A Benes Packet Network

Longbo Huang & Jean Walrand EECS @ UC Berkeley

Longbo Huang Institute for Interdisciplinary Information Sciences (IIIS) Tsinghua University

Data centers are important computing resources

Provide most of our computing services

- Web service: Facebook, Email
- Information processing: MapReduce
- Data storage: Flickr, Google Drive

Google data centers within US Src: http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/

Data centers are important computing resources

Google data centers within US

Src: http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/

Data centers are important computing resources

Google data centers within US

Src: http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/

The data center networking problem

Networking is the foundation of data centers' functionality

- Hundreds of thousands of interconnected servers
- Dynamic traffic flowing among servers
- Large volume of data requiring small latency
- Traffic statistical info may be hard to obtain

The data center networking problem

Networking is the foundation of data centers' functionality

- Hundreds of thousands of interconnected servers
- Dynamic traffic flowing among servers
- Large volume of data requiring small latency
- Traffic statistical info may be hard to obtain

Questions:

- How to connect the servers?
- How to route traffic to achieve best rate allocation?
- How to ensure small delay?
- How to adapt to traffic changes?

Benes Network + Utility Optimization + Backpressure

Benes Network:

- High throughput
- Small delay (logarithmic in network size)
- Connecting 2N servers with O(NlogN) switch modules

Flow Utility Maximization

- Ensure best allocation of resources

Backpressure:

- Throughput optimal
- Robust to system dynamics
- Require no statistical info

Benes Network

Building a 2ⁿx2ⁿ Benes network

Benes Network

Routing circuits:

Benes Network

Routing circuits:

non-blocking for circuits
 full-throughput for packets

Benes Network Flow Utility Maximization

- Random arrival A_{sd}(t)
- Flow control, admit R_{sd}(t) in
 [0, A_{sd}(t)]
- Each (s, d) flow has utility
 U_{sd}(r_{sd})
- Each link has capacity 1pk/s

The flow utility maximization problem:

max :
$$\sum_{sd} U_{sd}(r_{sd})$$

s.t. Stability

Benes Network Flow Utility Maximization

- Random arrival A_{sd}(t)
- Flow control, admit R_{sd}(t) in
 [0, A_{sd}(t)]
- Each (s, d) flow has utility
 U_{sd}(r_{sd})
- Each link has capacity 1pk/s

Backpressure can be directly applied. However, each node needs 2ⁿ queues, one for each destination

Grouped-Backpressure (G-BP)

The idea:

- Divide traffic into two groups
- Perform routing & scheduling on the mixed traffic
- Rely on Backpressure & symmetry for stability

Key components

- 1. A fictitious reference system for control
- 2. A special queueing structure
- 3. An admission & regulation mechanism
- 4. Dynamic scheduling

G-BP Component 1 - Reference System

the same

Grouped-Backpressure

Define flow weights:

$$W^{1U} = \left[2Q_m^{1U}(t) - Q_{m'}^{1U}(t) - Q_{m'}^{1L}(t) \right]^+$$

Define flow weights:

$$W^{1U} = \left[2Q_m^{1U}(t) - Q_{m'}^{1U}(t) - Q_{m'}^{1L}(t) \right]^+$$
$$W^{2U} = \left[2Q_m^{2U}(t) - Q_{m'}^{2U}(t) - Q_{m'}^{2L}(t) \right]^+$$

If W^{1U}>W^{2U} & W^{1U}>0, send 1U packets over link [m, m']
At m', randomly put the arrival into 1U or 1L

If W^{1U}<W^{2U} & W^{2U}>0, send 2U packets over link [m, m']
At m', randomly put the arrival into 2U or 2L

If queue is not empty, transmit packetElse remain idle

Grouped-Backpressure

 $Q_{m^{\prime\prime}}^{\mathsf{U}}(t)$

 $Q_{m''}\mathsf{L}(t)$

Grouped-Backpressure

Grouped-Backpressure – Performance

Theorem: Under the G-BP* algorithm, (i) both physical & fictitious networks are stable, and (ii) we achieve:

$$U(\boldsymbol{r}^{\mathsf{G-BP}}) \geq U(\boldsymbol{r}^{\mathsf{opt}}) - O(\frac{1}{V} + \epsilon)$$

* This is the idealized algorithm

Grouped-Backpressure – Performance

Theorem: Under the G-BP algorithm, (i) both physical & fictitious networks are stable, and (ii) we achieve:

$$U(\boldsymbol{r}^{\mathsf{G-BP}}) \geq U(\boldsymbol{r}^{\mathsf{opt}}) - O(\frac{1}{V} + \epsilon)$$

Remarks:

- No statistical info is needed
- Distributed hop-by-hop routing & scheduling
- Four queues per node (BP needs 2ⁿ)

- Update $\gamma_i(t)$ max : $VU(\gamma_i) - H_i(t)\gamma_i$ s.t. $\gamma_i \in [0, A_{\max}]$

- Admit packets:

- If H_i(t)>Q_i(t)+q(t), admit arrivals
- Else, do not admit

 $H_1(t)$, $H_2(t)$ are bdd

q(t) is bounded

- Update $\gamma_i(t)$ max : $VU(\gamma_i) - H_i(t)\gamma_i$

s.t.
$$\gamma_i \in [0, A_{\max}]$$

- Admit packets:

- If H_i(t)>Q_i(t)+q(t), admit arrivals
- Else, do not admit

Grouped-Backpressure – Intuition

Grouped-Backpressure – Intuition

Grouped-Backpressure – Proof Steps

Step 1 - Define a Lyapnov function:

$$L(t) \triangleq \frac{1}{2}H^2(t) + \frac{1}{2}q^2(t)$$

Step 2 - Compute a Lyapunov drift Δ (t)=E{ L(t+1) - L(t) | X(t) } $\Delta(t) - V\mathbb{E}{U(\gamma(t)) | X(t)}$

 $\leq B - \mathbb{E}\{VU(\gamma(t)) + H(t)[R(t) - \gamma(t)] + q(t)[1 - \epsilon - R(t)] \mid X(t)\}$

 $= B - \mathbb{E}\{VU(\gamma(t)) - H(t)\gamma(t) + [H(t) - q(t)]R(t) + q(t)(1 - \epsilon) \mid X(t)\}$

Step 3 - Plug in the opt solution of the relaxed problem, $\gamma_{\epsilon}^{*} = r_{\epsilon}^{*}$ $\Delta(t) - V \mathbb{E} \{ U(\gamma^{GBP}(t)) \mid X(t) \}$

 $\leq B - \mathbb{E}\{VU(\gamma_{\epsilon}^*) + H(t)[R_{\epsilon}^* - \gamma_{\epsilon}^*] + q(t)[1 - \epsilon - R_{\epsilon}^*] \mid X(t)\}$

 $\leq B - VU(\gamma_{\epsilon}^*)$ Step 4 - Do a telescoping sum

$$U(\overline{\gamma}^{\mathsf{GBP}}) \ge U(r^*) - \frac{B}{V} - O(\epsilon)$$

Step 5 - H(t) is stable

$$\overline{\gamma}^{\mathsf{GBP}} \leq \overline{r}^{\mathsf{GBP}} \Rightarrow U(\overline{r}^{\mathsf{GBP}}) \geq U(r^*) - \frac{B}{V} - O(\epsilon)$$

Grouped-Backpressure – Simulation*

Setting: 16x16 Benes network, ε =0.01, utility=log(1+r)

Grouped-Backpressure – Simulation

Setting: 16x16 Benes network, ε=0.01, utility=log(1+r)

Note: For 1Gbps links and 500-Byte packets

Grouped-Backpressure – Simulation Delay versus network size – logarithmic growth V=20, ε=0.01

Grouped-Backpressure – Simulation Delay versus network size – logarithmic growth V=20, ε=0.01

Grouped-Backpressure – Simulation

Setting: 16x16 Benes network, ε=0.01, utility=wlog(1+r)

Adaptation to change of traffic – At time 5, weights w_{sd} change

Summary

- Using Benes network and Backpressure for data center networking
 - Scalable: built with basic switch modules
 - Simple: four queues per node
 - Small delay: logarithmic in network size
 - High throughput: supports all rates in capacity region
 - Distributed: hop-by-hop routing and scheduling
- Future research: Implementation issues

Thank you very much !

More info: www.eecs.berkeley.edu/~huang