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Identify sources of groundwater pollution

Solve Advection Dispersion Equation back-

ward in time, given present state g(x, y):

Ct = ∇.{D∇C} −∇.{vC}, 0 < t ≤ T,

C(x, y, T) = g(x, y).
(1)



DEBLURRING GALAXY IMAGES

  Original NGC 1309 Logarithmic diffusi on
HUBBLE SPACE TELESC OPE;  (ACS CAMERA)

Solve logarithmic diffusion equation back-

ward in time, given blurred image g(x, y):

wt = −
[

λ log{1 + γ(−∆)β}
]

w, 0 < t ≤ T,

w(x, y, T) = g(x, y).
(2)



Logarithmic Convexity Arguments ⇒

Backward Uniqueness and Stability

Well-posed parabolic eq. wt = Lw, 0 < t ≤ T ,

in L2(Ω), with negative self adjoint spatial

operator L, so that (w, Lw) = (Lw, w) ≤ 0.

Let F(t) =‖ w(., t) ‖2. Show logF(t) con-

vex function of t, ⇐⇒ d2/dt2{logF(t)} ≥ 0.

Must show FF ′′−(F ′)2 ≥ 0. F ′(t) = 2(w, Lw);

F ′′(t) = 2(wt, wt) + 2(w, wtt) = 2(Lw, Lw) +

2(w, L2w) = 4 ‖ Lw ‖2. Schwarz’s inequality

=⇒ (F ′)2 = 4|(w, Lw)|2 ≤ 4 ‖ w ‖2‖ Lw ‖2 .

Hence, FF ′′ − (F ′)2 ≥ 0. QED.

⇒ ‖ w(., t) ‖≤‖ w(.,0) ‖(T−t)/T ‖ w(., T) ‖t/T .



Non Selfadjoint or Nonlinear ⇒
FF ′′ − (F ′)2 ≥ −kFF ′, k > 0. Now, with
σ = e−kt, logF(t) is a convex function of σ.
Ex. Navier-Stokes eqns (Knops-Payne 1968)

Well-posed linear or nonlinear parabolic equa-
tion wt = Lw on 0 < t ≤ T , with approx data
f(x) at time T such that ‖ w(., T) − f ‖≤ δ.

Using f(x), find solution w(x, t), 0 ≤ t ≤ T ,
such that ‖ w(.,0) ‖≤ M, (δ ≪ M).

If w1(x, t), w2(x, t) are any two solutions, then

‖ w1(., t)−w2(., t) ‖≤ 2M1−µ(t)δµ(t), 0 ≤ t ≤ T.

Here, µ(t) = (1 − e−kt)/(1 − e−kT ), µ(T) =
1, µ(0) = 0, with µ(t) > 0, t > 0, and µ(t) ↓ 0
as t ↓ 0. Implies backward uniqueness, but

no guaranteed accuracy at t = 0, even

with very small δ > 0.



Difficulty of backward reconstruction hinges

on behavior of Hölder exponent µ(t) as

t ↓ 0. Selfadjoint problems ⇒ µ(t) = t/T .

Nonlinear problems ⇒ µ(t) sublinear in t.

Selfadjoint

Nonlinear

 Behavior of Holder  exponent in backwa rd problems

problem

problem



Van Cittert iteration in backward problem

Forward parabolic initial value problem

wt = Lw, w(x,0) = h(x), 0 < t ≤ T.

Forward solution operator S at time T :

S[h(x)] = wh(x, T). Obtained numerically.

With approximate data f(x) at time T, and

h1(x) = γf(x), consider iterative process:

hn+1(x) = hn(x)+γ {f(x) − S[hn(x)]} , n ≥ 1.

Find ‖ f − S[hN ] ‖≤ δ for some large N .

If ‖ hN ‖≤ M, then hN(x) is valid reconstruc-

tion of unknown w(x,0) from the data f(x).



TYPICAL VAN CITTERT BEHAVIOR

Behavior in residua l supremum  norm ||  f−S[h^n] ||.
Van Cittert iterati on in non selfadjoi nt example.



Linear non selfadjoint parabolic equation

Each of red, green,  or blue initial va lues at t=0, termin ates on black
curve at t=1, to wi thin 4.1E−3 pointwi se, and L2 relative  error 2.6E−3.

X  coordinate

Effective backward non uniqueness in l inear non selfadjoi nt example.

t=0

t=1

t=0

wt = 0.05
{

e(0.025x+0.05t)wx

}

x
+ 0.25wx, − 1 < x < 1, 0 < t ≤ 1.0,

w(x,0) = e2x sin2(3πx), w(−1, t) = w(1, t) = 0, t ≥ 0.
(3)



HOW SOLUTIONS AGREE AT t=1

        Linear non selfadjoint example

t=1

t=1

Highly distinct red  and blue initial v alues at t=0, visua lly agree at t=1.



Strongly nonlinear parabolic equation

wt = 0.05(e0.5wwx)x + wwx, − 1 < x < 1, 0 < t ≤ 1.0,

w(x,0) = e3x sin2(3πx), w(−1, t) = w(1, t) = 0, t > 0.
(4)



GREEN EVOLUTION; OCCAM’S RAZOR

Simplest Plausible ?? Settled Science ??

t=0

t=0.3

t=0.6

t=1

EVOLUTION IN NONLINEAR PARABOLIC INITI AL VALUE PROBLEM



LESS PLAUSIBLE RED EVOLUTION ?

t=0

t=0.025

t=0.3
t=0.6

t=1

EVOLUTION IN NONLINEAR PARABOLIC INITI AL VALUE PROBLEM



Van Cittert iteration. Can be used to find

numerous other examples of false reconstruc-

tion from approximate data.

Multidimensional problems. Very likely a

rich source of interesting counterexamples.

Potential impact. Hydrologic Inversion and

Image Deblurring.

Detailed prior information on true solu-

tion. Necessary to resolve uncertainty in re-

construction.
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Helium Ion Microscope images are noisy.
ANDRAS  VLADAR,   N ANOSCALE METROLOGY GROUP,  NIST.

Smooth by solving fractional diffusion eqn.

wt = −(−∆)βw, t > 0, w(.,0) = g(x, y).

Can show ‖ ∇w(., t) ‖2= O(t−1/2β), t ↓ 0.

Choose β with 0.1 < β < 0.2.

Blows up fast at t = 0. Suggests wβ(x, y, t)

retains fine structure in g(x, y) for small t > 0.

Heat eqn (β = 1) blows up very slowly, O(t−1/2).

Smooths out fine structure very quickly.



Use FFT to solve fractional diffusion eqn.

ŵ(ξ, η, t) = e−tρ2β
ĝ(ξ, η), t > 0, with ρ2 =

(2πξ)2 +(2πη)2. Inverse Fourier ⇒ w(x, y, t).

Conserves L1 norm: ‖ w(., t) ‖1=‖ g ‖1, t > 0.

Also, ‖ w(., t)− g ‖2 ↑ monotonically as t ↑,

and ‖ ∇w(., t) ‖2 ↓ monotonically as t ↑.

Variational Principle: Given noisy image g(x, y),

evaluate ‖ ∇g ‖p, p = 1,2. Prescribe λ with

0 < λ < 1. Define denoised image gL(x, y by

gL = Arg mint>0 {‖ w(., t) − g ‖2∋‖ ∇w(., t) ‖2≤ λ ‖ ∇g ‖2}.

Monotonicity ⇒ gL(x, y) = w(x, y, t†), where

t† is earliest time ∋ ‖ ∇w(., t) ‖2≤ λ ‖ ∇g ‖2.



Monitor evolution from noisy g(x, y) at t =
0, to denoised gL(x, y) at t = t† = 0.1.

            t=0.0                              t=0.02                            t=0.04

               t=0.06                            t=0.08                            t=0.1

Rerun with new λ ⇒ new t† ⇒ new gL.
λ controls size of ‖ ∇gL ‖2= λ ‖ ∇g ‖2.



TOTAL VARIATION (TV ) DENOISING

With noisy g(x, y) and regzn parameter ω > 0,

define TV denoised image gtv(x, y) by

gtv = Arg minu∈BV (R2)

{

‖ ∇u ‖1 +ω/2 ‖ u − g ‖22

}

.

Assumes true image ∈ BV (R2). Denoised

gtv(x, y) with ‖ ∇gtv ‖1≪‖ ∇g ‖1, typical !.

Two good methods for TV denoising: 1. Split

Bregman iteration, and 2. Long time steady-

state solution in Marquina-Osher PDE (Neu-

mann BC; Tunable parameters Λ, σ > 0.)


















wt = −Λ|∇w| (w − g) + |∇w| ∇.

(

∇w/{
√

|∇w|2 + σ}

)

,

w(x, y,0) = g(x, y),

(1)



PERONA-MALIK DENOISING

Anisotropic smoothing that retains edges, us-

ing diffusion coefficient vanishing at edges.

Consider dif(u) = 1/(1 + γu2); γ > 0.

Or, consider dif(u) = exp(−σu2); σ > 0.

With noisy image g(x, y) as initial data, and

homogeneous Neumann boundary conditions,

march forward with










wt = ∇. {dif(|∇w|)∇w} ,

w(x, y,0) = g(x, y),
(2)

Results visually similar to TV denoising.



Image L1 Lipschitz exponents α.

Measures fine structure in noise free image.

g(x, y) has L1 Lipschitz exponent α iff

∗∗
∫

R2 |g(x+h1, y+h2)−g(x, y)|dxdy = O(|h|α), ∗∗

as |h| ↓ 0, where |h| = (h2
1 + h2

2)
1/2, and α

is fixed with 0 < α ≤ 1.

g(x, y) ∈ BV (R2) ⇒ α = 1 !!

Most natural images have α < 0.6, /∈ BV (R2) !!

Display localized non differentiable sharp fea-

tures and texture, in addition to edges. More

fine structure ⇒ smaller Lip α.



How to find Lipschitz α for g(x, y) ?

For fixed τ > 0, define Gaussian blur op-

erator Gτ by means of Fourier series

{Gτg}(x, y) =
∑∞

−∞ e−τ(m2+n2)ĝmne2πi(xm+yn).

Let µ(τ) =‖ Gτg − g ‖1 / ‖ g ‖1, τ > 0.

Theorem (Taibleson, 1964). g(x, y) has L1

Lip α if and only if µ(τ) = O(τα/2) as τ ↓ 0.

Using FFT, compute µ(τn) for sequence τn

tending to zero, and plot µ(τn) versus τn, on

log-log scale. Locate positive constants C, α

such that µ(τ) ≤ C τα/2.



Estimating the Lips chitz exponent in S ydney image

Red curve is plot of µ(τ) vs τ .

Lip α = 2× slope of majorizing Σ line.

Here, α = 0.530



Adding noise decreases true image Lip α.
Some denoising methods eliminate texture,
and increase true image Lip α.

 True (0.594)                  Noisy ( 0.230)              Denoised (0.812)

Lipschitz exponents  after noising and denoising

Noisy

Noisy

True DENOISED

True



Fractional diffusion vs TV and Curvelet denoising

 Noisy original deta il           0.2 Fr actional Diffusion          Split  Breg man  TV

Image f(x, y) ‖ f ‖1 ‖ ∇f ‖1 Lip α
Noisy original (300 nm) 74 47000 0.085

Frac diffusion(β = 0.2, t† = 0.1) 74 15000 0.211
Split Bregman TV (ω = 0.025) 73 3500 0.697
Curvelet thresholding (σn = 30) 64 3000 0.704

True surfaces may be fuzzy, like a peach, not smooth
like an apple. Uncontrolled, very severe reductions in
‖ ∇g ‖1 in TV and Curvelet images, versus prescribed
reduction in ‖ ∇g ‖1 in Fractional Diffusion image.



Fractional diffusion vs TV and Curvelet denoising

  Noisy original de tail         0.2  F ractional D iffusion          Split Breg man TV

Image f(x, y) ‖ f ‖1 ‖ ∇f ‖1 Lip α
Noisy original (600 nm) 88 25000 0.241

Frac diffusion(β = 0.2, t† = 0.1) 88 8500 0.451
Split Bregman TV (ω = 0.025) 74 3400 0.751
Curvelet thresholding (σn = 30) 81 2700 0.810

Exit value of ‖ ∇g ‖1 was prescribed in fractional dif-
fusion, but not in TV or Curvelet denoising.



Behavior of Lipschi tz exponents in HIM  denoising

Noisy  HIM  origina l
Lip=0.241

After Split Bregman  
TV  denoising Lip=0 .751

After 0.2 fractiona l
diffusion denoising
Lip=0.451

Study this HIM image with other evolution PDEs



What is special about fractional diffusion ?? Get
same result with any PDE if prescribe exit ‖ ∇g ‖1 ??

EQUIVALENT SMOOTHING EXPERIMENT

Compare short time smoothing using FIVE dis-
tinct parabolic evolution equations.

Prescribe identical exit value for ‖ ∇g ‖1.

Perona-Malik; Marquina-Osher; Heat Equation;
Fractional Diffusion β = 0.2, β = 0.1.

Study previous HIM image with exit ‖ ∇g ‖1= 8500.

Behavior of Lip α in denoised image ???



FRACTIONAL DIFFUSION IS SPECIAL !!!
Study equivalent smoothing with 5 PDEs

 Exit Lipschitz expo nent responds to fr actional
power of spatial op erator in smoothing  PDE !!

Perona−Malik (brown );  Lip=0.501

Marquina−Osher (gre en);  Lip=0.520

Heat Equation (red) ;  Lip=0.524

0.2 Frac Diffusion (orange);  Lip=0.45 1

0.1 Frac Diffusion (blue);  Lip=0.372


