
Network Reliability: Approximation
Algorithms

Elizabeth Moseman

in collaboration with

Isabel Beichl, Francis Sullivan

Applied and Computational Mathematics Division
National Institute of Standards and Technology

Gaithersburg, MD

March 30, 2012

The Problem
Network Reliability
Motivation

Single Variable Case
Monte Carlo Markov Chain (MCMC)
Sequential Importance Sampling (SIS)
Improving Computational Efficiency

Multi-variate Case
Subgraph Search Tree
Tutte-like Search Tree
Comparing the Methods

Future Work

Definitions

1 2

3

5

4 6

7

A graph G (or network) is a pair of sets (V , E).
A subgraph is a subset of the vertices and edges.
A spanning subgraph contains all the vertices.
A connected subgraph has paths between all
vertices.

Problem Statement

Define R(G; p) as the probability of a network
remaining connected when edges are reliable with
probability p.
Goal: Calculate R(G; p).
When p is constant for every edge, we have

R(G; p) =

m−n+1
∑

k=0

fkpm−k (1 − p)k

where fk is the number of connected spanning
subgraphs of G with m − k edges. In this case, it is
sufficient to calculate the values fk for every k . In the
more general case, such coefficients do not exist.

Motivation

◮ Develop measurement science for massive
networks.

◮ Measure the reliability of infrastructure networks

◮ Power grid: probability of getting power to all
consumers.

◮ How much reliability will be improved with
incremental network changes.

◮ Exact computation is prohibitively expensive.
◮ Improved computational efficiency of Monte

Carlo methods.
◮ Supercomputers everywhere are running

MCMC processes.

Monte Carlo Markov Chain

◮ Method of sampling from a large sample space
without knowing the whole sample space.

◮ Based on making moves inside the sample
space.

Monte Carlo Markov Chain

Currently at subgraph Hi .
With probability 1

2 , set Hi+1 = Hi .
Select e ∈ E uniformly at random.
if e ∈ Hi and Hi − {e} is connected then

Set Hi+1 = Hi − {e}.
else if e /∈ Hi then

Set Hi+1 = Hi + {e}.
else

Set Hi+1 = Hi

end if

Example

1 2

3

5

4 6

7

H0 =
stay

H1 =
stay

H2 =
e2

H3 =
stay

H4 =
stay

H5 =
e4

H6 =
e2

H7 =
stay

H8 =
e6

H9 =
stay

H10 =

Monte Carlo Markov Chain

Currently at subgraph Hi .
With probability 1

2 , set Hi+1 = Hi .
Select e ∈ E uniformly at random.
if e ∈ Hi and Hi − {e} is connected then

Set Hi+1 = Hi − {e} with probability

min{1, µ}.

else if e /∈ Hi then
Set Hi+1 = Hi + {e} with probability

min{1, 1/µ}.

else
Set Hi+1 = Hi

end if

fugacity

Monte Carlo Markov Chain

This yields a steady state distribution πµ where

πµ(H) =
µm−|H|

Z (µ)

where

Z (µ) =

m−n+1
∑

k=0

fkµk .

Problems with MCMC

◮ Mixing Time is the number of steps that must be
taken before the state distribution is close enough to
the steady state.
Previous Solution: If it’s not enough, take more steps.

◮ Sample size is the number of samples to take to get
a good estimate of whatever is being measured.
Previous Solution: Get many, many more samples
than required.

◮ Fugacity is the value of µ used in the algorithm.
Different fugacities explore different sections of the
sample space.
Previous Solution: Guess values, and pick more if
parts of the sample space are not explored.

Sequential Importance Sampling

Based on previous work by Beichl, Cloteaux, and
Sullivan.

◮ Uses Knuth’s method of estimating the size of a
backtrack tree.

∑

f (X) = E(f (X)p(X)−1).

◮ Form a tree with a subgraph at each node.

◮ Children are subgraphs with one edge removed.

◮ To estimate the number of subgraphs
◮ Start with the whole graph.
◮ Take out one edge at a time, without

disconnecting.
◮ Note the number of choices at each step.

Example

1 2

3

5

4 6

7

a1 = 7
a2 = 5
a3 = 3
a4 = 0

f0 = 1
f1 = 7
f2 = 7·5

2 = 17.5
f3 = 7·5·3

3!
= 17.5

Actual Values:
f1 = 7
f2 = 19
f3 = 21

Problems with SIS

◮ Sample size How fast does the average
converge? On many graphs, it appears to
converge very quickly, but there are pathological
examples where is doesn’t.

◮ People don’t use this method. (We’re trying to
solve this by telling them about it.)

Using SIS to speed up MCMC

How can we use these methods together and make
it more efficient?

◮ Run SIS first.

◮ Use the SIS results to select fugacity, calculate
mixing time, and bound the sample size for use
with MCMC.

Fugacity

◮ Fugacity changes resulting steady state
distribution, indicating which area of the sample
space (which subgraphs) we are exploring.

◮ Optimal fugacity of µ = fi/fi+1 causes
subgraphs of size m − i and m − i − 1 to be
equally likely, all other sizes less likely.

◮ Idea: Estimate fi and fi+1 from SIS.

Calculated Fugacities

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m − i (i = subgraph size)

fr
eq

ue
nc

y

Expected, µ
1

Expected, µ
2

Expected, µ
3

Expected, µ
4

Expected, µ
5

Expected, µ
6

Expected, µ
7

Expected, µ
8

Expected, µ
9

Actual, µ
1

Actual, µ
2

Actual, µ
3

Actual, µ
4

Actual, µ
5

Actual, µ
6

Actual, µ
7

Actual, µ
8

Actual, µ
9

Fugacity chosen appropriately: Sample with fugacity
µi gives a high proportion of sample subgraphs with
m − i edges. (As predicted)

Aggregation

◮ The transition matrix of the Markov Chain is
stochastic matrix containing the probabilities of
transitioning between each state (subgraph).

◮ There are too many states, so calculating the
transition matrix exactly is prohibitively
expensive.

◮ To reduce the number of states, we combine
states that are “similar” in a process called
aggregation.

◮ In this case, we are recording subgraph size, so
we combine all subgraphs of the same size into
one state.

Mixing Time

◮ Aggregated transition matrix:












1 − A0 − B0 A1 0 · · · 0
B0 1 − A1 − B1 A2 · · · 0
0 B1 1 − A2 − B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 − Aℓ − Bℓ













where Ai = i/(2m) min{1, 1/µ},
Bi = ifi

2mfi−1
min{1, µ} and ℓ = m − n + 1.

◮ Values Bi can be estimated from SIS.
◮ The mixing time is then given by the formula

(1 − λµ)−1(ln m + ln ǫ−1)

where λµ is the second eigenvalue.

Calculated Mixing Time

0 1(1) (2) (3) (4) (5) (6) (7) (8) (9)1.5 2 2.5
10

20

30

40

50

60

70

80

µ (numbers in parentheses represent µ subscript)

M
ix

in
g

T
im

e

Calculated Mixing Time

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m − i (i = subgraph size)

fr
eq

ue
nc

y

Expected, µ
1

Expected, µ
2

Expected, µ
3

Expected, µ
4

Expected, µ
5

Expected, µ
6

Expected, µ
7

Expected, µ
8

Expected, µ
9

Actual, µ
1

Actual, µ
2

Actual, µ
3

Actual, µ
4

Actual, µ
5

Actual, µ
6

Actual, µ
7

Actual, µ
8

Actual, µ
9

Mixing time chosen appropriately: Sample subgraph
size distribution follows the expected distribution.
71% within 1 standard deviation.

Sample Size Calculation

◮ Let X be a sample subgraph chosen with
distribution πµ.

◮ Measure the random variable
Zi = (µi−1/µi)

m−|X |.

◮ Expected value: E[Zi] = Z (µi−1)/Z (µi).

◮ Relative variance:
Var[Zi]/(E[Zi])

2 ≤ Z (µi)/Z (µi−1).

Sample Size

◮ Sample size depends on variance.

◮ Variance depends on ratio Z (µi)/Z (µi−1).

◮ Z (µ) may be estimated from SIS.

Calculated Sample Size

0 1 1.5 2 2.5(1) (2) (3) (4) (5) (6) (7) (8) (9)
10

3

10
4

10
5

10
6

10
7

µ (numbers in parentheses represent µ subscript)

S
am

pl
e

S
iz

e

Calculated
Theoretical

Example Estimation

◮ µ5 = 0.4618, µ6 = 0.6291
◮ From SIS, we estimate Z (µ5) = 277.7, and

Z (µ6) = 1295. So the relative variance of Z6 is
approximately bounded by 4.663.

◮ We run the MCMC, and get a sample variance
for Z6 as 0.3020, well below the bound.

◮ Compare to the actual values: Z (µ5) = 275.3,
Z (µ6) = 1277., to bound the relative variance of
Z6 by 4.640. The population variance for Z6 is
0.2995.

Calculated Coefficients

Index k Actual fk SIS % Error MCMC % Error
0 1 1 0.00 1 0.0
1 15 15 0.00 14 0.25
2 105 105 0.00 92 0.06
3 454 454 0.01 405 0.29
4 1350 1356 0.13 1317 1.59
5 2900 2933 0.94 2737 0.93
6 4578 4698 1.65 4282 2.25
7 5245 5454 3.15 4943 3.41
8 4092 4307 2.80 3506 2.28
9 1728 1799 2.63 1586 3.02

Calculated Coefficients

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

Coefficient number

%
 E

rr
or

SIS
MCMC

Comparison
◮ Fugacity:

◮ We always need many different values of the fugacity.
◮ The method currently used in practice (guess and

check) does not predict the number that will be
needed.

◮ This method ensures that only the minimum number
(m − n) of fugacities are needed.

◮ Mixing Time:
◮ For this problem, there is no theoretical bound on the

mixing time.
◮ This method calculates a mixing time on the fly for the

actual graph being measured, ensuring that the
minimum number of steps are taken.

◮ Sample Size:
◮ Estimation using SIS methods leads to significant

reduction in sample size from the theoretical bounds.

Extending to the Multi-variate Case

◮ In the general problem of calculating R(G; p),
we let pe be the probability that an edge e is
reliable. These values may be distinct for
different edges.

◮ There is no longer a notion of coefficients, so we
must estimate the actual value R(G; p).

◮ First algorithm uses the same search tree as in
the single variable case.

Subgraph Search Tree

For any connected H ⊆ G, let
c(H) =

∏

e∈H pe
∏

e/∈H(1 − pe)/(m − |H|)! and DH

the set of edges in H that are not bridges.

For any e ∈ DH , let
P(e|H) = (1 − pe)/

∑

e∈CH
(1 − pe).

To get the estimate, start with H0 = G, and the
estimate R = c(G). For k = 1 to m − n + 1:

◮ Set Hk = Hk−1 − {e} with probability P(e|Hk−1),
and set ak = P(e|Hk−1)

−1.

◮ Set R = R + c(Hk)
∏k

i=1 ai

Example

1:
0.

81

2: 0.13

3: 0.90

5: 0.91

4:0.63

6:0.10

7: 0.28

a1 = 3.24
1−0.13

a2 = 2.18
1−0.28

a3 = 1.09
1−0.91

Rest = 0.3696
Ractual = 0.5294
From 1000 samples, R = 0.5355
with variance 0.1162.

Problems with the Subgraph Search
Tree

◮ Unknown variance.

◮ Sometimes, single runs return values greater
than 1.

Tutte-like Search Tree

Order the edges as e1, . . . em with probabilities
p1, . . . , pm, respectively.

Start with H = G and R = 1. For i = 1 to m
◮ If H − ek is connected, set H = H − ek with

probability 1 − pk .
◮ Otherwise, set R = pk · R.

Note: It is provably optimal that edges be ordered so
that pi ≤ pi+1.

Example

1:
0.

81

2: 0.13

3: 0.90

5: 0.91

4:0.63

6:0.10

7: 0.28

Rest = 0.28
Ractual = 0.5294
From 1000 samples, R = 0.5282
with variance 0.0231.

Problems with the Tutte-like Search Tree

◮ Unknown variance.

◮ Works poorly on extremely sparse graphs.

Comparison

Compare to existing methods: Karger, basic Monte
Carlo.

Compare on sparse graphs.

Tested dependence on size, density, and variance of
edge probabilities.

Size Dependence

0 10 20 30 40 50
10

−5

10
0

10
5

10
10

Run Number

R
el

at
iv

e
V

ar
ia

nc
e

BMC
TSS
SSS

Five graphs per n, n varies from 10 to 100
(increments of 10).
m = 2n
Early run numbers have fewer nodes.

Size Dependence

10
−10

10
−5

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

Reliability

R
el

at
iv

e
V

ar
ia

nc
e

BMC
TSS
SSS

Density Dependence

50 100 150
10

0

10
5

10
10

10
15

10
20

Number of eges

E
st

im
at

ed
 to

ta
l r

un
tim

e
(×

ε−
2 s

ec
on

ds
)

BMC
TSS
SSS

Edge Variance Dependence

Trials 1–5: Uniform on (0, 1)
Trials 6–10: Uniform on (0.25, 0.75)
Trials 11–15: Uniform on (0, 0.25) ∪ (0.75, 1)
Trials 16–20: Normal with µ = 0.5, σ = 0.25
Trials 21–25: Normal with µ = 0.5, σ = 0.05
Trials 26–30: Normal with µ = 0.5, σ = 0.5
Trials 31–35: Uniform on (0.8, 1)
Trials 36–40: Normal with µ = 0.9, σ = 0.05
Trials 41–45: 1 − x , where x is exponential with
λ = 0.5
Trials 46–50: 1 − x , where x is exponential with
λ = 0.1

Edge Variance Dependence

0 10 20 30 40 50
10

−2

10
0

10
2

10
4

10
6

10
8

Run Number

R
el

at
iv

e
V

ar
ia

nc
e

BMC
TSS
SSS

Edge Variance Dependence

0 0.05 0.1 0.15 0.2
10

−2

10
0

10
2

10
4

10
6

10
8

Variance of Edge Probabilities

R
el

at
iv

e
V

ar
ia

nc
e

of
 C

al
cu

la
te

d
R

el
ia

bi
lit

y

BMC
TSS
SSS

Edge Variance Dependence

0 1 2 3 4 5

x 10
−3

10
−1

10
0

10
1

10
2

10
3

10
4

Variance of Edge Probabilities

R
el

at
iv

e
V

ar
ia

nc
e

of
 C

al
cu

la
te

d
R

el
ia

bi
lit

y

BMC
TSS
SSS

Future Work

◮ Apply to larger graphs and networks, preferably
real ones.

◮ Theoretical mixing time bound.

◮ Explore methods of reducing the sample size for
large µ.

◮ Use SIS on other problems where we have an
MCMC to increase the efficiency of the MCMC
algorithm.

◮ Theoretical results on when one multi-variate
algorithm is better than another.

◮ Apply to other Tutte polynomial calculations.

References

◮ I. Beichl, B. Cloteaux, and F. Sullivan. An
approximation algorithm for the coefficients of the
reliability polynomial. Congr. Numer., 197:143–151,
2009.

◮ I. Beichl, E. Moseman, and F. Sullivan. Computing
network reliability coefficients. Congr. Numer.,
207:111–127, 2011.

◮ D. R. Karger. A randomized fully polynomial time
approximation scheme for the all-terminal network
reliability problem. SIAM J. Comput., 29(2):492–514
(electronic), 1999.

◮ D. E. Knuth. Estimating the efficiency of backtrack
programs. Math. Comp., 29:122–136, 1975. Collection
of articles dedicated to Derrick Henry Lehmer on the
occasion of his seventieth birthday.

	The Problem
	Network Reliability
	Motivation

	Single Variable Case
	MCMC
	SIS
	Improving Computational Efficiency

	Multi-variate Case
	Subgraph Search Tree
	Tutte-like Search Tree
	Comparing the Methods

	Future Work

