
Quantum Algorithms for 
Quantum Field Theories

Stephen Jordan

Joint work with
Keith Lee

John Preskill

[arXiv:1111.3633 and 1112.4833]

Feb 21, 2012



Quantum Mechanics

Each state of the system
is a basis vector.
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A general state is a linear combination of this basis:
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Quantum Mechanics

If we look inside the box we see:
 

     A dead cat with probability
 

     A living cat with probability
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The Classical World

In most macroscopic
systems, noise from
the environment 
randomizes the phases.

The linear combination of states then acts like an 
ordinary probability distribution.
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Qubits

To exhibit quantum-mechanical effects we want
a system that is simple and well isolated from its
environment.
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n qubits:
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Qubits

  

Can I have one?
Trapped Ions

Superconducting Circuits

Quantum Dots
NV Centers in Diamond

[ Wineland group, NIST ] [ Mooij group, TU Delft] 

[Paul group, U. Glasgow ]
[ Awshalom group, UCSB ]



Quantum Circuits

  

What is a quantum algorithm?
Classical Quantum
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The full description of quantum mechanics for a large system
with R particles has too many variables. It cannot be simulated
with a normal computer with a number of elements proportional
to R.

-Richard Feynman, 1982.

An n-bit integer can be factored on a quantum computer in

           time.

-Peter Shor, 1994.

  

The full description of quantum mechanics for a large system
with R particles has too many variables. It cannot be simulated
with a normal computer with a number of elements proportional
to R.

-Richard Feynman, 1982.

An n-bit integer can be factored on a quantum computer in

           time.

-Peter Shor, 1994.

The full description of quantum mechanics for a large 
system with R particles has too many variables. It 
cannot be simulated with a normal computer with a 
number of elements proportional to R.

-Richard Feynman, 1982

An n-bit integer can be factored on a quantum 
computer in            time.

-Peter Shor, 1994

O(n2)



  

The full description of quantum mechanics for a large system
with R particles has too many variables. It cannot be simulated
with a normal computer with a number of elements proportional
to R.

-Richard Feynman, 1982.

An n-bit integer can be factored on a quantum computer in

           time.

-Peter Shor, 1994.

  

The full description of quantum mechanics for a large system
with R particles has too many variables. It cannot be simulated
with a normal computer with a number of elements proportional
to R.

-Richard Feynman, 1982.

An n-bit integer can be factored on a quantum computer in

           time.

-Peter Shor, 1994.

The full description of quantum mechanics for a large 
system with R particles has too many variables. It 
cannot be simulated with a normal computer with a 
number of elements proportional to R.

-Richard Feynman, 1982

An n-bit integer can be factored on a quantum 
computer in            time.

-Peter Shor, 1994

O(n2)

Are there any systems that remain hard to simulate 
even with quantum computers?



Condensed-matter lattice models:

Many-particle Schrödinger and Dirac Equations:

[Abrams, Lloyd, 1997]

[Zalka, 1998]

[Taylor, Boghosian, 1998]

[Kassal, S.J., Love, Mohseni, Aspuru-Guzik, 2008]

[Lloyd, 1996]

[Berry, Childs, 2012]

[Meyer, 1996]

Quantum Simulation



Quantum Field Theory

• Much is known about using quantum 
computers to simulate quantum systems.

• Why might QFT be different?

• Field has infinitely many degrees of 
freedom

• Relativistic

• Particle number not conserved

• Formalism looks different



Quantum Particles

A classical particle is described 
by its location coordinates.

~r = (x, y, z)

The state of a quantum particle is linear combination 
of positions.

| i =
Z

d3r  (r) |ri



A configuration is a list of particle coordinates.

(5,3)

A quantum particle can be in a superposition of locations.

(5,3) (2,2)
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Quantum Fields

A classical field is described by
its value at every point in space.

E(r) =
1

4⇡✏0

q

r2

A quantum field is a linear combination of classical
field configurations.

| i =
Z

D[E] [E] |Ei



  

A configuration of the field is a list of field values, 
one for each lattice site.

A quantum field can be in a superposition of 
different field configurations.



Particles Emerge from Fields

Particles of different energy 
are different resonant 
excitations of the field.



When do we need QFT?

  

When do we need QFT?

Nuclear Physics

Cosmic Rays

Accelerator Experiments

➔Whenever quantum mechanical 
  and relativistic effects are both
  significant.

Nuclear Physics

Cosmic Rays

Accelerator Experiments



What is the computational 
power of our universe?
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Classical Algorithms

  

Classical Algorithms
Feynman Diagrams Lattice Methods

break down at strong 
coupling or high precision

cannot calculate dynamical
quantities  

Classical Algorithms
Feynman Diagrams Lattice Methods

break down at strong 
coupling or high precision

cannot calculate dynamical
quantities

Feynman diagrams Lattice methods

Break down at strong
coupling or high precision

Cannot calculate
scattering amplitudes



A QFT Computational Problem

Input: a list of momenta of
incoming particles

Output: a list of momenta of
outgoing particles
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I will present a polynomial-time quantum algorithm
to compute scattering probabilities in    -theory with 
nonzero mass

   -theory is a simple model that illustrates some of 
the main difficulties in simulating a QFT:
 

�4

�4

•Discretizing spacetime
 

•Preparing initial states
 

•Measuring observables



Lattice cutoff

Continuum QFT = limit of a sequence of theories on
successively finer lattices

continuum...



Coarse grain

Interaction strength:

Mass:

Mass:

Interaction strength:

m

�

m0

�0



Lattice cutoff

Continuum QFT = limit of a sequence of theories on
successively finer lattices

continuum...

   and      are functions of lattice spacing!m �



Discretization Errors

• Renormalization of m and     make 
discretization tricky to analyze

• In      -theory, in d=1,2,3, discretization 
errors scale as

�4

a2

The renormalization condition satisfied at first order in λ0 implies that the first two diagrams
cancel. The remaining two-loop diagram (with external momentum p) gives

=
(−iλ0)2

6
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where a Feynman-parameter integral has been introduced, with
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To evaluate the k0 and q0 integrals, one can change variables:
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where

l1 = k0 +
z

x+ z
(q0 + p0) , (211)

l2 = q0 +
xz

xy + xz + yz
p0 , (212)

β = x+ z , (213)

ξ =
xy + xz + yz

x+ z
, (214)

ζ =
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. (215)
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50

...its complicated



Condensed Matter

There is a fundamental lattice spacing.
 

But:
 

We may save qubits by simulating a 
coarse-grained theory.

RG



After imposing a spatial lattice we have a many-body
quantum system with a local Hamiltonian

Simulating the time evolution in polynomial time is
a solved problem

Standard methods scale as     .  We can do    .N2 N

 

•Convergence as
 

•Preparing wavepackets
 

•Measuring particle momenta

a ! 0



Strong Coupling
     -theory in 1+1 and 2+1 dimensions has a quantum
phase transition in which the               symmetry is 
spontaneously broken

�4

� ! ��

Near the phase transition perturbation theory fails
and the gap vanishes.

  

Strong Coupling
   -theory in 1+1 and 2+1 dimensions has phase 
transition in which                symmetry is 
spontaneously broken
 

Near phase transition perturbation theory breaks 
down and mass gap vanishes:

⌫ =

⇢
1 d = 1
0.63 . . . d = 2

mphys ⇠ (�c � �0)
⌫



Complexity
Weak Coupling:

Strong Coupling:



Eventual goal:
Simulate the standard model in BQP

Solved problems:
    -theory [arXiv:1111.3633 and 1112.4833]
Gross-Neveu [S.J., Lee, Preskill, in preparation]

Open problems:
Gauge symmetries, massless particles
Spontaneous symmetry breaking
Bound states, confinement
Chiral Fermions

�4



Analog Simulation

• No gates: just implement
a Hamiltonian and let it
time-evolve

• Current experiments
do this!
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Analog Simulation

• Experiments so far have concentrated on 
mapping out phase diagrams

• We are developing a proposal to simulate     
scattering processes using Rydberg atoms 
trapped in optical lattices

[Gorshkov, S.J., Preskill, Lee, In Preparation]
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Broader Context

quantum

quantum

Formula evaluation

topological
quantum

field theories

Tutte
Jones

PonzanoïRegge
HOMFLYTuraevïViro

Game trees

circuits

scattering
("quantum walks")

field theories
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quantum

Formula evaluation

topological
quantum

field theories

Tutte
Jones

PonzanoïRegge
HOMFLYTuraevïViro

Game trees

circuits

scattering
("quantum walks")

field theories
quantum
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What I’m trying to do is get you people who 
think about computer simulation to see if 
you can’t invent a different point of view 
than the physicists have.

     -Richard Feynman, 1981

In thinking and trying out ideas about “what 
is a field theory” I found it very helpful to 
demand that a correctly formulated field 
theory should be soluble by computer... It 
was clear, in the ‘60s, that no such computing 
power was available in practice.

      -Kenneth Wilson, 1982



Conclusion
Quantum computers can simulate scattering in
    -theory.
 
There are many exciting prospects for quantum 
computation and quantum field theory to contribute 
to each other’s progress.
 
I thank my collaborators:

 

Thank you for your attention.  

Conclusion
Quantum computers can efficiently calculate 
scattering amplitudes for      theory in 3 or fewer 
spatial dimensions.

Work remains to be done regarding more 
complicated theories.

I thank my collaborators:

Thank you for your attention.
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