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Statistical research in Sandia 

• A significant effort, with multiple foci 
– Estimating risk of component/system failure in nuclear weapons 

– Statistical calibration of scientific (climate) and engineering (weapons) 
models 

– Also, propagation of parametric uncertainty  through scientific / 
engineering models (i.e., research in sparse sampling methods) 

– Most “well-baked” methods deployed via DAKOTA 
(http://dakota.sandia.gov); LGPL license; widely used in academia and 
some industries 

• Markov chain / random walk methods are employed in 
– Statistical inference of fields from sparse observations e.g., estimation 

of material properties from experimental data 

– Generation of networks (sparse matrices) conditioned on matrix 
properties 

http://dakota.sandia.gov/


Outline of the talk  

• Topic I: Generation of independent networks with prescribed 
properties using Markov chains 
– Motivation: generating “sanitized” versions of sensitive networks, for 

experimentation and study 

– Novelty: A collection of graphs which are independent, but which 
share a network property specified by the user 

• Topic II: Statistical inference (inverse problem) of permeability 
fields from sparse observations 
– Motivation: Conditional construction of material property fields from 

sparse observations 

– Novelty: infer statistics of material structures too fine to be resolved 
by a grid 
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Topic I - Generation of independent graphs 

• Aim: Generate a set of independent graphs that have the 
same joint degree distribution (JDD) 
– Given: A procedure that can rewire a graph without violating the 

prescribed joint degree distribution  

• Motivation 
– Being able to generate synthetic graphs which are similar in some 

ways, and diverse in others, is necessary for experimentation and 
study 

– Many types of networks e.g., email traffic, critical infrastructure etc. 
have privacy and security concerns and cannot be handed out for 
study 

– Graph rewiring algorithms (graph models / generators) are common, 
but how to put them into practical use? 
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Definitions 

• G(V, E) 
– |E| = # of edges 

• Degree distribution 
– Histogram of vertex degrees 

• Joint degree distribution 
– Joint distribution 

• Rewiring 
– Reconnection of edges of a graph 
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Markov chain of graphs 

• A Markov chain on discrete 
variables 
– Called random walk on a 

graph 

• In our case, each state is 
also a graph 

• In our talk, “graph” will 
refer to the state (red-and-
yellow graph) 
– And not the graph on which 

the Markov chain runs 
(black-and-white graph) 
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Techniques for rewiring 

• Graph rewiring techniques exist 
– Preserve degree distribution or joint degree distribution 

– Applying this technique repeatedly leads to a set of samples from the 
uniform distribution of graphs (with the prescribed property) 

• Shortcoming – the input to the procedure is a graph from the 
target distribution, not an arbitrary graph 
– The procedure generates a new sample, given an old sample. 

– Generally, the new sample is almost identical to the input – few graph 
edges change 

– The procedure produces a stream of correlated graphs 

• Problem: How to get a stream of independent graphs? 
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How are independent graphs generated? 

• Using Markov chains, we need to run N steps (to forget the 
starting point) before preserving the last one as a sample 
– What is N? 

• Theoretical upper-bounds on N are huge 
– Practically, by choosing N, the number of MC steps to run arbitrarily 

• We need a principled way of choosing N 
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The JDD-preserving rewiring technique 

• Stanton & Pinar, ACM J. Expt. Algorithmics, to appear 

• Per invocation, only 1 pair of edges change 

• Requires that the input graph obeys the prescribed JDD 

• Problem of periodic edge appearance 
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Features of this chain 

• Is a variant of a Markov chain Monte Carlo method 
– But there is no complicated likelihood expression 

– # of nodes, edges and JDD are preserved from graph to graph 

• The posterior is a uniform distribution of graphs 

• Consecutive graphs are very correlated 
– In fact, they only differ by 1 pair of edges 

• In case the nodes of the graph are labeled 
– Each edge describes a binary time series {Zt}, t = 1 … N 

• To generate independent graphs, need to estimate N for 
which starting and ending graphs are “different” 
– i.e., the Markov chain converges to its stationary distribution 

10 



Mixing of the MCMC chain 

• Stanton & Pinar analyzed the time-series {Zt}, t = 1 … K of 
edges  for mixing 

– K was a large number >> |E| 

– The autocorrelation of {Zt} decreased with lag, initially exponentially, 
and stabilized at a low “noise” level 

– Indicates that one could obtain independent samples by thinning a 
long chain, using a sufficiently large lag (set it equal to N) 

• But requires one to run the chain first and do the autocorrelation analysis 

• Would ideally like a simple expression for N 
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Layout of the talk 

• Is about estimating N that will lead to independent 
realizations 

• Will create a closed-form expression for N 
– Exploits the fact that JDD is preserved 

– Assumes {Zt} for an edge is independent of others 

– Has a user-defined parameter 

• Will check closed-form expression using a purely data-driven 
method 
– No use of JDD is made 

• These are necessary, not sufficient, conditions for 
independence 

• Will work on the time-series of edges {Zt} 
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Model for estimating N – Method A 

• Each edge can assume 2 states, {0, 1} 

• Its evolution as {Zt} can be described with as a Markov chain 
with transition probabilities {a, b} 

• One can develop expressions for {a, b} using the fact that JDD 
is held constant 

– a scales as 1/|E|2; b scales as 1/|E|; |E| = number of edges in graph 

– Details in Ray, Pinar & Seshadhri, “Are we there yet?”, arXiv:2012.3473 

– After N steps, the difference between stationary and realized 
distributions is e 
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Estimating e 
• What e should we use? 

– We are interested in the distribution of certain graphical parameters 
associated with a prescribed JDD 

– Max. eigenvalue of graph, diameter, # of triangles etc 

• Pick various values of e, and corresponding N 

• Run M separate instances of the MCMC to generate M 
independent samples 
– Each chain runs N steps to “forget the initial graph” and the last 

sample is preserved 

– When the distributions stop changing with N (and have min variance) 
we have independent samples 

• Check this with realistic graphs 
– Co-authorship in network science (|V| = 1461, |E| = 5484) and 

western states power network (|V| = 4941, |E| = 13,188) 
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Distribution # of triangles – co-authorship graph 
in network science 

• |V| = 1461, |E| = 5484 

• e values correspond to 
|E|, 5|E|, 10|E| and 
15|E| MCMC steps 

• Repeat 1000 times to 
generate 1000 graphs 
– Calculate # of triangles in 

each graph; plot 
distribution 

– Compare distributions (PDF) 
from each value of e 

– Convergence? 
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N = 10|E| seems to work 



Distribution of max. eigenvalue – western states 
power grid 

• |V|=4941, |E|=13188 

• e values correspond to |E|, 
5|E|, 10|E| and 15|E| 
MCMC steps 

• e ~ 5e-5 (N = 10|E|) seems 
OK 

• Henceforth, we’ll use N = 
10|E| 
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Checking the model (Method B) 

• The expression for N came from modeled values of a, b 

– These are approximate (e.g., assumption of independence of edges) 

– We can check by empirically calculating of a, b from the data {Zt} 

• We adopt the method in Raftery & Lewis, 1992 

– Run the MCMC very long, ~10,000-100,000|E| steps 

– Count the number of different types of transitions in {Zt}  

• There are 4 different types of transitions 

– Do the counts resemble generation by a 1st-order Markov or 
independent process? 

• Usually, 1st-order Markov, since entries are correlated 

– Thin the chain, and repeat, till counts resemble generation by an 
independent sampler 

– The final thinning factor is an estimate of N 
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Markov or independent processes?  

• How to decide if counts came from a 1st-order Markov or 
independent process? 
– Consider a complete 2x2 contingency table with data 

• They represent the number mij of transitions {(0,0), (0,1), (1,0), (1,1)} 
observed in {Zt} 

– Log-linear models are used to model table data 

• 1st-order Markov process: log(mij) = u + u1(i) + u2(j) + u12(i,j)  

• Independent samples:  log(mij) = u + u1(i) + u2(j)  

– Using maximum likelihood, we can find expressions for the model 
parameters 

• Standard results in Bishop, Fienberg & Holland 

– Goodness of fits of models can be compared using BIC 
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Comparing diameter distributions 

• C. Elegans, co-authorship network 
and Western States power grid 

• N = 10|E| MCMC steps for Method A 
– Seem to suffice for converged 

distributions 
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Comparing max. eigenvalues 

• C. Elegans, co-authorship network and 
Western States power grid 

• N = 10|E| MCMC steps for Method A 
– Seem to suffice for converged distributions 
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Testing for large graphs 

• Method B gets very expensive for large graphs  
– Only a few (10% of the edges) can be checked 

– Further, there are always a few edges that that take a long time to 
become de-correlated 

• How important are such (few) correlated edges to the 
distributions? 
– How few is few i.e., how many edges need > 30 |E| steps to de-

correlate? 

– Impact on distributions? 

• Check with soc-Epinions1 graph 
– 75,000 vertices, ~400,000 edges 

– Applied Method B to 10% of the edges 
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Results for soc-Epinions1 graph 

• About 95% edges converge in 30|E| steps 

• The remainder makes a small difference in the distributions 
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Interim summary 

• We see that running a MCMC chain 10|E| - 30|E| steps is 
sufficient to “forget” the starting graph 
– We have derived a simple model, which exploits our constant JDD 

requirement, to develop an expression for transition probabilities 

– We have checked it with a method that is data-driven 

– We find that in large graphs, about 5% of the edges may still be 
correlated after 30|E| steps 

• They do not make an appreciable difference in the distributions of 
graphical parameters in the set of graph samples collected. 

• Similar results hold true when degree distribution is 
preserved 
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Topic II – Conditional generation of random 
fields  

• Aim: Given a material with spatially variable properties, estimate 
structural properties at all scales from sparse measurements 

• Slight relaxation: 
– Need to know large-scale variations/structures accurately 

– Need to know statistics of the fine structures 

• Given: measurements/observations which are impacted by both 
the fine & coarse structures 

• Why? Materials with random & multiscale structures abound and 
cannot be imaged/measured at all scales 
– Geophysical materials are random & multiscale (geological strata, soil 

properties etc) 

– Mesoscale O(1m) electrochemical & catalytic processes at fuel cell anodes 

– Material degradation/aging – e.g., “bubbles” in explosive “cook-off”  
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Challenges in estimation 

• Never enough data to infer fine & coarse scales simultaneously 
– If possible to observe / image all scales, why bother to infer anything? 
– Corollary: inferences are always done with incomplete data 

• Most inferential methods are iterative 
– Propose, compare with observations, reject/accept 
– Involve a forward model that links the objects of inference with the 

observables 

• So even if a gigantic model resolving all scales is available, can’t be 
used in a inferential setting (aka inverse problem) 
– Takes too long 
– Plus, never enough observables to inform the gigantic model’s gigantic 

d.o.f 

• Net result: Inferences are always uncertain 
– Due to the use of simplified models and incomplete observations 
– So how to capture the uncertainty? 
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Inference in a binary medium 

• Given: A porous medium with 2 phases 
– A low permeability matrix 
– With  fine, high-permeability inclusions 
– Inclusions are unevenly distributed in the 

domain 
–  Domain is rectangular – 1.5 x 1.0 

• Scale separation: Impose a 30 x 20 grid on 
domain 
– Inclusions are 1/10th the grid-block size 

•  fine scale variable, d 

– Each grid-block has an inclusion proportion 
(F(x)) 
• Resolved on the 30 x 20 mesh; coarse scale 

variable 

• Impact: Permeability in a grid-block affected 
by both fine- and coarse-scale variables 
– k = Keff( F(x), d ) 
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Informative observations 

• Consider a set of 20 grid-blocks with sensors 
– {kobs} given info on {F, d} at the sensors 

– OK for inferring structures > inter-sensor spacing 

• Water-flood experiment for finer structures 
– What is this? 

– Inject water at one corner, pump it out at the 
diagonally opposite corner 

– Flow impacted by structures at all scales 

– Water breakthrough time at sensors {tobs} 
contain the integrated impact of multiscale 
structures 

• Teasing out the contributions of the fine- 
and coarse-scale to {tobs} could allow 
inference of both scales 
– But how? 
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Recap, and an idea for inference 

• Permeability k(x) = Keff ( F(x), d ) 
– But we don’t know what the functional form of Keff is 

• Breakthrough time t = M ( k(x) ) 
– But we have only 20 measurements of t, {tobs} 
– And 30 x 20 = 600 grid-blocks of unknown F and d 

• The idea 
– Model #1: Develop a “pointwise” model for k = Keff ( F, d ) in a grid-block 

• Subgrid model 

– Model #2: Develop a parameterized model for F to describe its spatial 
variation 
• Have a about 20 – 30 parameters in it – reduced order modeling of F(x) 

– With 20 {kobs} and 20 {tobs}, should be able to infer all  unknowns 
• 20-30 parameters for F(x) and one d 

• Caution 
– With 40 observations, none of these parameters will be estimated well 

• Fine, but how inaccurate are the estimations? 
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Model #1: subgrid model theory 

• We need: k = K( F, d ) 
• Knudby’s theory, restricted to rectangular 

inclusions of size d 
– k = KKnudby( F, d, L/D ) 

• L = flow path in the matrix 

• Problem: Our inclusions are arbitrarily 
shaped 

• Questions: 
– Can we create a field of arbitrary inclusions, 

given F and d? 
– Can we find L in such cases? Just the expected 

value. 
– Can we do so analytically, without actually 

creating a field and instantiating an inclusion-in-
matrix field? 

• Subgrid modeling, but solely geometric 
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Subgrid geometric modeling 

• Consider a grid-block divided into 100 x 100 grid-
cells 

• Initialize a 100 x 100 white-noise field 

• Convolve with a Gaussian kernel with FWHM of d 
– Creates a correlated field with correlation length d 

• Truncate at a level zthreshold 

– Flat sections are inclusions! 

– Zthreshold decides the inclusion proportion F in the grid-
block 

• The theory of truncated pluriGaussian fields 
provides analytical expressions for expected values 
– Number of inclusions 

– Total area in the inclusions 

– These are explicit functions of F and d 
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Subgrid upscaling with Knudby 

• If {F, d} specified for each grid-block, we can analytically predict 

– Number of inclusions and total area of the inclusions 

– Ditto, area per inclusion 

• Assume that the inclusions are round 

– Inclusion radius can be calculated 

• Assume that the centroids of the inclusions are distributed per a 
Poisson point process 

– Expected value of inter-inclusion distance obtained 

• Expected value of flowpath length in matrix L can be calculated 

• Plug into KKnudby and you’re done 

– Not quite, but that’s the rough outline of the subgrid model 

 

31 

S. A. McKenna, J. Ray, Y. Marzouk and B. van Bloemen Waanders, "Truncated multiGaussian fields 
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Model #2: Reduced order modeling of F(x)  

• F(x) varies in space and is described on a 30 x 20 mesh 
– Don’t want to infer all 600 values 

– But F(x) is smooth – can’t we exploit this to make a lower-dimension model? 

• Model F(x) as a 600 variate Gaussian 
– Smoothness guaranteed 

– Assume correlation function known (~ exp( - x2 ) ) i.e. covariance G of 
multiGaussian is known 

• Any multiGaussian can be expanded in a Karhunen-Loeve series 
– We’ll truncate at 30 terms 

– F ( x; G ) are called KL modes; wi are the weights 

 

 

 

 

• Inferring F(x) means inferring wi 
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Posing the inverse problem 

• Given:  {kobs, tobs} at 20 sensors 
• Models: 

– F = sum of KL modes with unknown weights wi 

– k = Keff ( F, d ) – the subgrid model 
– t = M( k(x) )  - Darcy flow model, solved using finite-difference method 

• Infer weights wi, i = 1 … 30 and d 
– Develop distributions for these quantities, not point values 

• Generating synthetic {kobs, tobs}  
– Start with a “ground-truth” binary medium on a 3000 x 2000 mesh 
– Push water through it and measure breakthrough times at 20 sensors – 

{tobs} 
• Done with MODFLOW, a Lagrangian code distributed by USGS 

– Superimpose a coarse 30 x 20 mesh 
• Pick out the grid-blocks with sensors 
• Solve a 1D flow equation in each and estimate effective grid-block 

permeability – {kobs} 
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Bayesian Inverse Problem 

• Objects of inference, Q = {F(x), d} = {wi, i = 1…30, d} 

• Bayesian inverse problem 

 

 

 
 

– M, Darcy flow model to relate  Q to breakthrough times {tobs} 

– Keff, subgrid model to relate Q to observed permeability at certain 
sampling points 

– Qp, prior beliefs regarding the values of Q 

– s{K, T}, std. dev. of various measurement errors 

• p(Q) evaluated by Markov Chain Monte Carlo sampling 

– Particular algorithm called DRAM 
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Results 

• Get 104 samples of {wi, d} 

• From each {wi, d}, develop 106 
instances of F(x) and Keff( F(x), d ) 

• Take the mean & std dev of the 
106 F(x) instances 

• Take standard deviations too 
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PDFS of {wi, d} 

• Use the 104 samples of 
{wi, d} to develop PDFs 

• Take w1, w15 and w30 as 
proxies for large, medium 
and small (but resolved) 
scale variations 

• Inversions performed with 
{kobs} only also plotted 

• Takeaways: 

– Large-scale structures easy 
to infer 

– Gets harder as we get 
smaller 

– Doesn’t apply to inclusions 
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Developing fine-scale realizations 

• The inferences 
can be used to 
develop fine-
scale binary 
media 
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• Flow simulations can be used to obtain an ensemble of predicted 
breakthrough times at sensors 



Posterior predictive checks 

• Fine-scale binary media 
realizations (on a 3000 x 
2000 mesh) can be used 
to calculate breakthrough 
times at 20 sensors 

– Did so with 1,000 
realizations, not all 106 
possible 

– Allowed us to plot 1st, 
50th  and 99th percentiles  

– Measurements plotted as 
references 

• Why are some 
breakthrough times well 
predicted and others are 
not? 
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Interim summary 

• One can use data to infer structures which one cannot resolve with 
a mesh 

– Require the use of a subgrid model, parameterized with subgrid structures 

– Requires proper data 

– Will only provide statistics of the subgrid structures 

• In many cases, the subgrid structures may not affect the 
measurements sufficiently 

• The inference can also quantify the uncertainty in the inference 

• We may also be able to generate an ensemble of fine-scale 
structures which are consistent with the observations 
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Conclusion 

• Use of Markov chain Monte Carlo & Bayesian inference quite 
common in Sandia 
– Being used to calibrate climate models, material models of re-entry 

bodies, turbulence models etc. 

– Efforts to develop “parallel” MCMC methods  
• That amortize the sampling burden over N CPUs 

– Sparsity-enforced model reconstruction (“Bayesian LASSO”) common used 
for sensitivity analysis of climate models 
• Many putative parameters and not enough runs to do a proper sensitivity 

analysis 

• Network construction 
– Models for constructing graphs (generative & rewiring models) 

– Sublinear algos for measuring graphical properties (e.g., estimate # of 
triangles in a graph) 

– New work on network tomography 
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Background 
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How many samples, M, to collect? 

• We plot distributions of diameter, max. eigenvalues etc. 
empirically, from a generated set of graphs  
– Typically, we plot graphs with increase number of independent 

samples till we get convergence in the plots 

• What is an approximate size of this sample set? 

• We can track {Zt} and observe it converge to its mean 
– Does a particular accuracy in the estimate of mean provide a useful 

estimate of the number of samples to collect? 

– Estimate edge mean within 5% accuracy, with 95% confidence 
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How many samples to take? – soc-Epinions1 
graph 

• Epinions graph 
– Just because edge-means converge does not mean other graph properties do 

– Need about 2x more samples 
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How many samples to take? – Power graph 

• Western states power graph 
– Need about 4x more samples 
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Checking via Gelman-Rubin statistic 

• Both Methods A and B start with the same (real) graph 
– Is the agreement in distributions because of the starting point? 

• Check: Generate 2 new starting graphs 
– Run a Markov chain for 10,000|E| steps, starting with a real graph, to 

get a new independent graph. 

– Start separate Markov chains from these 3 starting points 

• Samples are collected after 30 |E| MCMC steps 

• 300 samples collected 

– Monitor their convergence using G-R statistic 
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C. Elegans Netscience Power grid Soc-Epinions1 

G-R statistic 1.05 1.02 1.006 1.06 



What is MCMC? 

• A way of sampling from an arbitrary distribution 
– The samples, if histogrammed, recover  the distribution 

– Given a starting point (1 sample), the MCMC chain will sequentially find 
the peaks and valleys in the distribution and sample proportionally 

– Drawback: Generating each sample requires one to evaluate the 
expression for the density p 

• An example 
– Given: (Yobs, X), a bunch of n observations 

– Believed: y = ax + b 

– Model: yi
obs = axi + b + ei, e ~ N(0, s) 

– We also know a range where a, b and s might lie  
• i.e. we will use uniform distributions as prior beliefs for a, b, s 

– For a given value of (a, b, s), compute “error” ei = yi
obs – (axi + bi) 

• Likelihood of the set (a, b, s) =  P exp( - ei
2/s2 ) 

– Solution: p ( a, b, s | Yobs, X ) = P exp( - ei
2/s2 ) * (bunch of uniform priors) 

 

 



MCMC, pictorially 
• Solution method: 

– Sample from p ( a, b, s | Yobs, X ) 
using MCMC; save them 

– Generate a “3D histogram” from the 
samples to determine which region 
in the (a, b, s) space gives best fit  

– Histogram values of a, b and s, to 
get individual PDFs for them 

• Choose a starting point,  
– Pn = (acurr, bcurr) 

• Propose a new a, aprop ~ N(acurr, sa) 

• Evaluate p ( aprop, bcurr | ...) / p ( 
acurr, bcurr | … ) = m  
– Accept aprop (i.e. acurr <- aprop) with 

probability min(1, m) 

• Repeat with b 

• Loop over till you have enough 
samples 
 

b 

a 
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Circle plots 

• Sensor: Dots 
• Circles 

– Red: PPC using 
reconstructions using 
just {kobs} 

– Cyan: Using {kobs, tobs} 

• Circle radius:  
– Prop to the 95% CI of 

breakthrough times 

• Circle center offset: 
– Prop to diff between 

measured and mean 
pred. breakthrough 
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• Takeaway: Further the measurement from injector/producer, bigger the uncertainty in 
predictions from reconstructions. Two reasons 

1. Longer breakthrough times – the % uncertainty may not be large 

2. Smaller flow rates lead to less info gathered and bigger uncertainties 


