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The big picture
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Intersecting graphs

Assume given two graphs with vertex set V', say

Gy =(V,E1) and Gy = (V,Es)

The intersection of the two graphs G; = (V, F1) and G4 = (V, E3)
is the graph (V, F) with

E = F{NEs

We write
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Capturing multiples constraints

Adjacency expresses constraints/relationships which can be
physical, logical, sociological, etc.

E.g., for two constraints:
e Communication constraint and link quality (e.g., fading)
e Communication constraint and secure link (e.g., via shared key)

e Membership in two different social networks
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Random graphs

For vertex set V', let £(V') denote the collection of all sets of
(undirected) edges on V. A random graph with vertex set V is
simply an £(V)-valued rv defined on some probability triple
(Q, F,P),say E: Q2 — E(V).
We write

G=(V,E)

Erdos-Rényi graphs, generalized random graphs, geometric
random graphs, random key graphs, small worlds, random
threshold graphs, multiplicative attribute graphs, growth models
(e.g., preferential attachment models, fitness-based models)
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Constructing (undirected) random graphs

Convenient to write

V=A_1,...,n}.

Random link assignments encoded through {0, 1}-valued rvs

{Lz’ja 1§z<]§n}
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Distinct nodes 4,5 = 1,...,n are adjacent if L;; = 1, and an
undirected link is assigned between nodes 7 and j.

Examples:

e Frdés-Renyi (Bernoulli) graphs

e Geometric random graphs — Disk models

e Random key graphs
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Intersecting random graphs

Assume given two random graphs with same vertex set V', say

Gy = (V,E1) and Gy = (V,Ey)

The intersection of the two random graphs G; = (V,[E;) and
Gy = (V,Ey) is the random graph (V,E) where

E:=E; NEs

We write
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Equivalently,

Throughout the component random graphs (G; and Gy are

assumed to be independent:

The collections {L; ;;, 1 <i<j<n}and {La,;;, 1 <i<j<n}

are independent.
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A basic objective

Inheritance — Understand how the structural properties of the
random graph (i N Gy are shaped by those of the component
random graphs G and Gy

Focus on graph connectivity and on the absence of isolated
nodes — Easier and hopefully asymptotically equivalent

After all

n(n—1)

27 2 possible graphs on V

and typical behavior explored asymptotically via

Zero-one Laws

10
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A basic source of difficulty

G1 N Gy connected

implies
G;1 and Go both connected

But the converse is false!
EFi1:1~2~3
V ={1,2,3}: Ey:1~3~2
EiNEy:2~3

Similar comment when considering the absence of isolated nodes

11
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Examples of random graphs

and their zero-one laws

12
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Erdos-Renyi (ER) graphs G(n;p)

Random link assignment encoded through i.i.d. {0, 1}-valued rvs

with
PlLij =1 =p

for some 0 < p < 1.

Also known as Bernoulli graphs

13
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Strong zero-one law for graph connectivity in ER graphs G(n;p)
(0 <p< 1) [ErdSs and Renyi|: Whenever

for some ¢ > 0, we have

(

0 if 0<ex1
lim P |G(n;p,) is connected] = <

n—oo

1 if 1<e

\

Same zero-one law for absence of isolated nodes

Critical scaling for graph connectivity:

1
Dy = ognj n=12...
n

14
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We also have the weak zero-one law:

y

0 if lim,_ .. =2
P

lim P |G(n;py) is connected] = <

n—aoo

1 if limy, e B2
p

Simple consequence of strong zero-one law by the monotonicity of
the mapping
p — P|G(n;p) is connected]
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Geometric random graphs G(n; p)

Population of n nodes located at X,...,.X,, in a bounded convex
region A C R?,

With p > 0, nodes ¢ and j are adjacent if
1 X5 — X[ < p

so that
Lij = 1[]| X — X < p)

Usually, i.i.d. node locations X1,..., X, which are uniformly

distributed on unit square or unit disk — Disk model

16
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Strong zero-one law for graph connectivity in geometric random
graphs G(n;p) (p > 0) [Penrose, Gupta and Kumar|: Whenever

5 logn
TPp ~ C
n

for some ¢ > 0, we have

i

0 if 0<ex1
lim P |G(n;p,) is connected] = <

n—aoo

1 if 1<e

\

Same zero-one law for absence of isolated nodes

Critical scaling for graph connectivity:

T (pr)? = n=12...
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A random key pre-distribution scheme
(Eschenauer and Gligor 2002)

For integers P and K with 1 < K < P, let Px denote the
collection of all subsets of {1,..., P} with exactly K elements

For each node i = 1,...,n, with § = (P, K), let K;(0) denote the
random set of K distinct keys assigned to node ¢

Under the EG scheme, the rvs K1(0),..., K,(0) are assumed to be
i.i.d. rvs, each of which is uniformly distributed over Py with

P —1
P [K;(6) ) . SEPr,i=1,....n
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The random key graph K(n;6)

Distinct nodes 7,7 = 1,...,n are said to be adjacent if they share
at least one key in their key rings, namely

K;(0) N K;(0) # 0.
In other words,

Li;(0) := 1[K:(0) N K;(0) # 0]

For distinct 72,5 =1,...,n,

19
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Strong zero-one law for graph connectivity in random key graphs
K(n;0) (K < P) |Di Pietro et al., Burbank and Gerke,
Rybarczyk, YM]: Whenever

K? log n

~ C
P, n

for some ¢ > 0, we have

i

0 if O<exl

lim P |K(n;6,) is connected| = <

n—oo

1 if 1 <e

\

Same zero-one law for absence of isolated nodes
Observation: With lim,, ., q(6,) = 1,

K2
—noo1—g(6,
B q(0n)




NIST, ACMD Seminar Series, February 2014

Observation

All cases discussed so far are “homogeneous” with a well-defined
link probability p(G):

p(G) = Probability that two nodes are adjacent in G

Zero-one laws for connectivity and absence of isolated nodes are

determined by conditions on p(G), or proxy thereof:

for some ¢ > 0

21
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ER graphs G(n;p):

Random geometric graphs G(n; p):

Random key graphs K(n;6):

22
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Intersecting random graphs

and their zero-one laws

23
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Three examples

Secure links via key sharing under partial visibility with an on-off
communication model:

G(n;p) NK(n;0)

Disk model with possibility of defective links due to fading:

G(n; p) N G(n;p)

Disk model with possibility of secure links via key sharing:

G(n; p) NK(n;0)

24
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With n — oo,

In all cases mentioned earlier, elements of a limiting theory are
available for the component random graphs: Zero-one laws hold
for graph connectivity and absence of isolated nodes when the

parameters are properly scaled with n

Inheritance — For a given random intersection graph,

e Zero-one laws for graph connectivity and for the absence of

isolated nodes?
e (ritical thresholds?

e Width of phase transitions?

25
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A silly detour: Intersecting ER graphs

With G; = G(n,p1) and Gy = G(n, p2), then
G1NGo =4 G(n,p) with p:=p;1-po

under the independence of the components.

Whenever
logn
Pn = P1in P2n ~C n

for some ¢ > 0, we have

lim P[G(n;py,) is connected] = <

n—oo

26
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Zero-law holds for G(n, p1) N G(n, pz) whenever
1logn

Pn = Pln  "P2n — 3 , n=1,2,...

2 n

Yet one-law holds for G(n,p;) and G(n, ps) with

/1 logn
Pin —P2n — P 5 , n:1,2,...
2 n

27



NIST, ACMD Seminar Series, February 2014 28

Easy to understand what is going on here because
G(n;p1) NG(n;p2) =5t G(n,p) with p:=pi-ps

but this yields so little insight! Yet ...

Intersecting ER graphs is trivial but what about other situations?

Natural question: Might it still be the case that zero-one laws

are determined by conditions on the link assignment probability

p(G1 NG2) =p(Gq) - p(G2) [Independence]

Remember in “one dimension”!
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Intersecting G(n;p) and K(n;0)

29



NIST, ACMD Seminar Series, February 2014

This time,

G(n;p) NK(n;0) #st G(n;p')

for some p’ = p’(p, 0)

G(n;p) NK(n;0) #5 K(n; 0"

for some 0" = ¢’ (p, 0)

But not all is lost!

and

so that

30
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Conjecture?

Strong zero-one law for connectivity and absence of isolated
nodes in G(n;p) N K(n;6): Whenever

logn

pa (1= () ~ ¢ =2

for some ¢ > 0, we have

i

0 if 0<ex1
lim P[G(n;p,) NK(n;0,)...] =X

n—oo

1 if 1<e

\

31
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Indeed correct ...

Connectivity:

Yagan (2012) provided lim,, . pn logn exists and there exists
o > 0 such that

on < FP,, n=12,...

Absence of isolated nodes:

Makowski and Yagan (2013) without any additional condition!

32
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Let I,,(p,#) denote the number of isolated nodes in the

intersection graph G(n;p) N K(n;#), so that

P [G(n;p) N K(n;#) has no isolated node] = P [I,,(p,0) = 0]

Method of first and second moments via the standard bounds

33
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Need to figure out whether

lim E[[,(pn,0,)] =0

n—aoo

iy (E 1 (Pn, 0,)])°
n—oo I [I(pn, 0n)?]

under the appropriate conditions

=1
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Easy to see that

E[L,(p,0)] =n(1—p(l—q®))" "

so that

n—oo n—oo mn

1 n—1
lim E [I,(pn, 60,)] lim n (1 — ogn)

( o 1if 0<e<1- Beware

0 if 1<ec

\

with lim,, .. ¢, = ¢

logn n—l log n

—(n,— ogn

TL(] Ch ) elogn (n—1)cp >— ...
n

35
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Expression available for

(E[1,(9)])°
E[I.(p,0)]

but far more complicated!

Zero-law for connectivity follows. One-law handled by arguments

similar to the ones used by Yagan and Makowski (2012)

36
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Additional results

G(n,p) N G(n,p)

Yi et al (2006), Prasanth Anthapadmanabhan and Makowski
(2010), Penrose (2013)

G(n,p) NK(n,d)

Yi et al (2006), Santhana Krishnan et al. (2013)
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