Visualizing Data with Graphs and Maps

Yifan Hu
AT&T Labs – Research

NIST
May 7, 2012
Outline

• The graph visualization problem
• Algorithms & challenges for visualizing large graphs
• Visualizing cluster relationships as maps
The graph visualization problem

• Given some relational data

• It is not easy to see what's going on!
The graph visualization problem

• But if we visualize it
The graph visualization problem

- The graph visualization problem: to achieve a “good” visual representation of a graph using node-link diagram (points and lines).
- Main criteria for a good visualization: readability and aesthetics.
- Small area, good aspect ratio, few edge crossovers, showing symmetry/clusters if exist, sufficiently large edge-edge, node-node and node-edge resolution, planar drawing for planar graph, ...
The graph visualization problem

- Different styles of graph drawing: circular layout
The graph visualization problem

- Different styles of graph drawing: hierarchical layout
The graph visualization problem

- Other styles: orthogonal, grid drawing, visibility drawings.
- This talk concentrates on undirected/straight edge drawing of non-planar graphs.
Graph drawing algorithms

- Hand layout not feasible (unless small graphs)
- Automated algorithms needed
- Virtual physical models are popular
- Spring model vs spring-electrical model
- Spring model: a spring between every pair of vertices
- Ideal spring length = graph distance
Spring Model (aka Stress Model)

- \{1\rightarrow 2, 2\rightarrow 3, 1\rightarrow 3, 1\rightarrow 4, 2\rightarrow 4, 3\rightarrow 4, 4\rightarrow 5\}
Spring Model (aka Stress Model)

- \{1\rightarrow 2, \ 2\rightarrow 3, \ 1\rightarrow 3, \ 1\rightarrow 4, \ 2\rightarrow 4, \ 3\rightarrow 4, \ 4\rightarrow 5\}
Spring Model (aka Stress Model)

- Spring model

\[\text{stress}(x) = \sum_{i \neq j, i, j \in V} w_{ij} (\| x_i - x_j \| - d_{ij})^2 \]

- Kruskal & Seery (1980); Kamada & Kwai (1989)
Spring Model (aka Stress Model)

• Spring model

\[
\text{stress}(x) = \sum_{i \neq j, i, j \in V} w_{ij} \left(\| x_i - x_j \| - d_{ij} \right)^2
\]

• Solution method:

\[
x_i \leftarrow \frac{\sum_{j \neq i} w_{ij} \left(x_j + d_{ij} \frac{x_i - x_j}{\| x_i - x_j \|} \right)}{\sum_{j \neq i} w_{ij}}
\]

\[
L_w x := L_d x
\]

\[L_w : \text{weighted (dense) Laplacian}\]

\[
(L_d x)_i = \sum_{j \neq i} w_{ij} d_{ij} \frac{x_i - x_j}{\| x_i - x_j \|}
\]

• Stress majorization (de Leeuw, J., 1977; Gasner, Koren & North, 2004)
Spring Model (aka Stress Model)

- Stress majorization on a grid graph
Spring Model (aka Stress Model)

- Stress majorization on a grid graph
Spring Model (aka Stress Model)

- But this model is not scalable
- All-pairs shortest paths: \(O(|V|^2 \log |V| + |V||E|) \)
- Memory: \(O(|V|^2) \)
Spring-electrical Model

• Eades (1984), Fruchterman & Reigold (1991)

• Energy to minimize:

\[
\sum_{i \leftrightarrow j} \frac{\|x_i - x_j\|^3}{3K} - K^2 \sum_{i \neq j} \ln(\|x_i - x_j\|)
\]

• Repulsive force =

\[
- \frac{K^2}{\|x_i - x_j\| \|x_i - x_j\|} \frac{x_i - x_j}{\|x_i - x_j\|}, \quad i \neq j
\]

• Attractive force =

\[
\frac{\|x_i - x_j\|^2}{K} \frac{x_i - x_j}{\|x_i - x_j\|}, \quad i \leftrightarrow j
\]
Spring-electrical Model

- Force directed iterative process:
 - for every node
 - calculate the attractive & repulsive forces
 - move the node along the direction of the force
 - repeat until converge

- But still not scalable: all-to-all repulsive force

\[-\frac{K^2}{\|x_i - x_j\|} \frac{x_i - x_j}{\|x_i - x_j\|}, \quad i \neq j \quad O(|V|^2) \]

- Easy to get trapped in a local minima
Reducing the $O(|V|^2)$ complexity

• Group remote nodes as supernodes (Barnes-Hut, 1986; Tunkelang, 1999; Quigley 2001)

• Reduce complexity to $O(|V| \log(|V|))$
Reducing the $O(|V|^2)$ complexity

- Implementation: quadtree/KD-tree.
- Example: 932 \rightarrow 20 force calculation.
Reducing the $O(|V|^2)$ complexity

• Taking one step further: supernode-supernode.
• Burton et al. (1998), particle simulation.
Finding global optimum

- Force directed algorithm: easy to get trapped in local min

- The larger the graph, the more likely to get trapped.

- Also, smooth errors are harder to erase with iterative scheme
Finding global optimum
Finding global optimum
Global Optimum: Multilevel

- Global optimum more likely with multilevel approach (Walshaw, 2005)
Spring-electrical: Large Graphs

- Multilevel + fast $O(|V|\log(|V|))$ force approximation \rightarrow efficient & good quality graph layout algorithms (Hachul & Junger 2005; Hu 2005).
Spring-electrical: Large Graphs

Other graph layout algorithms

- Eigenvector based methods (Hall's algorithm).
 \[
 \min \sum_{i \leftrightarrow j} \|x_i - x_j\|^2, \text{ subject to } \sum_{i \in V} \|x_i\|^2 = 1
 \]
 \[
 Lx = \lambda x, \quad \lambda > 0 \text{ and } \lambda \text{ as small as possible}
 \]

- High dimensional Embedding (Harel & Koren, 2002)
 - Find distance from k vertices to all vertices
 - Apply PCA to the $|V| \times k$ matrix to get the top 2 eigenvectors, use as coordinates

- PivotMDS (Brandes & Pich, 2006)

- All fast, but not good layout for graphs of large intrinsic dimension/non-rigid graphs
Drawing by some layout algorithms

Spring (Stress) Model

Spring-electrical model

Eigenvector (Hall's) method

High dimensional embedding
Graph visualization: challenges

- Some graphs are difficult to layout
- Size of graphs get larger and larger
- Making complex relational data accessible to the general public
- Large graphs with predefined distance (can't use spring model)
Challenges: some graphs are hard

- Multilevel spring-electrical works for a large number of graphs, but not all!
- When applied to some real world graphs, the results: not good...
- Example: Gupta1 matrix. 31802 x 31802.
Problem: Multilevel Coarsening

- A look at the multilevel process on Gupta1
- The problem: usual coarsening schemes do not work well

| level | |V| | |E| |
|-------|---|---|---|
| 0 | 31802 | 2132408 |
| 1 | 20861 | 2076634 |
| 2 | 12034 | 1983352 |
| 3 | 11088 | ← Coarsening too slow, stop! |

- Coarsening has to stop to avoid high complexity!
Multilevel Coarsening 1

- A popular coarsening scheme: contraction of a maximal independent edge set
Multilevel Coarsening 2

- Another popular coarsening scheme: maximal Independent vertex set filtering
Coarsening Scheme Fails

- The usual coarsening algorithms fails on some graph structures
- Example: a graph with a few high degree nodes
- Such structure appears quite often in real world graphs
Coarsening Scheme Fails

- Maximal independent edge set coarsening: 6 edges out of 378 picked
Coarsening Scheme Fails

- Maximal independent vertex set coarsening: all but 10 are chosen
Better coarsening

• The solution: recognize such structure and group similar nodes first, before maximal independent edge/vertex set based coarsening.

• Instead of

• We do
Better coarsening

- The result on Gupta1 matrix
Challenges: size keeps increasing

- Example: University of Florida Sparse Matrix Collection (Davis & Hu, 2011)

 - http://www.cise.ufl.edu/research/sparse/matrices/
 - The largest sparse matrix collection with > 2500 matrices and growing
 - Built on the success of MatrixMarket
Challenges: size keeps increasing

- Many different types of matrices: a good testing ground for linear algebra/combinatorical algorithms
- E.g., testing on this collection revealed the coarsening issue as discussed
Challenges: size keeps increasing

- Size keeps growing!
- Largest matrix: 50 million rows/columns and 2 billion nonzeros
Challenges: size keeps increasing

- The largest graph: sk-2005, crawl of the .sk (Slovakian) domain
- 2 billion edges
- Challenge to layout: need 64 bit version.
- Challenge to rendering: 100 GB postscript.
- Convert to jpg/gif using ImageMagic: crash.
- Solution: rendering using OpenGL.
- But my desktop only has 12 GB → rendering in a streaming fashion (does not store the edges).
The largest graph in the collection

• The result:

• Challenges: some graphs are hard to visualize – small world graph like that!
Challenges: hard graphs

- Visualizing small world graphs
- Possible tool: filtering. E.g., via k-core decom.
Challenges: hard graphs

- Visualizing small world graphs
- Possible tool:
 - abstraction (icons for cliques)
 - hierarchical (multilevel) view
 - fish-eye view
- Another possible tool: edge bundling
Challenges: hard graphs

- Fast $O(|E| \log(|E|))$ edge bundling (with Gansner)
Challenges: some graphs are hard

• Even drawing trees can be tricky!
• Spring-electrical model suffers from a “warping effect”.
• A spanning tree from a web graph
Drawing trees

- Proximity stress model (with Koren, 2009)
An Internet map: Reagan/Dulles
Visualizing graphs as maps

- So far graphs → node-link diagrams
- Not familiar to the general public
- Example
Recommender System Visualization

- AT&T provides digital TV (U-verse).
- A few hundred channels: need a recom. system!
- Recommending TV shows
 - If you like X, you will also like Y & Z.
 - Based on SVD/kNN: similarity of shows
- Like to visualize to see if model makes sense
- Also provide a way for users to explore the TV landscape.
Recommender System Visualization

Top 1000 shows and how they relate to each other.
Recommender System Visualization

- Messy. Not easy to understand for general public.

Better defined boundary → a map?
Recommender System Visualization

- Virtual maps are used frequently
- E.g., “online community”, circa 2007
- Can we make a map like that, but use real data?
Gmap algorithm

- Gmap algorithm (Gansner, Hu & Kobourov, 2010) – available as gvmmap from GraphViz.

- Four step process
 - embedding
 - clustering
 - mapping
 - coloring
Gmap algorithm

- Embedding + clustering use standard algorithm
- Mapping. Based on Voronoi diagram
Gmap algorithm

But the coloring needs improvement!
Gmap algorithm

- Coloring algorithm: maximize difference between neighboring countries.
- Solution: solve a graph optimization problem.
- Also know as the anti-bandwidth problem.
- Final result:
Gmap algorithm
Gmap applied to other areas

- Map of music; map of movies; map of books etc
Twitter Visualization

What are people talking about wrt the topic “news”?

#pharma news: ACT Announces Second Patient with Dry AMD Treated in U.S. Clinical Trial with RPE Cells Derived from ...
http://t.co/EsqBjL00

Nashville News Home Destroyed, Two Others Damaged By Fire: NASHVILLE, Tenn. A home was destroyed and two neighbo...
http://t.co/dcxUF7nO

Danielle woke me up to the GREATEST news ðŸ˜

RT @lbaraldo: devo dire che l'app #fineco e' quasi meglio del sito. I grafici immediati di alcune aree sono spettacolari e le news sono ...

The Affiliate Networks - DE News wurde gerade verÃ¶ffentlicht! http://t.co/RbOt8OtiJ â–, Topthemen heute von @tddepromotions @affilinet_news

@jsimoniti I saw it on the news and could tell fairly easily

RT @The1Daily: That feeling when your friends try to tell you 1D news & you're like "I already know. Get on my level, dude. PROUD Direct ...

Valerio Pellegrini Digital News is out! http://t.co/UZacEO9k â–, Top stories today via @palettod @dr8bit @alldigitalexpo @ggrch
In the news: (Examiner) Fake AT&T bills being used to deliver malware: http://t.co/IWWtfhec

[NEWS PIC] 120416 Kangin's comeback - Happy Kyuhyun :'D http://t.co/X1J1djam

RT @SizzlinStockPix: STOCKGOODIES PLAYS OF THE WEEK: $STKO news just out link below http://t.co/FEYe2TR0

@NatashaSade_ GM homegirl...... We have until tomm to file..... I just seen it on the news lol FYI

My horoscope said don't worry about it.. I just news to find something to do with my time to get my mind off of it

RT @Real_Chichinhu: SM should release news to slap that stupid official from that stupid music site

Ball State Daily News: Speaker informs students about female genital mutilation - http://t.co/FuN5LqKo via http://t.co/rkaZhaCv
Twitter Visualization

• Browsing can be tedious
• May even misses the overall picture
• Characteristics of Twitter stream
 - very short text (140 char)
 - streaming (3,000 tweets per second. 6X 2010)
 - considerable cross-copying (RT) and spontaneity
• What we like to see:
 - A “big picture” view
 - Clustered and summarized
 - Detail on demand
Twitter Visualization

- The approach we propose: a succinct high level visual clustering, with textual summary, and details on demand
- We will visualize only tweets relating to a keyword of interest
Tweet Similarity

• Finding similarity of tweets
 - either LDA, which gives distribution of topics over words, then document over topic. Then similarity based on topic distribution
 - or, treat each tweet as a vector of words, scaled using tf-idf. Followed by cosine similarity

\[
tf\text{-}idf(t, d) = \left| \{t \mid t \in d \} \right| \times \ln \frac{|D|}{\left| \{d \mid t \in d \text{ and } d \in D \} \right|}
\]

• We found that for tweets, the simpler tf-idf based similarity works just as well
Tweet Similarity

- Threshold the similarity matrix: similarity < 0.2
- This gives a sparse graph
- Embed the graph → similar tweets are close-by
- Apply Gmap: country = cluster
- Keyword summary of clusters

Screen shot taken March 18
Dynamic Stability

- We ensure *layout stability* by warm start + Procrustes transformation.
Dynamic Stability

• Component packing stability
 - disconnected component needs repacking stably

Repack stably
Dynamic Stability

- Traditional packing algorithm: polyomino based greedy algorithm
 - Place the largest component at the origin
 - Place the next component as close to the origin as possible without overlap
 - repeat

- Can pack very tight
Polyomino-based Packing

- Traditional packing algorithm: polyomino based greedy algorithm. Good/tight packing
Stable Packing

- Tradition packing pays no consideration to stability
Stable Packing

- Use “scaffold” to maintain the relative positions
Stable Packing

- Animate over 10 iterations
TwitterScope

- The algorithms are applied to an online application – TwitterScope
- Monitor keywords
- Push to the browser in a streaming fashion
- ~300 tweets at a time
- For keywords like “news”, most of the tweets and refreshed. Stability is impossible.
- For keywords like “visualization”, only a few new tweets per minutes – stability comes into play
Conclusion

- Significant progress in algorithms for drawing large graphs in the last 10 years
- Challenges remain due to ever increasing size and complexity of graphs
- Making visualization in familiar metaphor can make complex data accessible to a larger audience (e.g., the Map of Music recorded 640K hits on stumbleupon.com)