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Network data

Network data appear in many fields:

Social and friendship networks, citation networks

World Wide Web

Gene regulatory networks, food webs



Definition of networks

A network N = (V ,E): V is the set of nodes, |V |= n, E is the
set of edges

N is represented by its n×n adjacency matrix A:

Aij =

{
1 if there is an edge from node i to node j ,
0 otherwise.

A can be symmetric (undirected networks) or asymmetric
(directed networks).

We only focus on undirected networks.



From a statistical point of view

A network is an n×n random matrix A = [Aij ]. One may put a
probability distribution P on A.

Examples of network models:

Block models (Holland et al 1983, Faust & Wasserman
1992)

Exponential Random Graph Models (Robins et al 2006)

Latent space models (Hoff et al 2002).



Statistical questions

1 Test goodness of fit (Hunter et al 2008)
2 Fitting models ( Bickel & Chen 2009, Snijders 2002)
3 Statistical inference and uncertainty assessment

(Chatterjee & Diaconis 2011, Shalizi & Rinaldo 2011)



Community detection

An important topic: community detection

Communities are cohesive groups of nodes

Most common interpretation: many links within and few
links between

The community detection problem is typically formulated
as finding a disjoint partition V = V1 ∪ ·· ·∪VK



Example: Karate club

A friendship network of a karate club (Zachary 1977), split into
two groups, which can be used as “ground truth”.
Node size is proportional to degree.
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Community detection methods

Existing methods can be loosely classified into three
categories.

Greedy algorithms:
hierarchical clustering, edge removal (Girvan & Newman
2002)

Optimizing a global criterion over all partitions:
normalized cuts (Shi & Malik 2000), modularity (Newman
2006), extraction (Zhao et al 2011b), and many others

Fitting a model for a network with communities:
block models (Bickel & Chen 2009), degree-corrected
block models (Karrer & Newman 2010), and others



Block model

Holland et al (1983)
1. Each node is independently assigned a community label ci ,
multinomial with parameter π = (π1, . . . ,πK )

T .
2. Given node labels c, the edges Aij are independent Bernoulli
random variables with

P(Aij = 1) = Pcicj ,

where P = [Pab] is a K ×K symmetric matrix.
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Block model

Fitting: MCMC (Snijders & Nowicki 1997), profile likelihood
(Bickel & Chen 2009), or variational approach (Daudin et al
2008)

The “null” model (K = 1): the Erdos-Renyi graph (all edges
form independently with probability p)

Limitation: node degrees within one community are
homogeneous, which does not allow for “hubs”–nodes with
very high degrees.



Degree-corrected block model

Karrer & Newman (2010)

Generalizes the block model to allow for varying degrees
within communities

Each node is associated with a degree parameter θi , and

P(Aij = 1) = θiθjPcicj .

The standard block model corresponds to θi ≡ const .

The “null” model (K = 1): the expected degree random
graph, a.k.a. configuration model (all edges form
independently with P(Aij = 1) ∝ θiθj ).

Fits a number of datasets better than the block model



Example: Karate club

Block model With degree-correction

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31
32 33

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31
32 33



Notation

For any community label assignment e = {e1, ...,en},
ei ∈ {1, . . . ,K}, define

Okl =∑
ij

Aij I{ei = k ,ej = l}, # edges between communities k and l

Ok =∑
l

Okl , total degrees in community k

L =∑
kl

Okl , total # edges

nk =∑
k

I{ei = k}, # nodes in community k

Depend only on the data



Likelihood

Maximize the profile likelihood of the block model (Bickel &
Chen 2009) :

QBL(e) = ∑
kl

Okl log
Okl

nknl

Maximize the profile likelihood of the degree-corrected block
model (Karrer & Newman 2010):

QDCBL(e) = ∑
kl

Okl log
Okl

OkOl



Modularity

Maximize observed number of edges within communities minus
expected under a null model, over all label assignments e:

max
e

Q(e)

Q(e) = ∑
ij

[Aij −E [Aij ]]I(ei = ej)

where E [Aij ] is the (estimated) expectation under the null
model.



Modularity

When the null model is Erdos-Renyi graph, E [Aij ] = L/n2

and Q(e) becomes

QERM(e) = ∑
k

(Okk −
n2

k

n2 L).

When the null model is the expected degree random
graph, E [Aij ] = kikj/L and Q(e) becomes

QNGM(e) = ∑
k

(Okk −
O2

k

L
).

This is the well-known Newman-Girvan Modularity.



Community detection criteria

Block model Degree correction

Modularity ∑k (Okk −
n2

k
n2 L) ∑k (Okk −

O2
k

L2 L)

Likelihood ∑kl Okl log Okl
nknl

∑kl Okl log Okl
Ok Ol

The block model measures “community size” by the
number of nodes, and the degree-corrected block model by
the number of edges.

Modularity encourages the number of edges within
communities larger than the average.



Consistency of label assignments

Strong consistency (Bickel & Chen 2009): A label
estimator ĉ is strongly consistent if

P[ĉ = c]→ 1, as n → ∞.

Weak consistency: A label estimator ĉ is weakly consistent
if

∀ε > 0, P

[(
1
n

n

∑
i=1

1(ĉi 6= ci)

)
< ε

]
→ 1, as n → ∞.



Consistency of label assignments

Parametrize the probability matrix by Pn = ρnP, where
ρn = P(Aij = 1) is the probability of an edge, and λn = nρn

is the average expected degree of the graph.

Strong consistency assumes that λn
logn → ∞.

Weak consistency assumes that λn → ∞.



A variant of the degree-corrected block model

Our interpretation of Karrer & Newman

Given node labels c, each node is independently assigned
a discrete “degree variable” θi , with E [θi ] = 1 for
identifiability.

Given c and θ , the edges Aij are independent Bernoulli
random variables with

P(Aij = 1|c,θ ) = θiθjPcicj .



A general theorem on consistency under
degree-corrected block models

Theorem (Zhao, Levina, and Zhu 2011a)

For any criterion Q of the form

Q(e) = F
(

O
n2 ,
[n1

n
, ...,

nK

n

])
,

if F satisfies some regularity conditions and its population ver-
sion is uniquely maximized by the true partition, then Q is con-
sistent under degree-corrected block models.
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For simplicity, assume θi in the degree-corrected block
model is discrete, P(ci = k ,θi = dm) = Πkm.



Notation

For simplicity, assume θi in the degree-corrected block
model is discrete, P(ci = k ,θi = dm) = Πkm.

For any k , define π̃k = ∑m dmΠkm. (For the standard block
model, π̃k = πk .)

Define P̃0 = ∑kk ′ π̃k π̃ ′
kPkk ′,W̃kk ′ =

π̃k π̃ ′
k Pkk ′

P̃0
, and

Ẽ = W̃ − (W̃1)(W̃ 1)T .



Consistency of modularity

Theorem (Zhao, Levina, and Zhu 2011a)

Newman-Girvan modularity is consistent under the
degree-corrected block model with the parameter constraint
Ẽkk > 0, Ẽkk ′ < 0 for all k 6= k ′.
When K = 2, the condition can be simplified as

P11P22 > P2
12.
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Theorem (Zhao, Levina, and Zhu 2011a)

Erdos-Renyi modularity is consistent under the block model
with the parameter constraint Pkk > P0,Pkk ′ < P0 for all k 6= k ′,
where P0 = ∑kk ′ πk πk ′Pkk ′.



Consistency of likelihood

Theorem (Bickel & Chen 2009)

Block model likelihood is consistent under the block model.



Consistency of likelihood

Theorem (Bickel & Chen 2009)

Block model likelihood is consistent under the block model.

Theorem (Zhao, Levina, and Zhu 2011a)

Degree-corrected block model likelihood is consistent under
both the block model and the degree-corrected block model.
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Likelihoods are always consistent under their assumed
model
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Summary of consistency results

Likelihoods are always consistent under their assumed
model

Modularities are consistent under their assumed model
under a parameter constraint indicating stronger links
within than between

Anything consistent under degree-corrected block model is
also consistent under the block model as a special case

Methods designed under the block model assumption are
not generally consistent under the degree-corrected block
model



Simulation study

Let n = 1000, K = 2, and P =

(
0.2 0.05
0.05 0.2

)
.

Let θi take two values d1 and d2 with probability 0.5 each,
independently of c

Measure agreement by adjusted Rand index, a measure of
similarity between two partitions:
1 is perfect match;
0 is expected agreement between two random partitions.



Degree-corrected block model

Fix π1 = 0.3,π2 = 0.7.

θ =

{
d1 w.p.1

2 ,
d2 w.p.1

2 .

The ratio d1/d2 changes from 1 to 10.
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Block model

Block model with π1 changing from 0.05 to 0.3
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A network of political blogs

Adamic & Glance (2005) manually labeled 1222 blogs as liberal
or conservative, represented by colors, edges are web links (we
ignore direction). Node size is proportional to log degree.



A network of political blogs

BL DCBL



A network of political blogs

ERM NGM



Outline

X Consistency of community detection criteria under
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Community extraction



Limitations of partition methods

Many real-world networks contain nodes with few links that
may not belong to any community (“background”)

Determining the number of communities in advance is
difficult



Community extraction

Zhao, Levina, and Zhu (2011b)

Allow for background nodes that only have sparse links to
other nodes

Extract communities sequentially: at each step look for a
set with a large number of links within and a small number
of links to the rest of the network

Stop when either the desired number is extracted or no
more meaningful communities exist



Toy example

Block model with K = 2, π1 = 1/4, n = 60, and

P =

(
0.5 0.1
0.1 0.1

)
.

Compare partition into two communities (via modularity) to
extraction of a single community
Shapes represent the truth, colors represent estimation

Partition Extraction



Extraction Criterion

Maximize

W (S) =
OSS

n2
S

−
OSS′

nSnS′

where OSS = ∑i ,j∈S Aij , OSS′ = ∑i∈S,j∈S′ Aij .

The links within the complement of set S do not matter.

To avoid small communities, can use an adjusted criterion
to encourage more balanced solutions:

Wa(S) = nSnS′

(
OSS

n2
S

−
OSS′

nSnS′

)
.



Consistency of extraction

Theorem (Zhao, Levina, and Zhu 2011b)

Assume K = 2, WLOG P11 ≥ P22, and P11 +P22 > 2P12. Both
unadjusted and adjusted criteria are consistent under the block
model.



Simulation I

Two communities plus background, n = 1000

Balanced (n1 = n2 = 200) and unbalanced
(n1 = 100,n2 = 200)

Generated from the block model with K = 3,
P12 = P23 = P13 = P33 = 0.05

Two levels of community strength:
P11 = 0.15, P22 = 0.12, and P11 = 0.20, P22 = 0.16



Simulation II

Designed to test robustness to non-homogeneous degree
distribution within communities



Simulation II

Designed to test robustness to non-homogeneous degree
distribution within communities

Start with the same set-up as Simulation I

In each community, double the degrees of the 10
highest-degree nodes by adding random edges to them in
the same community

Delete the same number of edges at random from all other
edges in the same community



Results of simulations I (top) and II (bottom)

M B E M B EM B E M B E

0
0
.2

0
.4

0
.6

0
.8

1
0

0
.2

0
.4

0
.6

0
.8

1

n1=100, n2=200

n1=200, n2=200

p11=0.15, p22=0.12                                  p11=0.2, p22=0.16



School friendship network

The school friendship network is compiled from the National
Longitudinal Study of Adolescent Health (AddHealth)
(http://www.cpc.unc.edu/projects/addhealth)

Grade 7: red
Grade 8: blue
Grade 9: green
Grade 10: yellow
Grade 11: purple
Grade 12: orange



Extraction on the school friendship network

Grades Modularity Extraction



Future work

1 Determining the number of communities

2 Goodness-of-fit for network models
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Thank you!



Counter example

An example for the inconsistency of Erdos-Renyi modularity,
block model likelihood and extraction.

K = 2,π = (1/2,1/2), and P =

(
0.1 0.05
0.05 0.1

)
.

θ =

{
1.6 w.p.1

2 ,
0.4 w.p.1

2 .

By grouping nodes with the same θi , the population values of
ERM and BL are higher than the correct partition.

By extracting the nodes with high θi in a community, the
population values of unadjusted and adjusted extract are higher
than the correct extraction.



A general theorem on consistency under
degree-corrected block models

Theorem

For any Q that can be written as

Q(e) = F
(

O
n2 ,
[n1

n
, ...,

nK

n

]T
)
,

under some regularity conditions and the following:

(*) F (H(R),∑au R.au) is uniquely maximized over
{R : R ≥ 0,∑k Rkau = Πau} by Rkau = Πauδka for any u,
where H ∈ RK×K ,R ∈ RK×K×∞,
H(R) = ∑abuv xuxvPabRkauRlbv ,Rkau = 1

n ∑n
i=1 I(ei = k ,ci =

a,θi = du).

Q is consistent under degree-corrected block models.

(*) says that the “population” version of Q is maximized by the
correct assignment.


