Secondary Spectrum Trading Market – Auction-Based Approach to Spectrum Allocation and Profit Sharing

Richard J. La
Department of ECE & ISR
University of Maryland, College Park
Joint work with Sung Hyun Chun

NIST
August 14, 2012
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Background (1)

- Inefficient spectrum allocation today
 - Conventional way
 - **Static** allocation by a government agency (e.g., Federal Communications Commission (FCC) in the U.S.)
 - Drawbacks
 - Hampers the entrance of a new service provider
 - Reduced competition
 - **Under-utilized** in many places
Background (2)

- Example of spectrum allocation (in the U.S.):
 - 614 ~ 806 MHz: Broadcasting (TV, channels 38-69)
 - 806 ~ 824 MHz: Pagers and public safety (uplink (e.g., T-GSM 810))
 - 824 ~ 849 MHz: Mobile phone (wireless comm. uplink)
 - 849 ~ 869 MHz: Pagers and public safety (downlink)
 - 869 ~ 894 MHz: Base station (wireless comm. downlink)

Source: http://en.wikipedia.org/wiki/Cellular_frequencies
Background (3)

- Limestone, Maine (2007)
Background (4)

- Limestone, Maine (2007)
Lessons from the measurements
- While spectrum is considered scarce (and expensive), allocated frequency bands are often under-utilized

Natural Question – In light of rapidly increasing demand for spectrum
- How can we increase frequency usage efficiency?
- Is there any way to allow other users (who need the frequency) to use under-utilized frequency bands?
Background (6)

- Proposed approaches
 - Pack more users in frequency spectrum
 - Mobile Virtual Network Operators (MVNOs), e.g., Virgin Mobile USA, 7-Eleven Speak Out Wireless, AirLink mobile, Credo Mobile
 - Share spectrum or infrastructure with Mobile Network Operators (MNOs), e.g., AT&T, Sprint, Verizon, T-Mobile
 - Allow dynamic frequency access to unlicensed users (secondary users)
 - e.g., Cognitive Radio (CR)
Background (7)

- Mobile Virtual Network Operator (MVNO)
 - Business agreement to use the spectrum and infrastructure of licensed Mobile Network Operators (MNOs)
 - Examples
 - Virgin Mobile USA (MVNO) with Sprint Nextel (MNO)
 - Credo Mobile (MVNO) with Spring Nextel (MNO)
 - Firefly Mobile (MVNO) with AT&T (MNO)
 - Runs own cellular mobile service business with its own brand, pricing scheme, numbering resources, and featured services
Background (8)

- Cognitive Radio (CR):
 - Underlying technology: Software-Defined Radio (SDR)
 - CR users (CRUs) can
 - switch its radio access technology based on the availability and/or performance of available networks
 - use any available frequency band
 - CRUs often called unlicensed users

- **Key constraint:**
 - Licensed users shall not be affected by CRUs’ use of frequency band
Background (9)

- Proposed methods for honoring the constraint include
 - **Frequency rental protocol**
 - Primary provider (i.e., licensed user) broadcasts available frequency bands
 - CRUs request (and use those bands granted for use)
 - When a licensed user needs the frequency bands, it sends a signal to stop CRUs
 - **Frequency sensing**
 - CRUs continuously monitor the usage on frequency bands
 - If no activity is detected, use the bands
 - When activity is detected, stop using the bands
 - **Interference temperature model**
 - Use frequency bands while total interference level at licensed user receivers remains below a predefined threshold
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Motivation (1)

- **Drawbacks of MVNOs**
 - Low flexibility for under-utilized frequency
 - Constrained to use the same radio technologies employed by MNOs
 - Can provide only (almost) the same set of services as MNOs

- **Research on CR**
 - Most of previous studies focus on resource allocation among CRUs
 - Often assume CRUs can use the spectrum free of charge
 - Private primary service providers may not be so generous
 - Likely to demand a payment
 - Individual CRUs responsible for finding and using under-utilized frequency spectrum (especially under frequency sensing and interference temperature model)
 - **Uncoordinated** access/use of under-utilized spectrum
Motivation (2)

- Secondary trading market for spectrum trading (to marry the previous two)
 - What if secondary service providers (acting as middle men)
 - Have own infrastructure with dynamic frequency access capability at both access point and user equipment (UE)
 - Lease the spectrum from primary service providers (licensees)
 - Collect the service/usage fee from their customers (CRUs)
 - Can use under-utilized spectrum in a more efficient and organized manner
 - Can provide more services
 - Not tied to the same radio technologies as MNOs
Motivation (3)

- Model:

 - Primary Service Providers
 - Secondary Service Providers
 - Spectrum Trading Market
Motivation (4)

- Need to design a spectrum sharing and pricing scheme between the primary service providers (PSPs) and secondary service providers (SSPs)
Motivation (5)

- Propose an auction-based framework for secondary spectrum trading market
 - Offers a natural tool for spectrum trading
 - Strategies of buyers
 - Methods for exchange of information
 - Allocation and payment schemes
 - Well designed auction mechanisms have desirable properties
 - Efficiency and/or optimality
 - Incentive compatibility
 - Individual rationality
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Problem formulation (1)

- In spectrum auction

- Frequency spectrum traded in a fixed unit
 - e.g., unit of 100 kHz
 - Total available spectrum from a primary service provider: 1 MHz
 - Primary service provider has 10 units of homogeneous good

- Frequency trading performed periodically or whenever needed

Goods/Items: Available frequency bands
Sellers: Primary service providers
Buyers/Bidders: Secondary service providers
Problem formulation (2)

- Sellers – primary service providers
 - Each seller interested in lending (a portion of) under-utilized spectrum it owns in different regions (i.e., operating markets)
 - Available spectrum divided according to a fixed unit (e.g., 100 kHz)
 - Sellers free to cooperate among themselves and form **coalitions** to sell their spectrum together
 - Each seller has a **value** associated with each unit of frequency band it wishes to lend
 - Determines its **reserve price**
 - **Risk neutral** – wish to maximize **expected profit** (i.e., revenue minus its values for sold frequency bands)
Problem formulation (3)

- **Buyers** – secondary service providers
 - Interested in purchasing frequency bands in different regions/markets
 - Have private information – type of buyer j denoted by T_j
 - Has distribution G_j with density g_j
 - Value of the k-th frequency band won by buyer j given by $V_{k}^{j}(T_j)$
 - Independent and identically distributed (i.i.d.)
 - Interested in maximizing own expected payoffs
 - Payoff = total value from items won – price paid for the items
Problem formulation (4)

- Setup
 - Consider only a **single market**
 - $S = \text{set of primary service providers (sellers)}$
 - $B = \text{set of secondary service providers (buyers)}$
 - For each $s \in S$, f_s denotes the number of frequency bands available for lease from seller s
Problem formulation (5)

- **Seller:**
 - Announces the list of frequency bands it wishes to lend and its reserve prices
 - May join other sellers to form a *coalition*
 - \mathcal{P} - set of all possible partition of $S = \{1, 2, \ldots, S\}$
 - Each coalition of sellers holds a *separate* auction, sharing information among coalition members
Problem formulation (6)

Buyer:

- Each buyer first chooses one seller and participates in the auction of a coalition to which the chosen seller belongs.
 - Assume that the selection of a seller by a buyer does **not** depend on its type.
- Places a bid with the selected seller based on its private information.
Problem formulation (7)

- **Trading system:** For each auction,
 - Identifies winning bids and allocates goods *(allocation scheme)*
 - Computes the prices to charge winning bids *(pricing scheme)*
 - Distributes the revenue from the auction to the sellers according to a fixed and known revenue sharing scheme *(revenue sharing scheme)*
Problem formulation (8)

- **Goal:** Design a secondary spectrum trading market that will encourage and support trading between potential sellers and buyers
 - Should provide potential sellers with proper incentives to make their under-utilized frequency bands available to prospective buyers
 - Sellers likely to feel more compelled to put their under-utilized frequency bands up for sale when they anticipate higher revenue

- **Questions of interest**
 - How can the sellers maximize their revenue from auction?
 - Could they increase their revenue by cooperating with each other?
 - Cooperation would be “possible” only if (i) sellers feel that they can benefit from it and (ii) the revenue is shared fairly in sellers’ views
 - Is it possible to sustain cooperation among sellers?
 - If so, how should the revenue be shared among them to maintain such cooperation?
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Efficient vs. optimal mechanisms (1)

- **Efficient mechanism**
 - Maximizes social welfare
 - Assigns the item(s) to the buyer(s) who value the item(s) most
 - Suitable for auction of the public asset
 - Well studied - buyers’ strategies, allocation and payment rule
 - Well-known single item auctions
 - Dutch auction, English auction, first-price auction, second-price auction (Vickrey auction)
 - Well-known multiple item auctions
 - Discriminatory auction, uniform price auction, VCG mechanism
 - Designed for a single seller
Efficient vs. optimal mechanisms (1)

- **Optimal mechanism**
 - Maximizes seller’s expected revenue
 - Suitable for auction of a private asset
 - Much studied - buyers’ strategies, allocation, payment
 - Single item auction: Myerson’s mechanism
 - Multiple item auction: Branco’s mechanism
 - Mechanism given by a pair of functions \((p, c)\)
 - e.g., in Branco’s mechanism with \(m\) units of item
 \[
p : T \rightarrow \mathbb{R}^{(N \times m)}, \quad c : T \rightarrow \mathbb{R}^N
 \]
 \[
p_{jk}(t) : \text{probability that bidder } j \text{ will receive at least } k \text{ units}
 \]
 \[
c_j(t_j) : \text{bidder } j \text{'s expected payment}
 \]
 - Designed for a **single** seller
Generalized Branco’s mechanism (GBM) (1)

- M buyers
 - $T_j \in T_j$ - type of buyer j (private information)
 - Each buyer reports its type to seller(s) - $t^* = (t^*_j; j = 1, 2, \ldots, M)$
 - Not necessarily its true type

- Seller(s)
 - Have values for items for sale – $0 \leq V_0^{(1)} \leq V_0^{(2)} \leq \cdots \leq V_0^{(m)}$
 - Compute contributions: For each $j = 1, \ldots, M, k = 1, \ldots, m$
 \[
 \pi_{j,k}(t^*_j) = V_{j,k}(t^*_j) - \frac{\partial V_{j,k}(t_j)}{\partial t_j} \bigg|_{t_j=t^*_j} \frac{1 - g_j(t^*_j)}{g_j(t^*_j)}
 \]
 - Order the contributions by decreasing value
 - $\pi(\ell)(t^*)$ - ℓ-th largest contribution among all buyers
Generalized Branco’s Mechanism (GBM) (2)

- **Regularity assumptions**

 - \((t_j - \tilde{t}_j)(\pi_{j,k}(t_j) - \pi_{j,k}(\tilde{t}_j)) \geq 0\) for all \(t_j, \tilde{t}_j \in \mathcal{T}_j\)

 - if \(\pi_{j,k+1}(t_j) \geq 0\), then \(\pi_{j,k}(t_j) \geq \pi_{j,k+1}(t_j)\) for all \(t_j \in \mathcal{T}_j\)
Generalized Branco’s Mechanism (GBM) (3)

- In a nutshell,
 - \(m^*(t^*) \) items are awarded to the buyers with the \(m^*(t^*) \) highest contributions, where

\[
m^*(t^*) := \max\{\ell \in \{1, 2, \ldots, m\} \mid \pi(\ell)(t^*) > V_0^{(\ell)}\}.
\]

- Buyer \(j \) pays \(V_{j,k}(c_{j,k}(t^*_{-j})) \) for the \(k \)-th item it wins, where

\[
c_{j,k}(t^*_{-j}) := \inf\{\hat{t}_j \in T_j \mid \pi_{j,k}(\hat{t}_j) \\
\geq \min\{\eta_\ell(\hat{t}_j, t^*_{-j}); \quad \ell = 1, 2, \ldots, m\}\}
\]

and \(\eta_\ell(t^*) = \max\{\pi(\ell+1)(t^*), V_0^{(\ell)}\} \)

- Smallest value for the \(k \)-th item that would win the item
Properties of GBM (1)

Theorem: The GBM satisfies following properties:

- **Incentive compatible**
 - Reporting true type is an optimal strategy for bidders
 - *We will assume buyers report their true types when GBM is employed by coalitions of sellers in our framework*

- **Individually rational**
 - No buyer will be worse off by participating in the auction

- **Optimal mechanism**
 - Maximizes the *expected profit* of the seller(s)
 - Profit = total revenue – total value of sold items
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Selfish buyers and non-cooperative game (1)

- Buyers assumed selfish
 - Interested in maximizing own expected payoffs
 - Interaction among selfish buyers modeled using a non-cooperative game
 - Only action is to select a seller

- **Seller selection probability vectors:**
 \[p = (p_b; \ b \in \mathcal{B}) \]
 - \[p_b = (p_{b,s}; \ s \in \mathcal{S}) \], where \(p_{b,s} \) is the probability that buyer \(b \) selects seller \(s \)
Non-cooperative game among buyers \((\mathcal{B} = \{1, 2, \ldots, B\})\)

- Payoff of buyer \(b\) given by \(p_b(A, T; P)\)
 - \(A = (a_1, a_2, \ldots, a_B)\) - sellers selected by buyers \((a_b \in \mathcal{S})\)
 - \(T = (T_b; b \in \mathcal{B})\) - vector of buyers’ (reported) types
 - \(P\) - partition of sellers, i.e., set of coalitions that emerge
 - \(P(s)\) - coalition to which seller \(s \in \mathcal{S}\) belongs
 - Each coalition \(C \in P\) holds a separate auction employing the generalized Branco’s mechanism (GBM)
 - \(p_b(A, T; P) = \) total value from items won – total price paid for the items won (according to the GBM)
Incentive for cooperation among sellers (1)

- Assume that buyers fix their seller selection probabilities
 - Any arbitrary probability vectors (mixed-strategy profile)

- For every $C \subset S$, let $v(C)$ denote the expected profit of coalition C under the GBM

Theorem: For every $C_1, C_2 \subset S$ such that $C_1 \cap C_2 = \emptyset$

\[v(C_1) + v(C_2) \leq v(C_1 \cup C_2) \]

Sellers are better off cooperating among themselves to maximize their expected profit
Source of difficulty (1)

- Calculation of prices to charge, hence total revenue from auction, difficult

- **Lack of monotonicity**
 - Profit/revenue does **NOT** necessarily increase with the set of items to be sold
 - Can easily find examples where introducing additional items to sell reduces the total revenue
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Cooperative game (1)

- How should sellers share the (expected) profit among themselves to promote and sustain cooperation?
 - Model the interaction as a **cooperative game**
 - **Characteristic function** ν defined through expected profit for different possible coalitions
 - $\nu(C^')$ - Expected payoff (i.e., expected profit) sellers in coalition C' can guarantee themselves

Definition: An **imputation** is an expected payoff vector

$$x = (x_1, \ldots, x_S)$$ satisfying

- $\sum_{s \in S} x_s = \nu(S)$
- $x_s \geq \nu(\{s\})$ for all $s \in S$
Cooperative game (2)

Definition: Let \(x \) and \(y \) be two imputations. We say \(x \) dominates \(y \) through \(C \subset S \) if

- \(x_s > y_s \) for all \(s \in C \)
- \(\sum_{s \in C} x_s \leq v(C) \)

Definition: We say \(x \) dominates \(y \) if there is any coalition \(C \subset S \) such that \(x \) dominates \(y \) through \(C \)

Definition: The set of all undominated imputations is called the core.

- **Not** guaranteed to exist (i.e., non-empty)
Existence of non-empty core (1)

- **Theorem:** The core of the cooperative game among the sellers is always **non-empty**

- **Implication** – There always exists a way for sellers to share profit so that no subset of sellers will have an incentive or power to deviate from cooperation and increase their expected payoffs
Revenue sharing (1)

- Equitable sharing of revenue is possible
 - But, only in “expected” sense
 - Does not tell us how to share the revenue for each realization so as to achieve expected payoffs in the core

- Given an expected payoff vector x^* in the core of cooperative game, how should the sellers distribute the profit for each realization so that their expected payoffs equal x^*?

- We would like to impose some additional natural constraints on the revenue sharing scheme we wish to design
Revenue sharing (2)

Revenue allocation scheme: \(\Theta : \Omega \rightarrow [0, \infty)^S \) with \(\sum_{s=1}^{S} \Theta_s(\omega) = 1 \)

C1. A seller that does not contribute anything to the auction (i.e., it brings neither winning contribution(s) nor allocated item(s)), called a non-contributing seller, receives nothing
 - Only contributing sellers receive positive payments

C2. Sellers shall have a nonnegative profit for every realization
 - Seller always receives a payment that is at least its total value of its items sold to the buyers

C3. \(\Theta(\omega) \) depends only on the set of contributing sellers
 - Can maintain the revenue allocation vectors in a finite table
Revenue sharing (2)

- Question: Is there a revenue allocation scheme, i.e., a mapping Θ^*, that satisfies C1 through C3?

Theorem: Given any expected payoff vector in the core of cooperative game, there always exists a revenue allocation scheme that satisfies C1 through C3

- Recursive method for finding a mapping Θ^*
Outline

- Background
- Motivation
- Problem formulation
- Efficient vs. optimal mechanism
 - Generalized Branco’s mechanism
- Incentive for cooperation among sellers
- Equitable profit sharing among sellers
 - Existence of nonempty core of cooperative game
 - Existence of equitable profit sharing scheme
- Conclusion
Conclusion

- Proposed an auction-based framework for designing a secondary spectrum trading market
 - Proposed an optimal auction mechanism (GBM) for allocating and pricing frequency bands
 - Showed the existence of an incentive for risk neutral sellers to cooperate in order to maximize their profits
 - By modeling the interaction among the sellers as a cooperative game, proved the existence of non-empty core of cooperative game
 - Designed a revenue sharing scheme that allows sellers to achieve any expected payoff vector in the non-empty core
Thank you....

Any questions?