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Applications: Scattering in complex geometry

Electromagnetic compatibility problems, antenna design.
Michielsen (U. Michigan)



Applications: Metamaterial design

Transmission through 200 nanorod pairs in a 225 square wavelength box.

Each ellipsoid is approx. 25x25x75 nm.
In each ellipsoid pair, the centers are separated by 40nm.

Solution time: minutes for each frequency on a single CPU workstation.



Outline of talk

Classical integral representations for Maxwell’s equations

Spurious resonances and “low-frequency breakdown”

Augmented charge-current integral equations

High order discretization of surfaces and solution densities

Singular layer potentials and quadratures for local interactions

Numerical experiments



The Maxwell’s equations

A classical problem in electromagnetics concerns the
scattering of waves from an obstacle. In the time-harmonic
case, the electric and magnetic fields are given by

E(x, t) = E(x)e−iωt , H(x, t) = H(x)e−iωt . (1)

In regions free of charge/current, the spatial components
satisfy the time-harmonic Maxwell’s equations:

∇×H = −iωεE, ∇× E = iωµH, (2)

∇ · εE = 0, ∇ · µH = 0. (3)

where ε, µ are permittivity, permeability of exterior region Ω.
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The Maxwell’s equations: Scattering theory

In electromagnetic scattering, the total field {Etot , Htot} is
generally written as a sum

Etot(x) = Ein(x) + Escat(x), Htot(x) = Hin(x) + Hscat(x), (4)

where {Ein, Hin} describe a known incident field and
{Escat , Hscat} denote the scattered field of interest.



The Maxwell’s equations: Vector and scalar potentials

The integral representations for the scattered electromagnetic field
{E(x), H(x)} are based on classical vector and scalar potentials

E(x) = iωA(x)−∇φ(x), H(x) =
1

µ
∇× A(x), (5)

where

A(x) = µ

∫
Γ
gk(x− y)J(y)dAy, (6)

φ(x) =
1

ε

∫
Γ
gk(x− y)ρ(y)dAy, (7)

gk(x) = e ik|x|/4π|x| is the Green’s function for the scalar
Helmholtz equation, Γ is the boundary, k = ω

√
εµ, with the

continuity condition

∇ · J(x) = iωρ(x). (8)



The Maxwell’s equations: Dyadic Green’s functions

By incorporating the continuity condition into the integral
representations

E(x) = iωµ

∫
Γ

[̄
I +
∇∇
k2

]
gk(x− y)J(y)dAy, (9)

H(x) = ∇×
∫

Γ
gk(x− y)J(y)dAy, (10)

we obtain the electric and magnetic dyadic Green’s functions

Ḡe(x, y) =

[̄
I +
∇∇
k2

]
gk(x− y), (11)

Ḡm(x, y) = ∇× Ḡe(x, y) = ∇× gk(x− y). (12)



The Maxwell’s equations: Boundary conditions

For a perfect conductor, the boundary conditions to be
enforced are:

n× Etot = 0, n ·Htot = 0, (13)

n×Htot = J, n · Etot =
ρ

ε
. (14)

For uniqueness, with Im(k) ≥ 0, we assume that the solution
satisfies the Sommerfeld (Silver-Muller) radiation condition:

lim
r→∞

|r|
[
Hscat(r)× r

|r|
−
√
ε

µ
Escat(r)

]
= 0. (15)
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The EFIE and MFIE (Maue)

The electric field integral equation (EFIE) solves for the
unknown current J by enforcing n× Etot = 0. It involves a
hypersingular operator acting on J:

iωµn×
∫

Γ

[̄
I +
∇∇
k2

]
gk(x− y)J(y)dAy = −n× Einc(x).

The magnetic field integral equation (MFIE) solves for the
unknown current J by enforcing n×Htot = J.

There exists a set of frequencies {ωj} for which the integral
equations are not invertible - i.e. spurious resonances.



The Combined Field Integral Equation

The CFIE (and CSIE) were introduced in the 1970’s by
Harrington, Miller, Mautz, Poggio and others. It avoids
spurious resonances by taking a complex linear combination of
the EFIE and the MFIE

Not a Fredholm equation of the second kind

Other approaches (Yaghjian, ...)



Preconditioners

Adams and Contopanagos et al. made use of the fact that the
composition of the hypersingular EFIE operator with itself
equals the sum of the identity operator and a compact
operator. Leads to CFIE that is resonance-free.

Christiansen & Nédélec, Colton & Kress, Bruno & Elling &
Paffenroth & Turc, Andriulli & Cools & Bagci & Olyslager &
Buffa & Christiansen & Michielssen have designed
Calderon-based strategies for the EFIE and CFIE.

Implementation of these schemes rather involved (interaction
with corners and edges)



Low frequency breakdown

In the Maxwell system, a separate problem stems from the
representation of the electric field itself:

Escat = iωA− 1

iωε
∇
∫

Γ
gk(x− y)(∇ · J)(y)dAy.

Numerical discretization as ω → 0 leads to loss of accuracy,
generally referred to as “low-frequency breakdown”.



Low frequency breakdown

The usual remedy for low frequency breakdown involves the use of
specialized basis functions in the discretization of the current, such
as the “loop and tree” method of Wilton and Glisson.

This is a kind of discrete surface Helmholtz decomposition of a
piecewise linear approximation of J.

As the frequency goes to zero, the irrotational and solenoidal
discretization elements become uncoupled, avoiding the scaling
problem that causes loss of precision.



Auxiliary variables

An alternative is to introduce electric charge ρ as an additional
variable (Scharstein, Taskinen, Yla-Oijala, Chew).

φ(x) =
1

ε

∫
Γ
gk(x− y)ρ(y)dAy

as well as the continuity condition

∇ · J = iωρ.

This avoids low-frequency breakdown, but is now a Fredholm
integral equation subject to a differential-algebraic constraint.



Robust high-fidelity solvers for the Maxwell’s equations

Well-conditioned second kind integral formulations:
spurious-resonance free, with localized spectra for better GMRES
convergence

Remove differential-algebraic constraints and hypersingular
operators in integral formulations and field postprocessing

High order description of surfaces and solution densities

High order quadrature schemes for singular layer potentials

Fast O(N) or O(N logN) solvers based on FMM acceleration



Augmented integral equations

We introduce electric charge ρ as an additional variable and
simultaneously impose conditions

n×Htot = J, n · Etot =
ρ

ε
. (16)

Using the standard jump relations, we obtain a system of
linear equations (the electric current-charge integral equation,
ECCIE):

1

2
J− K [J] = n×Hinc ,

ρ

2
+ S ′k [ρ]− iωεn · A[J] = n · (εEinc),

where

K [J](x) = n×
∫

Γ

Ḡm(x, y)J(y)dAy, S ′
k [ρ](x) = n·∇

∫
Γ

gk(x, y)ρ(y)dAy.



Augmented integral equations

Vico, G-, Greengard, Ferrando-Bataller:
Let (J, ρ) be the solution of the ECCIE at a non-resonant
frequency ω, and let {Einc ,Hinc} satisfy the Maxwell’s
equations in the neighborhood of Ω. Then ∇ · J = iωρ.

For an arbitrary right hand side, the continuity condition is
necessary in order for {Escat ,Hscat} to satisfy the Maxwell’s
equations. Existing charge-current formulation incorporate
this constraint in one form or another.
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Outline of proof

Taking the surface divergence of the tangential boundary
condition n×Htot = J, we have:

∇ · J−∇ · (n×H) = ∇ · (n×Hinc),

∇ · J + n · (∇×H) = −n · (∇×Hinc),

∇ · J− n · (iωεE) = n · (iωεEinc).

Using the standard integral representation for E,

∇ · J− n · (iωεA[J]−∇Sk [∇ · J]) = n · (iωεEinc).



Augmented integral equations

Dividing by iω, and taking the limit to the boundary, we have

1

2

∇ · J
iω

+ S ′k

[
∇ · J
iω

]
− n · iωεA[J] = n · (εEinc). (17)

Recall that the second equation of the ECCIE was:

ρ

2
+ S ′k [ρ]− n · iωεA[J] = n · (εEinc).

Therefore, the solution (J, ρ) of the ECCIE satisfies the
continuity condition ∇ · J = iωρ.

At zero frequency, the equation (17) has a null-space,
corresponding to the interior Neumann problem for the
Laplace equation.
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Augmented integral equations

The solution can be made unique by enforcing that the total
charge is equal to zero.

1

2
ρ+ S ′k [ρ]− n · iωεA[J] = n · (εEinc), (18)∫

Γ
ρ(y)dAy = 0. (19)

The rank-1 correction trick:

S ′k [ρ](x) = n(x)·∇x

∫
Γ
gk(x−y)ρ(y)dAy →∫

Γ
[n(x) · ∇xgk(x− y) + 1] ρ(y)dAy. (20)

Useful for dealing with near singular cases.



Low frequency breakdown: near field

The dyadic electric Green’s function for E field:

E(x) = iωµ

∫
Γ

[̄
I +
∇∇
k2

]
gk(x− y)J(y)dAy, (21)

is replaced with the charge-current representation:

E(x) = iωµ

∫
Γ
gk(x− y)J(y)dAy −∇

∫
Γ
gk(x− y)ρ(y)dAy.

(22)

Vector and scalar potential parts decouple at low frequencies.
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Low frequency breakdown: far field

The far field E signature:

Eα̂∞(x̂) = α̂ ·
∫

Γ
e ik x̂·yJ(y)dAy, (23)

where x̂ is a unit vector in the x direction and α̂ is the angular
polarization of the receiver. For small ω, the far field signature
Eα̂∞ is of the order O(ω), while J is O(1).

In (J, ρ) representation, all terms are of the order O(ω):

Eα̂∞(x̂) = α̂ ·
∫

Γ

[
e ik x̂·y − 1

]
J(y)dAy− iωα̂ ·

∫
Γ
yρ(y)dAy. (24)
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Low frequency breakdown

Vico, Gimbutas, Greengard, Ferrando-Bataller, “Overcoming
Low-Frequency Breakdown of the Magnetic Field Integral
Equation”, to appear in IEEE Transactions on Antennas and
Propagation.



Augmented integral equations

Integral formulations using the second set of boundary conditions

n× Etot = 0, n ·Htot = 0, (25)

lead to the augmented electric field integral equations:

n× iωµ

∫
Γ

gk(x− y)J(y)dAy − n×∇
∫

Γ

gk(x− y)ρ(y)dAy = −n× Einc ,

n · ∇ ×
∫

Γ

gk(x− y)J(y)dAy = −n ·Hinc .

The off-diagonal blocks are Hilbert (Riesz) operators.
Currently very active research area: charge-current formulations
(Taskinen, Yla-Oijala), generalized Debye integral equations
(Epstein, Greengard), etc.



Discretization schemes

Classical integral representations for Maxwell’s equations

Spurious resonances and “low-frequency breakdown”

Augmented charge-current integral equations

High order discretization of surfaces and solution densities

Singular layer potentials and quadratures for local interactions



Discretization of singular layer potentials

The numerical schemes for discretizing the ECCIE and augmented
EFIE require accurate evaluation of the following singular layer
potentials:

n×
∫

Γ
Ḡm(x, y)J(y)dAy, n · ∇

∫
Γ
gk(x, y)ρ(y)dAy,∫

Γ
gk(x− y)J(y)dAy, −n×∇

∫
Γ
gk(x− y)ρ(y)dAy,

n · ∇ ×
∫

Γ
gk(x− y)J(y)dAy,

and good representations for the scatterer Γ, solution (J, ρ) and
incoming field {Einc ,Hinc}.



Surface descriptors

In the simplest geometric model, the surface of the scatterer Γ is
approximated by a collection of flat triangles.

On each triangle, there are two linearly independent tangent
directions t1 and t2.

The unknown electric currents J and charge ρ on each triangle are
defined by J1t1 + J2t2 and ρ, respectively, and the electromagnetic
fields are evaluated at the triangle centroids.



Surface descriptors

Flat triangulations with constant densities: single layer potentials are
accurate to O(h2), double layer potentials - O(h), hypersingular . . .

Very slow convergence rates; codes are hard to test

Limited choice of useful integral representations

At least quadratic surface patches are needed

Cubic and high order surface patches!

Interfacing with CAD packages



Solution discretization

To represent current and charge densities, we use high order
Gaussian-like interpolation/quadrature rules for smooth functions on
triangles, Rokhlin-Vioreanu.

These are also the collocation nodes (selected in the interior of each
patch) where we evaluate the electromagnetic fields and impose the
boundary conditions.



Solution discretization

The nodes are fully symmetric, well-conditioned, and the corresponding
quadrature weights are positive.

interp 0 1 2 3 4 5 6 7 8 9 10
quadr 1 2 4 5 7 8 10 12 14 15 17
nodes 1 3 6 10 15 21 28 36 45 55 66

cond # 1.0 1.0 1.4 1.9 2.1 3.4 4.3 4.8 4.8 6.5 8.1

The table contains the degree of intepolation, the degree of quadrature,
the number of nodes, and the condition number of interpolation process
for R.-V. nodes up to degree 10.

Arbitrary degree rules are available.



Quadratures for weakly singular and p.v. layer potentials

Numerical evaluation of integral operators on smoothly
parametrized surfaces (J. Bremer, G-):

Sk [f ](x) =

∫
Γ
gk(x− y)f (y)dAy, (26)

S ′k [f ](x) = n(x) · ∇x

∫
Γ
gk(x− y)f (y)dAy, (27)

Dk [f ](x) =

∫
Γ
n(y) · ∇ygk(x− y)f (y)dAy, (28)

Rk [f ](x) = t(x) · ∇x

∫
Γ
gk(x− y)f (y)dAy, (29)

R∗k [f ](x) =

∫
Γ
t(y) · ∇ygk(x− y)f (y)dAy. (30)



Quadratures for weakly singular and p.v. layer potentials

Γ is subdivided into curved triangular patches Γi .

Density f is represented as a piece-wise smooth function on Γ.

Singular integrals are evaluated on R.-V. interpolation nodes
xt = x(uj , vj):

Sk [f ](xt) =

∫
Γi

gk(xt − y)f (y)dAy (31)

via auxiliary quadrature nodes yauxs = y(us , vs):

Sk [f ](xt) =
∑
s

wsgk(xt − yauxs )f (yauxs )|A(yauxs )|, (32)

where ws are the auxiliary quadrature weights and |A| is the
surface area element.



Quadratures for weakly singular and p.v. layer potentials

The auxiliary quadratures strongly depend on the locations of
interpolation nodes in R3 and the stretching factors of
patches Γi .

The number of auxiliary quadrature nodes is approximately of
the order 1000–2000; we use a set of precomputed tables for
up-to 20th degree polynomials.



Quadratures for weakly singular and p.v. layer potentials

The number of auxiliary quadrature nodes is roughly the same for all
interpolation points.



Numerical experiments

Classical integral representations for Maxwell’s equations
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High order discretization of surfaces and solution densities

Singular layer potentials and quadratures for local interactions

Numerical experiments



Accuracy testing

How do we test these codes?

Generate a known solution due to an electromagnetic source
(electric dipole, plane wave, . . . )

Grab {Etest ,Htest } on the surface Γ and use as data

Solve the integral equation for (J, ρ)

Compare {E,H} to known {Etest ,Htest} inside the conductor

We use the total field extinction theorem, which is due to the
inhomogeneous boundary conditions

n×Htot = J, n · Etot =
ρ

ε
. (33)



Numerical results: Smooth geometries

The ECCIE:
n×Htot = J,n · Etot = ρ, k = 1

Ntri Ndisc Nsys Esph

12 540 1620 5.92E-05
48 2160 6480 5.46E-09

192 8640 25920 1.85E-12
8th order convergence tests

45 points/triangle

sphere

The augmented EFIE:
n× Etot = 0,n · Etot = ρ, k = 1

Ntri Ndisc Nsys Esph

12 540 1620 1.01E-02
48 2160 6480 4.41E-05

192 8640 25920 8.11E-07
8th order convergence tests

45 points/triangle

ellipsoid



Numerical experiments: Singular geometries

The Helmholtz equation (exterior Neumann boundary condition).

x(s, t) = 2 sin(t/2),

y(s, t) = − cos(s) sin(t),

z(s, t) = sin(s) sin(t),

0 ≤ t ≤ π, 0 ≤ s ≤ 2π.

Ntri Ndisc Nsys Esph

4 180 180 1.52E-03
16 720 720 2.42E-05
64 2880 2880 1.04E-07

256 11520 11520 9.09E-10
1024 46080 46080 7.04E-13

8th order convergence tests
45 points/triangle

The domain is discretized using an adaptive mesh, (Bremer)
Recompression schemes, (Bremer, Helsing)



Numerical experiments

Fully resolved EM simulations

10,000-100,000 of discretization nodes for simple objects
Millions of points for complex geometries

Corners and edges

Adaptive mesh refinement
Recompression schemes (Bremer, Helsing)



Numerical results

The solution of the MFIE (current J) is plotted on the right. The solution
of the scalar equation in the ECCIE formulation yields the charge density
ρ, plotted on the left. The arch is constructed from the concatenation of
five cubes - each of which is discretized using an adaptive mesh refined
toward the edges. The wavenumber (k) was set to 1, and the direction of
incidence was along the z-axis with E polarized along the x-axis.



Future Work

Fast layer potential evaluation tools (FMM acceleration)

Coupling to CAD tools: quadratic and higher order patches

Singular densities: corner and edge compressors

Integral representations with localized spectra

Integral representations for surfaces with complicated topology

Integration into variety of application codes: antennas on
complex platforms, MRI, metamaterial design
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