Entity-Oriented Data Science

Prof. Lise Getoor University of Maryland, College Park http://www.cs.umd.edu/~getoor

September 5, 2013

BIG Data is not flat

Entities and relationships are important!

NEED: Data Science for Graphs

Statistical Relational Learning (SRL)

- AI/DB representations + statistics for multi-relational data
 - Entities can be of different types
 - Entities can participate in a variety of relationships
 - examples: Markov logic networks, relational dependency networks, Bayesian logic programs, probabilistic relational models, many others.....

o Key ideas

- Relational feature construction
- Collective reasoning
- 'Lifted' representation, inference and learning
- o Related areas
 - structured prediction, hierarchical models, latent-variable relational models, multi-relational tensors, representation learning, ...

For more details, see NIPS 2012 Tutorial, http://linqs.cs.umd.edu/projects//Tutorials/nips2012.pdf

o Joint inference over large networks for:

Collective Classification

Link Prediction

Entity Resolution

o Joint inference over large networks for:

- Collective Classification inferring labels of nodes in graph
- Link Prediction
- Entity Resolution

o Joint inference over large networks for:

- Collective Classification inferring labels of nodes in graph
- Link Prediction inferring the existence of edges in graph
- Entity Resolution

o Joint inference over large networks for:

- Collective Classification inferring labels of nodes in graph
- Link Prediction inferring the existence of edges in graph
- Entity Resolution clustering nodes that refer to the same underlying entity

What's Needed Next?

- Methods which can perform and interleave these tasks
- Methods which support:
 - Graph identification inferring a graph from noisy observations
 - Graph alignment mapping components in one graph to another
 - **Graph summarization** clustering the nodes and edges in a graph
- Desiderata: Flexible, scalable, declarative support for collective classification, link prediction, entity resolution and other information alignment and information fusion problems....

Probabilistic Soft Logic (PSL)

Stephen Bach

Matthias Broecheler

Alex Memory

Lily Mihalkova

Stanley Kok

Bert Huang

Angelika Kimmig

Probabilistic Soft Logic (PSL)

- **Declarative language** based on logics to express collective probabilistic inference problems
 - Predicate = relationship or property
 - Atom = (continuous) random variable
 - Rule = capture dependency or constraint
 - Set = define aggregates
- PSL Program = Rules + Input DB

Probabilistic Soft Logic (PSL)

- **Declarative language** based on logics to express collective probabilistic inference problems
 - Predicate = relationship or property
 - Atom = (continuous) random variable
 - Rule = capture dependency or constraint
 - Set = define aggregates
- PSL Program = Rules + Input DB

Node Labeling

Voter Opinion Modeling

Voter Opinion Modeling

- Entities
 - People, Emails
- Attributes
 - Words in emails
- Relationships
 - communication, work relationship
- Goal: Identify work relationships
 - Supervisor, subordinate, colleague

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If email content suggests type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If email content suggests type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If email content suggests type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

- People, emails, words, communication, relations
- Use rules to express evidence
 - "If email content suggests type X, it is of type X"
 - "If A sends deadline emails to B, then A is the supervisor of B"
 - "If A is the supervisor of B, and A is the supervisor of C, then B and C are colleagues"

Entity Resolution

- Entities
 - People References
- Attributes
 - Name
- Relationships
 - Friendship
- Goal: Identify references that denote the same person

Entity Resolution

- References, names, friendships
- Use rules to express evidence
 - '' If two people have similar names, they are probably the same''
 - '' If two people have similar friends, they are probably the same''
 - '' If A=B and B=C, then A and C must also denote the same person''

J. Smith

В

name

friend

(¬

J. Smith

В

name

friend

G

Entity Resolution

- References, names, friendships
- Use rules to express evidence
 - '' If two people have similar names, they are probably the same''
 - '' If two people have similar friends, they are probably the same''
 - '' If A=B and B=C, then A and C must also denote the same person''

John Smith

Α

F

name

friend

Entity Resolution

- References, names, friendships
- Use rules to express evidence
 - '' If two people have similar names, they are probably the same''
 - '' If two people have similar friends, they are probably the same''
 - '' If A=B and B=C, then A and C must also denote the same person''

Logic Foundation

[Broecheler, et al., UAI '10]

- Atoms are real valued
 - Interpretation I, atom A: $I(A) \in [0,1]$
 - We will omit the interpretation and write A ϵ [0,1]
- V, Λ are combination functions
 - T-norms: $[0,1]^n \rightarrow [0,1]$

[Broecheler, et al., UAI '10]

Rules

 $H_1 \lor \dots H_m \leftarrow B_1 \land B_2 \land \dots B_n$ ■ Combination functions (Lukasiewicz T-norm) ■ A ∨ B = min(1, A + B) ■ A ∧ B = max(0, A + B - 1)

[Broecheler, et al., UAI '10]

Satisfaction

 $H_1 \lor ... H_m \leftarrow B_1 \land B_2 \land ... B_n$

■ Establish Satisfaction - \lor (H₁,...,H_m) ← \land (B₁,...,B_n) ≥0.5 H₁ ← B₁:0.7 \land B₂:0.8

[Broecheler, et al., UAI '10]

Distance to Satisfaction

 $H_1 \vee ... H_m \leftarrow B_1 \wedge B_2 \wedge ... B_n$

■ Distance to Satisfaction - max(\land (B₁,...,B_n) - \lor (H₁,...,H_m) , 0) H₁:0.7 ← B₁:0.7 \land B₂:0.8 0.0 H₁:0.2 ← B₁:0.7 \land B₂:0.8 0.3

[Broecheler, et al., UAI '10]

Rule Weights

 $W: H_1 \vee ... H_m \leftarrow B_1 \wedge B_2 \wedge ... B_n$

• Weighted Distance to Satisfaction - $d(R,I) = W \cdot max(\land (B_1,...,B_n) - \lor (H_1,...,H_m), 0)$

So far....

- Given a data set and a PSL program, we can construct a set of ground rules.
- Some of the atoms have fixed truth values and some have unknown truth values.
- For every assignment of truth values to the unknown atoms, we get a set of weighted distances from satisfaction.
- How to decide which is best?

Probabilistic Foundation

Probabilistic Model

Hinge-loss MRFs

Hinge-loss Markov Random Fields

$$P(\mathbf{Y} | \mathbf{X}) = \frac{1}{Z} \exp \left[-\sum_{j=1}^{m} w_j \max\{\ell_j(\mathbf{Y}, \mathbf{X}), 0\}^{p_j} \right]$$

- Continuous variables in [0,1]
- Potentials are hinge-loss functions
- Subject to arbitrary linear constraints
- Log-concave!

Inference as Convex Optimization

Maximum Aposteriori Probability (MAP) Objective:

$$\arg \max_{\mathbf{Y}} P(\mathbf{Y} | \mathbf{X})$$

=
$$\arg \min_{\mathbf{Y}} \sum_{j=1}^{m} w_j \max\{\ell_j(\mathbf{Y}, \mathbf{X}), 0\}^{p_j}$$

- This is convex!
- Can solve using off-the-shelf convex optimization packages
- In or custom solver

Consensus Optimization

- Idea: Decompose problem and solve sub-problems independently (in parallel), then merge results
 - Sub-problems are ground rules
 - Auxiliary variables enforce consensus across sub-problems

 Framework: Alternating direction method of multipliers (ADMM) [Boyd, 2011]

Inference with ADMM is fast, scalable, and straightforward to implement [Bach et al., NIPS 2012, UAI 2013]

Speed

Average running time

	Cora	Citeseer	Epinions	Activity
Discrete MRF	110.9 s	184.3 s	212.4 s	344.2 s
HL-MRF	0.4 s	0.7 s	1.2 s	0.6 s

- Inference in HL-MRFs is orders of magnitude faster than in discrete MRFs which use MCMC approximate inference
- In practice, scales linearly with the number of potentials

Compiling PSL \rightarrow HL-MRF

- Ground out first-order rules
 - Variables: soft-truth values of atoms
 - Hinge-loss potentials: weighted *distances to satisfaction* of ground rules

$$w: A \to B$$

$$w: \neg A \lor B$$

$$w \times (1 - \min\{1 - A + B, 1\})$$

$$w \times \max\{A - B, 0\}$$

 The effect is assignments that satisfy weighted rules more are more probable

Inference Meta-Algorithm

Inference Meta-Algorithm

Inference Meta-Algorithm

_

Distributed MAP Inference

- ADMM consensus optimization problem can be implemented naturally in distributed setting
- For k+1 iteration, it consists three steps in which sub problems can run independently (1st and 2nd step):
 - 1. Update Lagrangian multiplier

$$y_j^{k+1} \leftarrow y_j^k + \rho(x_j^k - X_j^k)$$

2. Update each sub problem

$$x_{j}^{k+l} \leftarrow \arg\min_{x_{j}} \Lambda_{j} \phi_{j}(x_{j}) + \frac{\rho}{2} \left\| x_{j} - X_{j}^{k} + \frac{1}{\rho} y_{j}^{k+l} \right\|_{2}^{2}$$
$$x_{j}^{k+l} \leftarrow \arg\min_{x_{j}} I_{j} \left[C_{j}(x_{j}) \right] + \frac{\rho}{2} \left\| x_{j} - X_{j}^{k} + \frac{1}{\rho} y_{j}^{k+l} \right\|_{2}^{2}$$

3. Update the global variables

$$z_g^{k+1} \leftarrow \frac{1}{s_g} \sum_{G(i,j)=g} \left(x_i^{k+1} + \frac{y_i^{k+1}}{\rho} \right)_j$$

Distributed MAP: MapReduce

Pros:

Straightforward Design

Cons:

- Job bootstrapping cost between iterations
- Difficult to schedule subset of nodes to run.

Distributed MAP: GraphLab

Easy to express local • global convergence conditions to sub variable problem schedule only subset of x_1 Z_I compone node nodes. Z_2 gather gather get local z,y get z X_m apply apply update y update z update x $X_{m+1} \circ$ scatter Z_q scatter unless converge notify z notify X Z_p X_{m+r}

Advantages:

•

No need to touch disk, no

job bootstrap-ping cost

update i

update i+1

Experimental Results

- Using PSL for knowledge graph cleaning task
 - 16M+ vertices, 22M+ edges, for small running instances
 - Takes 100 minutes to finish in Java single machine implementation using 40G+ memory
 - Distributed GraphLab implementation takes less than 15 minutes using 4 smaller machines
 - Possible to use commodity machines on large models!

Miao, Liu, Huang, Getoor, BigData '13

Experimental Results

Voter model using commodity machines

Name	Subproblem	Consensus	Edge	Fit in One Machine?	Run time (sec) m = 8
SN _{1M}	3.3M	1.1M	6M	Yes	2230
SN _{2M}	6.6M	2.1M	12M	No	3997
SN _{3M}	10M	3.1M	18M	No	4395
SN_{4M}	13M	4.2M	24M	No	5376

Machine: Intel Core2 Quad CPU 2.66GHz machines with 4GB RAM running Ubuntu 12.04 Linux

Weight Learning

Weight Learning

- Learn from training data
- No need to hand-code rule-weights
- Various methods:
 - approximate maximum likelihood

Broecheler et al., UAI '10

- maximum pseudo-likelihood
- large-margin estimation

Bach, et al., UAI 2013

Weight Learning

- State-of-the-art supervised-learning performance on
 - Collective classification
 - Social-trust prediction
 - Preference prediction
 - Image reconstruction

Example PSL Program

Collective Activity Detection

- Objective: Classify actions of individuals in a video sequence
 - Requires tracking the multiple targets, performing ID maintenance

Incorporate Low-level Detectors

Histogram of Oriented Gradients (HOG) [Dalal & Triggs, CVPR 2005] Action Context Descriptors (ACD) [Lan et al., NIPS 2010]

For each action a, define PSL rule:

 $w_{local,a}$: Doing(X, a) \leftarrow Detector(X, a)

e.g.,

w_{local,walking} : Doing(X, walking) ← Detector(X, walking)

Easily Encode Intuitions

 Proximity: People that are close (in frame) are likely doing the same action

 $w_{prox,a}$: Doing(X, a) \leftarrow Close(X, Y) \land Doing(Y, a)

- Closeness is measured via a radial basis function
- Proximity: People are likely to continue doing the same action

 $w_{persist,a}$: Doing(Y, a) \leftarrow Same (X, Y) \land Doing(X, a)

- Requires tracking & ID maintenance rule:

 w_{id} : Same(X,Y) \leftarrow Sequential(X,Y) \land Close(X,Y)

Other Rules

- Action transitions
- Frame/scene consistency
- Priors
- (Partial-)Functional Constraints

Collective Activity Detection Model

 w_{id} : Same(X, Y) \leftarrow Sequential(X, Y) \land Close(X, Y)

w_{idprior}: ~SamePerson(X, Y)

For all actions a:

$$\begin{split} w_{\text{local},a} &: \text{Doing}(X, a) \leftarrow \text{Detector}(X, a) \\ w_{\text{frame},a} &: \text{Doing}(X, a) \leftarrow \text{Frame}(X, F) \land \text{FrameAction}(F, a) \\ w_{\text{prox},a} &: \text{Doing}(X, a) \leftarrow \text{Close}(X, Y) \land \text{Doing}(Y, a) \\ w_{\text{persist},a} &: \text{Doing}(Y, a) \leftarrow \text{SamePerson}(X, Y) \land \text{Doing}(X, a) \\ w_{\text{prior},a} &: \sim \text{Doing}(X, a) \end{split}$$

PSL Code

```
/*** MODEL DEFINITION ***/
PSLModel m = new PSLModel(this, data);
/* PREDICATES */
// target
m.add predicate: "doing", types: [ArgumentType.UniqueID, ArgumentType.Integer];
m.add predicate: "sameObj", types: [ArgumentType.UniqueID, ArgumentType.UniqueID];
// observed
m.add predicate: "inFrame", types: [ArgumentType.UniqueID, ArgumentType.Integer, ArgumentType.Integer]:
m.add predicate: "inSameFrame", types: [ArgumentType.UniqueID, ArgumentType.UniqueID];
m.add predicate: "inSeqFrames", types: [ArgumentType.UniqueID, ArgumentType.UniqueID]:
m.add predicate: "dims", types: [ArgumentType.UniqueID, ArgumentType.Integer, ArgumentType.Integer];
m.add predicate: "detector", types: [ArgumentType.UniqueID, ArgumentType.Integer];
m.add predicate: "frameAction", types: [ArgumentType.Integer, ArgumentType.Integer];
/* FUNCTIONAL PREDICATES */
m.add function: "close", implementation: new ClosenessFunction(0, 1e6, 0.1, true);
m.add function: "seqClose", implementation: new ClosenessFunction(100, 4.0, 0.7, true);
```

```
m.add function: "notMoved", implementation: new ClosenessFunction(10, 1.0, 0.0, false);
```


PSL Code

```
/* TRACKING RULES */
// ID maintenance
m.add rule: ( inSeqFrames(BB1,BB2) & dims(BB1,X1,Y1) & dims(BB2,X2,Y2)
                & seqClose(X1,X2,Y1,Y2) ) >> sameObj(BB1,BB2), weight: 1.0;
// Prior on sameObj
m.add rule: ~sameObj(BB1,BB2), weight: 0.01;
/* ACTION RULES */
def actions = ["crossing", "standing", "queueing", "walking", "talking"];
for (int a : actions) {
   // Local detectors
   m.add rule: detector(BB,a) >> doing(BB,a), weight: 1.0;
   // Frame consistency
   m.add rule: ( inFrame(BB,S,F) & frameLabel(F,a) ) >> doing(BB,a), weight: 0.1;
   // Persistence
   m.add rule: ( sameObj(BB1,BB2) & doing(BB1,a) ) >> doing(BB2,a), weight: 1.0;
   // Proximity
   m.add rule: ( inSameFrame(BB1,BB2) & doing(BB1,a) & dims(BB1,X1,Y1) & dims(BB2,X2,Y2)
                    & close(X1,X2,Y1,Y2) ) >> doing(BB2,a), weight: 0.1;
   // Prior on doing
   m.add rule: ~doing(BB,a), weight: 0.01;
```

}

PSL Code

/* FUNCTIONAL CONSTRAINTS */

// Functional constraint on doing means that it should sum to 1 for each BB
m.add PredicateConstraint.Functional, on: doing;

// (Inverse) Partial functional constraint on sameObj
m.add PredicateConstraint.PartialFunctional, on: sameObj;
m.add PredicateConstraint.PartialInverseFunctional, on: sameObj;

Foundations Summary

Foundations Summary

- Design probabilistic models using declarative language
 - Syntax based on first-order logic
- Inference of most-probable explanation is fast convex optimization (ADMM)
- Learning algorithms for training rule weights from labeled data

PSL Applications

Document Classification

- Given a networked collection of documents
- Observe some labels
- Predict remaining labels using
 - Ink direction
 - Inferred class label

	Citeseer	Cora
HL-MRF-Q (MLE) HL-MRF-Q (MPLE)	$\begin{array}{c} 0.729 \\ 0.729 \end{array}$	$\begin{array}{c} 0.816 \\ 0.818 \end{array}$
HL-MRF-Q (LME)	0.683	0.789
HL-MRF-L (MLE) HL-MRF-L (MPLE) HL-MRF-L (LME)	0.724 0.729 0.695	0.802 0.808 0.789
MLN (MLE) MLN (MPLE) MLN (LME)	$0.686 \\ 0.715 \\ 0.687$	$0.756 \\ 0.797 \\ 0.783$

Accuracy for collective classification. The label accuracy of the highest-scoring category for various HL-MRFs and MLNs. Scores statistically equivalent to the best scoring method are typed in bold.

Computer Vision Applications

- Low-level vision:
 - image reconstruction

- High-level vision:
 - activity recognition in videos

Image Reconstruction

	HL-MRF-Q (MLE)	SPN	DBM	DBN	PCA	NN
Caltech-Left	1751	1815	2998	4960	2851	2327
Caltech-Bottom	1863	1924	2656	3447	1944	2575
Olivetti-Left	932	942	1866	2386	1076	1527
Olivetti-Bottom	1202	918	2401	1931	1265	1793

RMSE reconstruction error

[London, et al., CVPR WS 2013]

Activity Recognition in Videos

Results on Activity Recognition

Recall matrix between different activity types

Accuracy metrics compared against baseline features

	5 Activities		6 Activities		
Method	Acc.	F1	Acc.	F1	
HOG	.474	.481	.596	.582	
HL-MRF+HOG	.598	.603	.793	.789	
ACD	.675	.678	.835	.835	
HL-MRF+ACD	.692	.693	.860	.860	

Social Trust Prediction

- Competing models from social psychology of strong ties
 - Structural balance [Granovetter '73]
 - Social status [Cosmides et al., '92]
- Effects of both models present in online social networks
 - [Leskovec, Huttenlocher, & Kleinberg, 2010]

Structural Balance vs. Social Status

 Structural balance: strong ties are governed by tendency toward balanced triads

- e.g., the enemy of my enemy...
- Social status: strong ties indicate unidirectional respect, "looking up to", expertise status

- e.g., patient-nurse-doctor, advisor-advisee
Structural Balance in PSL

 $\mathsf{Knows}(A, B) \land \mathsf{Knows}(B, C) \land \mathsf{Knows}(A, C)$ $\land \mathsf{Trusts}(A, B) \land \mathsf{Trusts}(B, C) \Rightarrow \mathsf{Trusts}(A, C),$

 $Tr(A, B) \land Tr(B, C) \Rightarrow Tr(A, C),$ $Tr(A, B) \land \neg Tr(B, C) \Rightarrow \neg Tr(A, C),$ $\neg Tr(A, B) \land Tr(B, C) \Rightarrow \neg Tr(A, C),$ $\neg Tr(A, B) \land \neg Tr(B, C) \Rightarrow Tr(A, C),$

Structural Balance in PSL

 $\operatorname{Tr}(A, B) \wedge \operatorname{Tr}(B, C) \Rightarrow \operatorname{Tr}(A, C), \qquad \operatorname{Tr}(B, A) \wedge \operatorname{Tr}(B, C) \Rightarrow \operatorname{Tr}(A, C),$ $\neg \operatorname{Tr}(A, B) \wedge \operatorname{Tr}(B, C) \Rightarrow \neg \operatorname{Tr}(A, C), \quad \neg \operatorname{Tr}(B, A) \wedge \operatorname{Tr}(B, C) \Rightarrow \neg \operatorname{Tr}(A, C),$ $\neg \operatorname{Tr}(A, B) \land \neg \operatorname{Tr}(B, C) \Rightarrow \operatorname{Tr}(A, C), \quad \neg \operatorname{Tr}(B, A) \land \neg \operatorname{Tr}(B, C) \Rightarrow \operatorname{Tr}(A, C),$

 $\operatorname{Tr}(A, B) \wedge \neg \operatorname{Tr}(B, C) \Rightarrow \neg \operatorname{Tr}(A, C), \qquad \operatorname{Tr}(B, A) \wedge \neg \operatorname{Tr}(B, C) \Rightarrow \neg \operatorname{Tr}(A, C),$

 $\operatorname{Tr}(A, B) \wedge \operatorname{Tr}(C, B) \Rightarrow \operatorname{Tr}(A, C), \qquad \operatorname{Tr}(B, A) \wedge \operatorname{Tr}(C, B) \Rightarrow \operatorname{Tr}(A, C),$ $\neg \operatorname{Tr}(A, B) \wedge \operatorname{Tr}(C, B) \Rightarrow \neg \operatorname{Tr}(A, C), \quad \neg \operatorname{Tr}(B, A) \wedge \operatorname{Tr}(C, B) \Rightarrow \neg \operatorname{Tr}(A, C),$ $\neg \operatorname{Tr}(A, B) \land \neg \operatorname{Tr}(C, B) \Rightarrow \operatorname{Tr}(A, C), \qquad \neg \operatorname{Tr}(B, A) \land \neg \operatorname{Tr}(C, B) \Rightarrow \operatorname{Tr}(A, C)$

 $\operatorname{Tr}(A, B) \wedge \neg \operatorname{Tr}(C, B) \Rightarrow \neg \operatorname{Tr}(A, C), \qquad \operatorname{Tr}(B, A) \wedge \neg \operatorname{Tr}(C, B) \Rightarrow \neg \operatorname{Tr}(A, C),$

[Huang, et al., SBP '13]

Social Status in PSL

$\operatorname{Tr}(X, Y) \wedge \operatorname{Tr}(Y, Z) \Rightarrow \operatorname{Tr}(X, Z)$ $\neg \operatorname{Tr}(X, Y) \wedge \neg \operatorname{Tr}(Y, Z) \Rightarrow \neg \operatorname{Tr}(X, Z)$

Social Status in PSL

 $\neg \operatorname{Tr}(X, Y) \land \neg \operatorname{Tr}(Y, Z) \Rightarrow \neg \operatorname{Tr}(X, Z), \quad \neg \operatorname{Tr}(Y, X) \land \operatorname{Tr}(Y, Z) \Rightarrow \operatorname{Tr}(X, Z),$

 $\operatorname{Tr}(X, Y) \wedge \operatorname{Tr}(Y, Z) \Rightarrow \operatorname{Tr}(X, Z), \qquad \operatorname{Tr}(Y, X) \wedge \neg \operatorname{Tr}(Y, Z) \Rightarrow \neg \operatorname{Tr}(X, Z),$

 $\neg \operatorname{Tr}(X, Y) \wedge \operatorname{Tr}(Z, Y) \Rightarrow \neg \operatorname{Tr}(X, Z), \quad \neg \operatorname{Tr}(Y, X) \wedge \neg \operatorname{Tr}(Z, Y) \Rightarrow \operatorname{Tr}(X, Z)$

 $\operatorname{Tr}(X, Y) \wedge \neg \operatorname{Tr}(Z, Y) \Rightarrow \operatorname{Tr}(X, Z), \qquad \operatorname{Tr}(Y, X) \wedge \operatorname{Tr}(Z, Y) \Rightarrow \neg \operatorname{Tr}(X, Z),$

Evaluation

- User-user trust ratings from two different online social networks
- Observe some ratings, predict held-out
- Eight-fold cross validation on two data sets:
 - FilmTrust movie review network, trust ratings from 1-10
 - Epinions product review network, trust / distrust ratings {-1, 1}

FilmTrust Experiment

- Normalize [1,10] rating to [0,1]
- Prune network to largest connected-component
- 1,754 users, 2,055 relationships
- Compare mean average error, Spearman's rank coefficient, and Kendall-tau distance

Method	MAE	au	ho	MAE*	$ au^{m{*}}$	ρ^*
Average	0.210	n/a	n/a	n/a	n/a	n/a
EigenTrust	0.339	-0.054	-0.074	0.339	-0.054	-0.074
TidalTrust	0.229	0.059	0.078	0.236	0.089	0.117
PSL-Balance	0.207	0.136	0.176	0.193	0.235	0.314
PSL-Balance-Recip	0.207	0.139	0.188	0.193	0.241	0.318
PSL-Status	0.224	0.112	0.144	0.230	0.205	0.277
PSL-Status-Inv	0.224	0.065	0.085	0.238	0.143	0.189

* measured on only non-default predictions

Epinions Experiment

- Snowball sample of 2,000 users from Epinions data set
- 8,675 trust scores normalized to {0,1}
- Measure area under precision-recall curve for distrust edges (rarer class)

Method	AUC
Average	0.070
PSL-Balance	0.317
PSL-Balance-Recip	0.343
PSL-Status	0.297
PSL-Status PSL-Status-Inv	0.297 0.280
PSL-Status PSL-Status-Inv EigenTrust	0.297 0.280 0.131

Drug-Target Interaction Prediction

- New drugs take a decade to reach market.
- Development cost reaches 2 billion US dollars.
- Most novel drug candidates never get approved.

Drug repurposing: Finding new uses for approved drugs

Drug-Target Interaction Prediction

Computational predictions focus biological investigations

Data: drug-target (gene product) interaction network + drug-drug and target-target similarities

Task: link prediction

[Fakhraei, et al., BioKDD'13]

Drug-Target Interaction Prediction

 $\operatorname{SimilarTarget}_{\beta}(T_1, T_2) \wedge Interacts(D, T_2) \rightarrow Interacts(D, T_1)$

 $\operatorname{SimilarDrug}_{\alpha}(D_1, D_2) \wedge Interacts(D_2, T) \rightarrow Interacts(D_1, T)$

 $\begin{aligned} \text{SimilarDrug}_{\alpha}(D_1, D_2) &\wedge SimilarTarget_{\beta}(T_1, T_2) \\ &\wedge Interacts(D_2, T_2) \rightarrow Interacts(D_1, T_1) \end{aligned}$

Drug-Target Interaction Prediction

- 315 Drugs, 250 Targets
- 78,750 possible interactions, 1,306 observed interactions
- 5 drug-drug similarities, 3 target-target similarities

Method	AUROC	Condition	
PSL	0.931 ± 0.018	10-fold CV	
Perlman, et al. 2011	0.935	with sampling	
Yamanishi, et al. 2008	0.884		
Bleakley, et al. 2009	0.814		

[Bach, et al., ICML WS 2013]

Learning Latent Groups

- Can we better understand political discourse in social media by learning groups of similar people?
- Case study: 2012 Venezuelan Presidential Election
 - Incumbent: Hugo Chávez
 - Challenger: Henrique Capriles

Left: This photograph was produced by Agência Brasil, a public Brazilian news agency. This file is licensed under the Creative Commons Attribution 3.0 Brazil license. Right: This photograph was produced by Wilfredor. This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Learning Latent Groups

- South American tweets collected from 48-hour window around election.
- Selected 20 top users
 - Candidates, campaigns, media, and most retweeted
- 1,678 regular users interacted with at least one top user and used at least one hashtag in another tweet
- Those regular users had 8,784 interactions with non-top users

Learning Latent Groups

Learning Latent Groups

Schema Matching

- Correspondences between source and target schemas
- Matching rules
 - '' If two concepts are the same, they should have similar subconcepts''
 - '' If the domains of two attributes are similar, they may be the same''

develop(A, B) <= provides(A, B)
Company(A) <= Organization(A)
Products&Services(B) <= Service&Products(B)</pre>

Schema Mapping

- Input: Schema matches
- Output: S-T query pairs (TGD) for exchange or mediation
- Mapping rules
 - "Every matched attribute should participate in some TGD."
 - "The solutions to the queries in TGDs should be similar."

 \exists Portfolio P, develop(A, P) \land includes(P, B) <= provides(A, B) . . .

Knowledge Graph Identification

- Problem: Collectively reason about noisy, inter-related fact extractions
- Task: NELL fact-promotion (web-scale IE)
 - Millions of extractions, with entity ambiguity and confidence scores
 - Rich ontology: Domain, Range, Inverse, Mutex, Subsumption
- Goal: Determine which facts to include in NELL's knowledge base

Pujara, Miao, Getoor, Cohen, ISWC 2013

Knowledge Graph Identification

Solution: Knowledge Graph Identification (KGI)

- Performs graph identification:
 - entity resolution
 - collective classification
 - link prediction
- Enforces ontological constraints
- Incorporates multiple uncertain sources

Graph Identification in KGI Noisy Extractions: $CANDREL_T(E_1, E_2, R) \xrightarrow{W_{CR_T}} REL(E_1, E_2, R)$ $CANDLBL_T(E, L) \xrightarrow{W_{CL_T}} LBL(E, L)$

 $SAMEENT(E_1, E_2) \widetilde{\wedge} LBL(E_1, L) \implies LBL(E_2, L)$ $SAMEENT(E_1, E_2) \widetilde{\wedge} REL(E_1, E, R) \implies REL(E_2, E, R)$ $SAMEENT(E_1, E_2) \widetilde{\wedge} REL(E, E_1, R) \implies REL(E, E_2, R)$

KGI Representation of Ontological Rules $DOM(R,L) \widetilde{\wedge} REL(E_1,E_2,R) \implies LBL(E_1,L)$ $R_{NG}(R,L) \widetilde{\Lambda} R_{EL}(E_1,E_2,R) \implies L_{BL}(E_2,L)$ $INV(R,S) \widetilde{\Lambda} REL(E_1,E_2,R) \implies REL(E_2,E_1,R)$ $SUB(L,P) \widetilde{\wedge} LBL(E,L) \implies LBL(E,P)$ $RSUB(R,S) \widetilde{\Lambda} REL(E_1,E_2,R) \implies REL(E_1,E_2,S)$ $M_{UT}(L_1, L_2) \widetilde{\wedge} L_{BL}(E, L_1) \implies \neg L_{BL}(E, L_2)$ $RMUT(R_1, R_2) \widetilde{\Lambda} REL(E_1, E_2, R) \implies \neg REL(E_1, E_2, R_2)$ Adapted from Jiang et al., ICDM 2012

Illustration of KGI

Datasets & Results

- Evaluation on NELL dataset from iteration 165:
 - 1.7M candidate facts
 - 70K ontological constraints
- Predictions on 25K facts from a 2-hop neighborhood around test data
- Beats other methods, runs in just 10 seconds!
- Also supports lazy inference of complete knowledge graph (100 minutes)

	F1	AUC
Baseline	.828	.873
NELL	.673	.765
MLN (Jiang, 12)	.836	.899
KGI-PSL	.853	.904

Conclusion

Closing Comments

- Great opportunities to do good work and do useful things in the current era of big data, information overload and network science - 'entity-oriented data science'
- Statistical relational learning provides some of the tools, much work still needed, developing theoretical bounds for relational learning, scalability, etc.
- Compelling applications abound!

Looking for students & postdocs

psl.umiacs.umd.edu