \omega \in [-\pi, \pi].$$

Chebyshev approximation with side constraints gives optimality criterion that matches a natural approach to filter specification.

min t

s.t.
$$W(\omega) \left| H(e^{j\omega}) - H_{\mathrm{d}}(e^{j\omega}) \right| \leq t, \forall \ \omega \in \Omega_{\mathrm{approx}}$$
 $\alpha(\omega) \leq \left| H(e^{j\omega}) \right| \leq \beta(\omega), \forall \ \omega \in \Omega_{\mathrm{side}}$

This is not an LP (since $H(e^{j\omega})$ is complex), but it can be rewritten as one:

- Impose linear phase symmetry constraints
- Design the filter "power-spectrum", then perform spectral factorization
- Introduce auxiliary semi-infinite variable

We proposed an effective constraint selection rule for this problem class:

- $M \ge m$ most active, plus
- All grid points on a coarse O(m) discretization grid, plus
- All local minimizers of "slack function" (local maximizers of error).

Aggressive Approach: Linear Phase FIR Filter Design Under (Type II) linear phase symmetry

2.556MHz IF

508kHz IF

2.556MHz IF

Aggressive Approach: Numerical Results on Filter Design

rps-pp=revised primal simplex with partial pricing.

(3m random columns priced, avoids O(mn) work)

mpc=unreduced unregularized Mehrotra predictor-corrector

rmpc=reduced regularized Mehrotra predictor-corrector using special constraint-selection rule

prob	alg	status	time	iter	$\max Q_k $	mean $ Q_k $
Linear phase FIR	rps-pp	succ	2.61	629	65	65.0
	mpc	succ	19.91	25	39372	39372.0
	rmpc	succ	5.48	40	1985	1947.3
Phase Noise Filter	rps-pp	fail	Inf	Inf	252	252.0
	mpc	succ	696.47	33	163840	163840.0
	rmpc	succ	112.57	63	7907	7772.4
Linear Predictor	rps-pp	succ	10.14	2672	26	26.0
	mpc	succ	35.72	31	105050	105050.0
	rmpc	succ	12.50	49	1963	1704.5
Antenna Array	rps-pp	succ	130.93	8042	99	99.0
	mpc	succ	299.61	32	272250	272250.0
	rmpc	succ	42.68	35	9769	8598.3

Additional tests showed that our methods typically outperform prior constraint-reduced interior-point algorithms.

Aggressive Approach: CQP: Application to L_2 Entropy-Based Moment Closure

Nonnegative-*L*₂-entropy-based moment closure constructs an "ansatz" of the underlying distribution given a finite set of moments, by solving

$$\text{minimize } \int f(\mu)^2 d\mu \quad \text{s.t. } f \geq 0 \text{ and } \int \textit{m}(\mu) f(\mu) d\mu = \textit{u},$$

where f is a trial distribution, u is a vector of known moments, and m is a vector of polynomials that define the moments.

The dual problem can be expressed as

$$\text{minimize } \frac{1}{2} \int \varphi(\mu)^2 d\mu - u^T \alpha \quad \text{s.t. } \alpha^T \textit{m}(\mu) \leq \varphi(\mu) \text{ for all } \mu,$$

where minimization is with respect to vector α and scalar function φ .

After fine discretization this yields a CQP with many inequality constraints, for which, on "hard" problems, only a small percentage of the constraints are active at the solution: a clear candidate for constraint reduction.

Aggressive Approach for CQP: L_2 Entropy-Based Moment Closure: Preliminary Results (Total Time)

L₂ Entropy-Based Moment Closure: Preliminary Results (Iteration Count)

Aggressive Approach for CQP: Support-Vector Machine

Problems from [Gertz-Griffin, 2006]:

- "Mushroom": space dimension = 276, # of patterns = 8124
- "Isolet": space dimension = 617, # of patterns = 7797
- "Waveform": space dimension = 861, # of patterns = 5000
- "Letter": space dimension = 153, # of patterns = 20,000

Outline

- Constraint Reduction for LP: Basic Ideas
- Constraint Reduction for LP: An Aggressive Approach
 - Selection of Working (Q) Set, and Convergence Properties
 - Addressing "Rank Degeneracy"
 - Allowing Infeasible Starting Points
 - Extension to Convex Quadratic Optimization (CQP)
 - Numerical Results and Applications
- Constraint Reduction for SDP: A More Robust, Polynomial-Time Approach
 - Block-Structured SDP
 - Constraint-Reduction Scheme
 - Special Case: LP
 - Polynomial Convergence
- Discussion

SDP in Standard Form

Primal SDP:
$$\min_{\mathbf{X}} \mathbf{C} \bullet \mathbf{X}$$
 s.t. $\mathbf{A}_i \bullet \mathbf{X} = b_i$ for $i = 1, ..., m, \mathbf{X} \succeq \mathbf{0}$,

Dual SDP:
$$\max_{\mathbf{y},\mathbf{S}} \mathbf{b}^T \mathbf{y}$$
 s.t. $\sum_{i=1}^m y_i \mathbf{A}_i + \mathbf{S} = \mathbf{C}$, $\mathbf{S} \succeq \mathbf{0}$,

where $\mathbf{C} \in \mathcal{S}^n$, $\mathbf{A}_i \in \mathcal{S}^n$, $\mathbf{X} \in \mathcal{S}^n$, and $\mathbf{S} \in \mathcal{S}^n$.

Conditions of Optimality:

$$\mathbf{A}_{i} \bullet \mathbf{X} = \mathbf{b} \text{ for } i = 1, \dots, m,$$

$$\sum_{i=1}^{m} y_{i} \mathbf{A}_{i} + \mathbf{S} = \mathbf{C},$$

$$\mathbf{XS} = 0, \quad \mathbf{X} \succeq \mathbf{0}, \quad \mathbf{S} \succeq \mathbf{0}.$$

[Note: whenever $\mathbf{X} \succeq \mathbf{0}$ and $\mathbf{S} \succeq \mathbf{0}$, $\mathbf{XS} = 0$ iff $\mathbf{X} \bullet \mathbf{S} = 0$.]

Normal System for PDIP (Newton) Direction

$$\mathbf{M} \Delta \mathbf{y} = \mathbf{g},$$

$$\Delta \mathbf{s} = \mathbf{r}_d - \mathcal{A}^T \Delta \mathbf{y},$$

$$\Delta \mathbf{x} = (\mathbf{X} \otimes \mathbf{S}^{-1})(\mathcal{A}^T \Delta \mathbf{y} - \mathbf{r}_d) + (\mathbf{I} \otimes \mathbf{S}^{-1})\mathbf{r}_c$$

where

$$\mathcal{A} = [\operatorname{vec}(\mathbf{A}_i), \dots, \operatorname{vec}(\mathbf{A}_m)]^T,$$

$$\mathbf{M} = \mathcal{A}(\mathbf{X} \otimes \mathbf{S}^{-1}) \mathcal{A}^T,$$

$$\mathbf{g} = \mathbf{r}_p + \mathcal{A}(\mathbf{X} \otimes \mathbf{S}^{-1}) \mathbf{r}_d - \mathcal{A}(\mathbf{I} \otimes \mathbf{S}^{-1}) \mathbf{r}_c.$$

with

$$r_{pi} = b_i - A_i \cdot X$$
 for $i = 1, ..., m$,
 $r_d = \text{vec}\left(C - S - \sum_{i=1}^m y_i A_i\right)$,
 $r_c = \text{vec}\left(\overline{\mu}I - XS\right)$,

Block-Structured SDP

In many applications, A_i and C are block-diagonal,

$$m{A}_i = \left[egin{array}{ccc} m{A}_{i1} & & m{0} \\ & \ddots & \\ m{0} & & m{A}_{ip} \end{array}
ight], \quad m{C} = \left[egin{array}{ccc} m{C}_1 & & m{0} \\ & \ddots & \\ m{0} & & m{C}_p \end{array}
ight],$$

yielding

$$\mathbf{M} = \mathcal{A}(\mathbf{X} \otimes \mathbf{S}^{-1}) \mathcal{A}^T = \sum_{j=1}^{\rho} \mathcal{A}_j(\mathbf{X}_j \otimes \mathbf{S}_j^{-1}) \mathcal{A}_j^T,$$

where $A_j = [\operatorname{vec}(\mathbf{A}_{1j}), \dots, \operatorname{vec}(\mathbf{A}_{mj})]^T$.

More Robust Approach: Constraint-Reduction Scheme

Replace M with

$$\widehat{\textbf{\textit{M}}}(Q) = \sum_{j \in Q} \mathcal{A}_j(\textbf{\textit{X}}_j \otimes \textbf{\textit{S}}_j^{-1}) \mathcal{A}_j^T,$$

where Q is a "small" subset of $\{1, \dots, p\}$ such that, for prescribed $q \in (0, 1)$,

$$\left\| \boldsymbol{\mathit{X}}_{\mathsf{Q}^{\mathsf{c}}} \left(\sum_{i=1}^{m} \Delta y_{i} \boldsymbol{\mathit{A}}_{i,\mathsf{Q}^{\mathsf{c}}} \right) \right\|_{F} \leq q \left\| \left[\begin{array}{cc} \boldsymbol{\mathit{X}}_{\mathsf{Q}} \left(\sum_{i=1}^{m} \Delta y_{i} \boldsymbol{\mathit{A}}_{i,\mathsf{Q}} \right) & 0 \\ 0 & 0 \end{array} \right] + \boldsymbol{\mathit{X}} \boldsymbol{\mathit{R}}_{d} + \boldsymbol{\mathit{R}}_{c} \right\|_{F}$$

where

$$\mathbf{R}_d = \mathbf{C} - \mathbf{S} - \sum_{i=1}^m y_i \mathbf{A}_i \quad (= \text{mat}(\mathbf{r}_c))$$

 $\mathbf{R}_c = \bar{\mu} \mathbf{I} - \mathbf{X} \mathbf{S} \quad (= \text{mat}(\mathbf{r}_d))$

Important: The chosen value of q is linked to the step size rule. The price to be paid for more aggressive constraint reduction (q closer to 1) is a shorter step.

More Robust Approach: Special Case: LP

When the A_i 's and C are scalar-diagonal, the SDP becomes our LP in standard form, with the following constraint reduction rule:

$$M^{(Q)} = A_Q S_Q^{-1} X_Q A_Q^T,$$

where $Q \in \{1, \dots, n\}$ must satisfy

$$\|X_{\mathsf{Q}^{\mathsf{c}}}A_{\mathsf{Q}^{\mathsf{c}}}^{\mathsf{T}}\Delta y\|_{2} \leq q \left\|r_{\mathsf{c}} - Xr_{\mathsf{d}} + \left[\begin{array}{c}X_{\mathsf{Q}}A_{\mathsf{Q}}^{\mathsf{T}}\Delta y\\0\end{array}\right]\right\|_{2},$$

where Δy solves

$$M^{(Q)}\Delta y = r_{\mathrm{p}} - AS^{-1}(r_{\mathrm{c}} - Xr_{\mathrm{d}}),$$

with

$$r_p := b - Ax$$
, $r_d := c - s - A^Ty$, $r_c := \bar{\mu}e - Xs$.

More Robust Approach: Polynomial Convergence

After adding an appropriate "corrector" direction to the "predictor" (affine-scaling) direction just discussed, and incorporating an appropriate steplength rule (along the resulting direction), an overall algorithm is obtained that was proved to be polynomially convergent. Specifically, let

$$\epsilon_0 = \max\{\mathbf{X}^0 \bullet \mathbf{S}^0, \|\mathbf{r}_p^0\|, \|\mathbf{r}_d^0\|\}.$$

Then

$$\max\{\boldsymbol{X}^{k} \bullet \boldsymbol{S}^{k}, \|\boldsymbol{r}_{p}^{k}\|, \|\boldsymbol{r}_{d}^{k}\|\} < \epsilon$$

after a number *k* of iterations no larger than

$$O(n \ln(\epsilon_0/\epsilon))$$
.

This algorithm is an adaptation of an ("unreduced") scheme due to Potra and Sheng (1998).

Outline

- Constraint Reduction for LP: Basic Ideas
- Constraint Reduction for LP: An Aggressive Approach
 - Selection of Working (Q) Set, and Convergence Properties
 - Addressing "Rank Degeneracy"
 - Allowing Infeasible Starting Points
 - Extension to Convex Quadratic Optimization (CQP)
 - Numerical Results and Applications
- Constraint Reduction for SDP: A More Robust, Polynomial-Time Approach
 - Block-Structured SDP
 - Constraint-Reduction Scheme
 - Special Case: LP
 - Polynomial Convergence
- 4 Discussion

Discussion

- Two approaches to constraint reduction were presented:
 - A rather aggressive approach, w/ the following properties:
 - dual feasible; infeasible initial points are handled by incorporating an exact penalty function scheme;
 - no guarantee of polynomial time;
 - constraint-reduced search direction potentially remote from (at times better than) the "unreduced" direction;
 - extends to QP, and even to NLP.
 - A more robust approach, w/ the following properties:
 - targets SDP (which includes CQP, LP,...);
 - no requirement of initial feasibility;
 - polynomial complexity;
 - constraint-reduced search direction close to the "unreduced" direction.
- Promising numerical results were reported with the former. (Numerical implementation of the latter is underway.)