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Ginzburg-Landau (GL) Functional
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Ginzburg-Landau (GL) Functional

GL functional is defined as

Eel 2/ ]VU\Z—i—i 1 — |ul?)2 dx

@ Introduced in study of phase transition problems in
superconductivity (also used in superfluids and mixture of
fluid states)

@ u - complex order parameter (condensate wave
function/concentration/vector field orientation)

@ ¢ - coherence length which can depend on temperature
(&(T))/diffuse interface/core radius
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Ginzburg-Landau (GL) Functional

When in equilibrium, the order parameter u minimizes E;.
Taking variations of u, the following must be satisfied

1 2
6E£:/Q[—Au—?u(1—\u| J|5udx =0

’
—Bu=u(l1- ul?)

Ex: Uy=u+1v, §E = L (u+tv)|i—o, SU=V
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Ginzburg-Landau (GL) Functional

Example in 1D

The Euler-Lagrange (E-L) equation in 1D then becomes
1 2
—uxx—?u(1 —u9)=0

Solution: v, = tanh(ﬁ) given the boundary conditions

u(0) = limyy| e x(Xx) = 0.
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Ginzburg-Landau (GL) Functional

The function y = (1 — t?)? (Two-well potential in 1D)

The graph of y = {1 - 12)2

]
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Ginzburg-Landau (GL) Functional

Plot of solutions for various epsilons

Flot of Solutions to GL Energy for Yarious Epsilan

tanh@{sqrti2) aps))
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Introduction to Liquid Crystals (LCs)
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Introduction to Liquid Crystals (LCs)

What are LCs

Figure: The molecular orientation of different states of matter. Left -
Solid, Middle - Liquid Crystal, Right - Isotropic Liquid
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Introduction to Liquid Crystals (LCs)

Types of LCs

‘ Directorn

‘ ' p/2

Figure: Arrangement of Molecules in particular LCs. Left - Nematic
LCs, Middle - Cholesteric (Chiral Nematic) LCs, Right - Smectic LCs
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Introduction to Liquid Crystals (LCs)

Smectic C* Liquid Crystal Molecular Orientation

Figure: Left Two Figures Source: http://barrett-group.
mcgill.ca/teaching/liquid_crystal/LCO03.htm
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Introduction to Liquid Crystals (LCs)

Director Projection onto Plane

9 n c : c-director

Inl =1lc|=]v] =1

v
@]

n = cos(3)v +sin(3)c
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Effects of Defects in Liquid Crystals
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Effects of Defects in Liquid Crystals

Introducing a dust particle

The introduction of
a dust particle
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Effects of Defects in Liquid Crystals

Figure: The effect of impurity ions on a thin film Smectic C* liquid
crystal[LPM]
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Effects of Defects in Liquid Crystals

Energy Described over Smectic C* Liquid Crystals

@ Consists of elastic energy, anchoring energy at domain
boundary, and anchoring energy at boundary of defect core

@ Energy from core boundary negligible.

@ Anchoring energy at domain boundary results from
polarization field.
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Effects of Defects in Liquid Crystals

Effect of polarization field

p — polarization vector

p|jnxv = pLlc

The elastic energy contribution from the polarization field is

described as
/V-pdx:/ p-vdo
Q 0

where v is the outer unit normal vector on 99
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Effects of Defects in Liquid Crystals

Want [;,,p-vdo to be as negative as possible.
— p=—-av,acR;ondQ
= ¢||r on 90

Q

Introducing boundary values model effect of spontaneous
polarization.
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Effects of Defects in Liquid Crystals

The resulting framework becomes minimizing
/ ki (div u)? + ke (curl u)2 dA
Q

u=(uy,Up),lul =1
div U = dy, U1 + Iy, U, curl u= dx, Us — dx, Uy

splay and bend constants ki, ko > 0, ki # ko to incorporate
electrostatic contribution from p.

{fue H'(Q): lu(x)|=1forxe Qand u=gon dQ} =0

fordeg g:=d > 0.
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The Generalized GL Functional
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The Generalized GL Functional

We study instead
2 i 1,122
Je(U) = k1(d|vu) + ko(curlu) +3 5(1—[u|®)=dx
:/j,g u,Vu)dx
Q

ue Hy(Q) ={ueH (AR?):u=gondQ}
where g is smooth on 99, |g|=1,anddegg=d >0
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The Generalized GL Functional

Setk= min(k1,k2).

ky(div u)? 4 ko(curl u)?
= ki|Vul? + (ko — ki) (curl u)? + 2kidet Vu
= ko|VUul? + (ki — ko) (div u)? + 2kpdet Vu

If K = kq, all constants in second line are positive and if k = ko,
all constants in third line are positive.
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The Generalized GL Functional

Splay Configuration

|1|2 for x #0
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The Generalized GL Functional

Bend Configuration

t
X X2, X . X
=+ = (—xe,x1) _ . x
x| X x|
fy & =
/// = K'\\\
/Tt
A
\\\\ - ///

’
div up =0 = (curl up)? = |Vup|? = P for x #0
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The Generalized GL Functional

Choose by,..., by, fix R > 0 and define a particular test function

Ue.
o
rd -
. e e
/ N
// . N,
o‘r;
.'r-
/ N,
N,
f ,
| g N,
> Y

[ \ ;
. P 4 ;
\ 1

\ g e CUSEE ) \

\ iy |

P g ~ -
LY - —
A g 4
\ >
N,

Colbert-Kelly Analysis of a G-L Energy



The Generalized GL Functional

Let ue € H} (€ R?) be a minimizer to J; in the set of admissible
functions. Then from our construction

- 1
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The Generalized GL Functional

Now, note that k |, det Vudx = krd for all u in the set of
admissible functions. Hence, if kK = ki,

/ ki (div )2 + ka(curl u)? dx

Q

:/g;wm(kg—g)(curl U)? + 2kdet Vudx
Q

_ /Q KIVu[? + (ks — k)(curl u)? dx +2knd

> / K|V u[? dx
Q
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The Generalized GL Functional

1 1
Je(Us) Z é/ K‘VU£|2+7(1 - ’U£|2)2 dX
Q £

> k7rd|og(1 )—Co

The last inequality is due to the work of Bethuel, Brezis, and
Helein [BBH] and Struwe [St]
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The Generalized GL Functional

With the two inequalities, we obtain the following estimate

1
7 (1 lueP)ax < G

From the above inequality, we can show
Uell oy €l VUell oy < Ca

forO0<e< 1.
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The Generalized GL Functional

Define v(y) = us(ey +xp), Xo € Q,y € B1(0) := B;.
—

[ a-1vBRay <cs
By

Colbert-Kelly Analysis of a G-L Energy



The Generalized GL Functional

E-L Equations

’
—kiV(V-u)+heV < (Vxu) = u(1 - u[?)

ldentifying Zu= —k{V(V-u)+ koV x (V x u), then for v defined
on B; solves
ZLv=v(1-|v]?).

IVllci (s, ) < Ca

where C4 does not depends on Xy, giving the estimates.
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The Generalized GL Functional

o Jo(ue) < kndlog(1)+ Cy
o b fol1 - |ucP)2ax < Cs

° ||U£||C(§)a8HVU£HC(§) <Cq

<
>

With these estimates, using the Structure and Compactness
results of Lin [L], we obtain a family {u,} of functions that
satisfy the following:

X—a;
Ug, (X) — Uy (X H‘X ajy gh(x)

where a; € Q, a, # g, for | # j and h € H'(Q) for some
subsequence g — 0; convergence is strong in L2 and weakly

HL(Q\{a1,...,aq}).



The Generalized GL Functional

Because {u,} are minimizers to J;, we obtain stronger

convergence, i.e. U, — U, in C (2\{a4,...,a4}) and

oe(\{ay,...,aq}). Furthermore |u,| — 1 uniformily away
from {ay,...,aq}.
This gives us information away from the cores but not much

about defects or what is occurring near them.
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The Generalized GL Functional

We analyzing the canonical map u,(x) for x near each defect a;

Q= (Q\ULBy(a)) U (UL By () \ Br.(a)) U (UL, Br.(&)))
e<<r=0(1)
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The Generalized GL Functional

X—3d;j

—a ") satisfies

The function v, =],

/ Ki|[Vh2 + (ko — ky)(curl w,)2dx < oo if k = Ky
Q

/kg]Vh]2+(k1fk2)(div U)2dx <wo  ifk=ke
Q
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The Generalized GL Functional
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The Generalized GL Functional

Fix an. Then set ¢, =Y .., 6;+ h. Then we have

/ SI(00) o < ¢ itk -k
Bp(an ‘X an|

2
/ 008 0n) 4y < ¢ it k= ko
By (an) [X — an|

The constant C does not depend on p.
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The Generalized GL Functional

’
0By (an)| JaB,(an)

|aB1(av)] 26, )¢ndx—>g+mnn for some m, € Z if k = ko.
p\en p(8n

Ondx — mpm for some mpc Z if k = k4

In terms of the limit function, the above limit implies that

U(py +an) + if k= kq
s« — . .
pY+én tiy ifk=ko

in L?(dBy) as p — 0. Hence, one pattern has less energy than
the other in either case. (k> < k = bend pattern has less
energy than splay pattern)
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The Generalized GL Functional

Figure: g = e® ky < kq
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The Generalized GL Functional

Figure: g = €? ky < kq
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The Generalized GL Functional

Now we want to show that these locations minimize the energy
over the domain. Again, construct the proper test function v,
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The Generalized GL Functional

Leta=(ay,...,aq), for simplicity, let kK = k;. Then we can write
ki (div u)? + k(curl u)? = k|Vul? + (ko — k)(curl u)? +2kdet Vu

Using the constructed test function, we can show

lim (J&,(u@) — kzdIn <1>) — kW(a)+ H(a, ki, ko) + dy
{—oo &

where a minimizes kW (b) + H(b, ky, k2), b € Q7.
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The Generalized GL Functional

Gb = X1 In(|x — b)),

1
W(b) = [ 2Gy(d:9  9) ~ (9+Go) G do + 70

m#n
and

(b, 6, ki, ko) = /k1\V¢>|2+(k2—k1)(curI V)2 dx if k = Ky
H(b7k17k2) = m‘pln%( 7¢7k17k2)

I(jI X —
j=1 X —
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