Analysis of a Ginzburg-Landau Type Energy Model for Smectic C* Liquid Crystals with Defects

Sean Colbert-Kelly, joint work with Daniel Phillips and Geoffrey McFadden

Applied and Computational Mathematics Division Seminar Series National Institute of Standards and Technology

May 28, 2013

Outline

- Ginzburg-Landau (GL) Functional
- 2 Introduction to Liquid Crystals (LCs)

- 3 Effects of Defects in Liquid Crystals
- The Generalized GL Functional
- 6 References

Outline

- Ginzburg-Landau (GL) Functional
- 2 Introduction to Liquid Crystals (LCs)

- 3 Effects of Defects in Liquid Crystals
- The Generalized GL Functional
- 6 References

GL functional is defined as

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2 dx$$

- Introduced in study of phase transition problems in superconductivity (also used in superfluids and mixture of fluid states)
- u complex order parameter (condensate wave function/concentration/vector field orientation)
- ε coherence length which can depend on temperature $(\xi(T))$ /diffuse interface/core radius

When in equilibrium, the order parameter u minimizes E_{ε} . Taking variations of u, the following must be satisfied

$$\delta E_{\varepsilon} = \int_{\Omega} [-\Delta u - \frac{1}{\varepsilon^2} u (1 - |u|^2)] \delta u \, dx = 0$$
$$-\Delta u = \frac{1}{\varepsilon^2} u (1 - |u|^2)$$

Ex:
$$u_t = u + tv$$
, $\delta E_{\varepsilon} = \frac{dE_{\varepsilon}}{dt}(u + tv)|_{t=0}$, $\delta u = v$

Example in 1D

The Euler-Lagrange (E-L) equation in 1D then becomes

$$-u_{xx}-\frac{1}{\varepsilon^2}u(1-u^2)=0$$

Solution: $u_{\varepsilon} = \tanh(\frac{x}{\sqrt{2\varepsilon}})$ given the boundary conditions $u(0) = \lim_{|x| \to \infty} u_x(x) = 0$.

The function $y = (1 - t^2)^2$ (Two-well potential in 1D)

Plot of solutions for various epsilons

Outline

- Ginzburg-Landau (GL)
 Functional
- Introduction to Liquid Crystals (LCs)

- 3 Effects of Defects in Liquid Crystals
- The Generalized GL Functional
- 6 References

What are LCs

Figure: The molecular orientation of different states of matter. Left - Solid, Middle - Liquid Crystal, Right - Isotropic Liquid

Types of LCs

Figure: Arrangement of Molecules in particular LCs. Left - Nematic LCs, Middle - Cholesteric (Chiral Nematic) LCs, Right - Smectic LCs

Smectic C* Liquid Crystal Molecular Orientation

Figure: Left Two Figures Source: http://barrett-group.mcgill.ca/teaching/liquid_crystal/LC03.htm

Director Projection onto Plane

c: c-director

$$|n| = |c| = |v| = 1$$

$$n = cos(9)v + sin(9)c$$

Outline

- Ginzburg-Landau (GL)
 Functional
- 2 Introduction to Liquid Crystals (LCs)

- 3 Effects of Defects in Liquid Crystals
- 4 The Generalized GL Functional
- 6 References

Introducing a dust particle

Figure: The effect of impurity ions on a thin film Smectic C* liquid crystal[LPM]

Energy Described over Smectic C* Liquid Crystals

- Consists of elastic energy, anchoring energy at domain boundary, and anchoring energy at boundary of defect core
- Energy from core boundary negligible.
- Anchoring energy at domain boundary results from polarization field.

Effect of polarization field

$$p||n \times v \implies p \perp c$$

The elastic energy contribution from the polarization field is described as

$$\int_{\Omega} \nabla \cdot \mathbf{p} \, dx = \int_{\partial \Omega} \mathbf{p} \cdot v \, d\sigma$$

where v is the outer unit normal vector on $\partial\Omega$

Want $\int_{\partial \Omega} \mathbf{p} \cdot v \, d\sigma$ to be as negative as possible.

$$\implies$$
 p = $-\alpha v$, $\alpha \in \mathbb{R}_+$ on $\partial \Omega$

$$\Longrightarrow \mathbf{c} \| \mathbf{ au} \ \mathsf{on} \ \partial \Omega$$

Introducing boundary values model effect of spontaneous polarization.

The resulting framework becomes minimizing

$$\int_{\Omega} k_1 (\operatorname{div} u)^2 + k_2 (\operatorname{curl} u)^2 dA$$

$$u = (u_1, u_2), |u| = 1$$

$$\operatorname{div} u = \partial_{x_1} u_1 + \partial_{x_2} u_2, \ \operatorname{curl} u = \partial_{x_1} u_2 - \partial_{x_2} u_1$$

splay and bend constants $k_1, k_2 > 0$, $k_1 \neq k_2$ to incorporate electrostatic contribution from **p**.

$$\{u \in H^1(\Omega) : |u(x)| = 1 \text{ for } x \in \Omega \text{ and } u = g \text{ on } \partial\Omega\} = \emptyset$$

for deg g := d > 0.

Outline

- Ginzburg-Landau (GL)
 Functional
- 2 Introduction to Liquid Crystals (LCs)

- 3 Effects of Defects in Liquid Crystals
- The Generalized GL Functional
- 6 References

We study instead

$$J_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} k_1 (\operatorname{div} u)^2 + k_2 (\operatorname{curl} u)^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2 dx$$

$$= \int_{\Omega} j_{\varepsilon}(u, \nabla u) dx$$

$$u \in H_g^1(\Omega) = \{ u \in H^1(\Omega; \mathbb{R}^2) : u = g \text{ on } \partial\Omega \}$$
(1)

where g is smooth on $\partial\Omega$, |g|=1, and deg g=d>0

Set
$$\underline{k} = \min(k_1, k_2)$$
.

$$k_1(\operatorname{div} u)^2 + k_2(\operatorname{curl} u)^2$$

= $k_1 |\nabla u|^2 + (k_2 - k_1)(\operatorname{curl} u)^2 + 2k_1 \operatorname{det} \nabla u$
= $k_2 |\nabla u|^2 + (k_1 - k_2)(\operatorname{div} u)^2 + 2k_2 \operatorname{det} \nabla u$

If $\underline{k} = k_1$, all constants in second line are positive and if $\underline{k} = k_2$, all constants in third line are positive.

Splay Configuration

$$u_s = \pm \frac{x}{|x|} = \pm \frac{(x_1, x_2)}{|x|}$$

$$\operatorname{curl} \ u_s = 0 \implies (\operatorname{div} \ u_s)^2 = |\nabla u_s|^2 = \frac{1}{|X|^2} \text{ for } x \neq 0$$

Bend Configuration

$$u_b = \pm \frac{x^t}{|x|} = \pm \frac{(-x_2, x_1)}{|x|} = \pm i \frac{x}{|x|}$$

$$\operatorname{div} u_b = 0 \implies (\operatorname{curl} u_b)^2 = |\nabla u_b|^2 = \frac{1}{|X|^2} \text{ for } x \neq 0$$

Choose b_1, \ldots, b_d , fix R > 0 and define a particular test function \tilde{u}_{ε} .

Let $u_{\varepsilon} \in H^1_g(\Omega; \mathbb{R}^2)$ be a minimizer to J_{ε} in the set of admissible functions. Then from our construction

$$J_{\varepsilon}(u_{\varepsilon}) \leq J_{\varepsilon}(\tilde{u}_{\varepsilon}) \leq \underline{k}\pi d\log(\frac{1}{\varepsilon}) + C_{1}$$

Now, note that $\underline{k} \int_{\Omega} \det \nabla u \, dx = \underline{k} \pi d$ for all u in the set of admissible functions. Hence, if $\underline{k} = k_1$,

$$\int_{\Omega} k_1 (\operatorname{div} u)^2 + k_2 (\operatorname{curl} u)^2 dx$$

$$= \int_{\Omega} \underline{k} |\nabla u|^2 + (k_2 - \underline{k}) (\operatorname{curl} u)^2 + 2\underline{k} \operatorname{det} \nabla u dx$$

$$= \int_{\Omega} \underline{k} |\nabla u|^2 + (k_2 - \underline{k}) (\operatorname{curl} u)^2 dx + 2\underline{k} \pi d$$

$$\geq \int_{\Omega} \underline{k} |\nabla u|^2 dx$$

$$J_{\varepsilon}(u_{\varepsilon}) \geq \frac{1}{2} \int_{\Omega} \underline{k} |\nabla u_{\varepsilon}|^{2} + \frac{1}{2\varepsilon^{2}} (1 - |u_{\varepsilon}|^{2})^{2} dx$$
$$\geq \underline{k} \pi d \log(\frac{1}{\varepsilon}) - C_{2}$$

The last inequality is due to the work of Bethuel, Brezis, and Helein [BBH] and Struwe [St]

With the two inequalities, we obtain the following estimate

$$\frac{1}{\varepsilon^2}\int_{\Omega}(1-|u_{\varepsilon}|^2)^2\,dx\leq C_3$$

From the above inequality, we can show

$$\|u_{\varepsilon}\|_{C(\overline{\Omega})}, \varepsilon \|\nabla u_{\varepsilon}\|_{C(\overline{\Omega})} \leq C_4$$

for $0 < \varepsilon < 1$.

Define
$$v(y) = u_{\varepsilon}(\varepsilon y + x_0), x_0 \in \overline{\Omega}, y \in B_1(0) := B_1.$$

$$\Longrightarrow \int_{B_1} (1 - |v|^2)^2 \, dy \le C_3$$

E-L Equations

$$-k_1\nabla(\nabla\cdot u)+k_2\nabla\times(\nabla\times u)=\frac{1}{\varepsilon^2}u(1-|u|^2)$$

Identifying $\mathcal{L}u = -k_1\nabla(\nabla \cdot u) + k_2\nabla \times (\nabla \times u)$, then for v defined on B_1 solves

$$\mathscr{L}v=v(1-|v|^2).$$

 \Longrightarrow

$$||v||_{C^1(B_{1/2})} \leq C_4$$

where C_4 does not depends on x_0 , giving the estimates.

•
$$J_{\varepsilon}(u_{\varepsilon}) \leq \underline{k}\pi d \log(\frac{1}{\varepsilon}) + C_1$$

•
$$J_{\varepsilon}(u_{\varepsilon}) \geq \underline{k}\pi d \log(\frac{1}{\varepsilon}) - C_2$$

•
$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 dx \leq C_3$$

•
$$\|u_{\varepsilon}\|_{C(\overline{\Omega})}, \varepsilon \|\nabla u_{\varepsilon}\|_{C(\overline{\Omega})} \leq C_4$$

With these estimates, using the Structure and Compactness results of Lin [L], we obtain a family $\{u_{\varepsilon}\}$ of functions that satisfy the following:

$$u_{\varepsilon_{\ell}}(x) \rightarrow u_{*}(x) := \prod_{j=1}^{d} \frac{x - a_{j}}{|x - a_{j}|} e^{ih(x)}$$

where $a_j \in \Omega$, $a_l \neq a_j$ for $l \neq j$ and $h \in H^1(\Omega)$ for some subsequence $\varepsilon_\ell \to 0$; convergence is strong in L^2 and weakly $H^1_{loc}(\overline{\Omega} \setminus \{a_1, \dots, a_d\})$.

Because $\{u_{\varepsilon}\}$ are minimizers to J_{ε} , we obtain stronger convergence, i.e. $u_{\varepsilon_{\ell}} \to u_{*}$ in $C^{\alpha}_{loc}(\overline{\Omega} \setminus \{a_{1}, \ldots, a_{d}\})$ and $C^{m}_{loc}(\Omega \setminus \{a_{1}, \ldots, a_{d}\})$. Furthermore $|u_{\ell}| \to 1$ uniformily away from $\{a_{1}, \ldots, a_{d}\}$.

This gives us information away from the cores but not much about defects or what is occurring near them.

We analyzing the canonical map $u_*(x)$ for x near each defect a_i

$$\Omega = (\Omega \setminus \cup_{j=1}^d B_{\rho}(a_j)) \cup (\cup_{j=1}^d B_{\rho}(a_j) \setminus B_{r_{\varepsilon}}(a_j)) \cup (\cup_{j=1}^d B_{r_{\varepsilon}}(a_j)))$$

$$\varepsilon << r_{\varepsilon} = o(1)$$

The function
$$u_* = \prod_{j=1}^d \frac{x-a_j}{|x-a_j|} e^{ih(x)}$$
 satisfies

$$\begin{cases} \int_{\Omega} k_1 |\nabla h|^2 + (k_2 - k_1) (\operatorname{curl} u_*)^2 \, dx < \infty & \text{if } \underline{k} = k_1 \\ \int_{\Omega} k_2 |\nabla h|^2 + (k_1 - k_2) (\operatorname{div} u_*)^2 \, dx < \infty & \text{if } \underline{k} = k_2 \end{cases}$$

$$\frac{x-a_j}{|x-a_j|}=e^{i\theta_j(x)}, x\neq a_j$$

Fix a_n . Then set $\phi_n = \sum_{j \neq n} \theta_j + h$. Then we have

$$\begin{cases} \int_{B_{\rho}(a_n)} \frac{\sin^2(\phi_n)}{|x - a_n|^2} \, dx \leq C & \text{if } \underline{k} = k_1 \\ \int_{B_{\rho}(a_n)} \frac{\cos^2(\phi_n)}{|x - a_n|^2} \, dx \leq C & \text{if } \underline{k} = k_2. \end{cases}$$

The constant C does not depend on ρ .

$$\begin{cases} \frac{1}{|\partial B_{\rho}(a_n)|} \int_{\partial B_{\rho}(a_n)} \phi_n \, dx \to m_n \pi & \text{for some } m_n \in \mathbb{Z} \text{ if } \underline{k} = k_1 \\ \frac{1}{|\partial B_{\rho}(a_n)|} \int_{\partial B_{\rho}(a_n)} \phi_n \, dx \to \frac{\pi}{2} + m_n \pi & \text{for some } m_n \in \mathbb{Z} \text{ if } \underline{k} = k_2. \end{cases}$$

In terms of the limit function, the above limit implies that

$$u_*(\rho y + a_n) \rightarrow \begin{cases} \pm y & \text{if } \underline{k} = k_1 \\ \pm iy & \text{if } \underline{k} = k_2 \end{cases}$$

in $L^2(\partial B_1)$ as $\rho \to 0$. Hence, one pattern has less energy than the other in either case. ($k_2 < k_1 \implies$ bend pattern has less energy than splay pattern)

Figure: $g = e^{i\theta}, k_2 < k_1$

Figure: $g = e^{2i\theta}, k_2 < k_1$

Now we want to show that these locations minimize the energy over the domain. Again, construct the proper test function \tilde{v}_ℓ

Let $\mathbf{a}=(a_1,\ldots,a_d)$, for simplicity, let $\underline{k}=k_1$. Then we can write $k_1(\operatorname{div} u)^2+k_2(\operatorname{curl} u)^2=\underline{k}|\nabla u|^2+(k_2-\underline{k})(\operatorname{curl} u)^2+2\underline{k}\operatorname{det}\nabla u$ Using the constructed test function, we can show

$$\lim_{\ell\to\infty} \left(J_{\varepsilon_{\ell}}(u_{\ell}) - \underline{k}\pi d \ln \left(\frac{1}{\varepsilon_{\ell}} \right) \right) = \underline{k} W(\mathbf{a}) + H(\mathbf{a}, k_1, k_2) + d\gamma$$

where **a** minimizes $\underline{k}W(\mathbf{b}) + H(\mathbf{b}, k_1, k_2), b \in \Omega^d$.

$$egin{aligned} G_{\mathbf{b}} &= \sum_{n=1}^d \ln(|x-b_n|), \ W(\mathbf{b}) &= rac{1}{2} \int_{\partial \Omega} 2G_{\mathbf{b}} (\partial_{ au} g imes g) - (\partial_{ au} G_{\mathbf{b}}) G_{\mathbf{b}} \, d\sigma + \pi d \ &- \sum_{m \neq n} \pi \ln(|b_n - b_m|) \end{aligned}$$

and

$$\mathcal{H}(\mathbf{b}, \phi, k_1, k_2) = \frac{1}{2} \int_{\Omega} k_1 |\nabla \phi|^2 + (k_2 - k_1) (\text{curl } v)^2 \, dx \text{ if } \underline{k} = k_1$$
$$H(\mathbf{b}, k_1, k_2) := \min_{\phi} \mathcal{H}(\mathbf{b}, \phi, k_1, k_2)$$

$$V = \prod_{j=1}^{d} \frac{x - b_j}{|x - b_j|} e^{i\phi(x)}$$

Outline

- Ginzburg-Landau (GL)
 Functional
- 2 Introduction to Liquid Crystals (LCs)

- 3 Effects of Defects in Liquid Crystals
- The Generalized GL Functional
- 6 References

- [BPP] P. Bauman, J. Park, and D. Phillips, Analysis of Nematic Liquid Crystals with Disclination Lines. preprint, arXiv:1106.5031.
- [BBH] F. Bethuel, H. Brezis., F. Hélein. Ginzburg-Landau Vortices. Birkhäuser, Boston, 1994.
- [LPM] J-B. Lee, R. A. Pelcovits, Robert A, R. B. Meyer. Role of Electrostatics in the Texture of Islands in Free-Standing Ferroelectric Liquid Crystal Films. *Physical Review E*, 75(051701):1-5, 2007

Static and Moving Vortices in Ginzburg-Landau Theories. Progress in Nonlinear Differential Equations and Their Applications, 29:71-111, Verlag Basel/Switzerland, 1997.

[Sa] E. Sandier
Lower Bounds for the Energy of Unit Vector Fields and Applications

Journal of Functional Analysis, 152:379-403, 1998

[St] M. Struwe

On the Asymptotic Behavior of Minimizers of the Ginzburg-Landau Model in 2 Dimensions

*Differential and Integral Equations, 7(6):1613-1624, 1994

Variational Theories for Liquid Crystals.

Chapman & Hall, London, 1994.

Thank you!